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Wprowadzenie

Nieustanny rozwój nauki i technologii powoduje, że pewne dawno rozpatrywane zagad-
nienia stają się na nowo interesujące. Dobrze znane konstrukcje teoretyczne w nowym
kontekście zyskują nowego wymiaru, co pozwala na stawianie nowych pytań i potwierdza
zasadność wielu uprzednich, często czysto teoretycznych poszukiwań. Istotny postęp
w dziedzinie nanotechnologii, który obserwujemy w ostatnich latach, sprawił, że na nowo
wzrosło zainteresowanie perkolacją i zablokowaniem, rozważanymi m.in. w kontekście
własności nowoczesnych kompozytów.

Właśnie tym zagadnieniom, modelowanym za pomocą ciągle nośnego podejścia ad-
sorpcji sekwencyjnej, poświęcona jest niniejsza rozprawa. Rozważam w niej różnorodne
aspekty perkolacji i zablokowania oraz ich wzajemnych relacji w przypadku, gdy obiekty
przyłączające się do badanej powierzchni są relatywnie duże, tzn. mają pewną strukturę
przestrzenną. Pozwala to opisywać procesy z udziałem włókien węglowych, nanorurek czy
też innych cząsteczek o bardziej złożonych kształtach.
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Rozdział 1

Kontekst

Niniejszy rozdział stanowi krótkie wprowadzenie w tematykę rozprawy habilitacyjnej.
Omówię tutaj pojęcia i zagadnienia dotyczące procesów adsorpcji sekwencyjnej.

Często z pozoru zupełnie niezwiązane ze sobą zjawiska można opisać stosując podobne
schematy teoretyczne, gdyż istnieją podobnego typu zależności między poszczególnymi
elementami układu. Wiele procesów zachodzących w przyrodzie charakteryzuje się nieod-
wracalnością w badanych skalach czasowych, a ich dynamika jest ograniczona przez nie-
dostępne dla procesu obszary, które powiększają się na skutek adsorpcji, czyli trwałego
wiązania się obiektów (cząsteczek, makromolekuł, kryształów itp.) z podłożem. Mimo
bardzo dużej złożoności wielu procesów okazuje się, że istnieją stosunkowo proste modele
teoretyczne, które są w stanie wytłumaczyć rzeczywistość z dużą dokładnością. Punktem
wyjścia dla wyżej wspomnianej klasy zjawisk jest model losowej adsorpcji sekwencyjnej
(ang. RSA — Random Sequential Adsorption), który odpowiednio modyfikowany znaj-
duje zastosowanie w bardzo wielu sytuacjach.

W podstawowej wersji mamy do czynienia z obiektami, które zajmują określoną ilość
miejsca i mogą się wiązać z podłożem. W jednym momencie dopuszcza się możliwość ad-
sorpcji tylko jednego obiektu, a jego położenie i orientację ustala się w sposób losowy za
pomocą określonego rozkładu prawdopodobieństwa (zwykle używa się rozkładu jednostaj-
nego). W przypadku gdy wylosowana pozycja nie koliduje z obiektami uprzednio zaad-
sorbowanymi, obiekt zostaje tam unieruchomiony, powiększając tzw. adsorbat. W prze-
ciwnym wypadku (gdy obiekty nachodzą na siebie) próba adsorpcji jest odrzucana i gene-
rowana jest nowa pozycja, która nie jest skorelowana ze starą. Tak skonstruowany model
odtwarza szereg istotnych charakterystyk powierzchni, takich jak stopień zapełnienia czy
wzajemne korelacje. Dodatkowo otrzymuje się zależność tych wielkości od czasu.

Aby możliwie wiernie opisać rzeczywistość, wprowadza się różne modyfikacje do pod-
stawowego modelu [1]. W zależności od sytuacji podłoże może być jednowymiarowe (np.
łańcuch polimeru, do którego w różnych punktach przyłączają się odpowiednie grupy1),

1Właśnie z reakcji łączenia się sąsiednich podstawników w łańcuchu poliwinylowym wywodzą się
pierwsze tego typu modele [2].
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dwuwymiarowe (np. błony biologiczne, powierzchnie kryształów) albo nawet fraktalne.
Sama struktura podłoża może być ciągła albo dyskretna, przy czym dynamika obu typów
modelu bardzo się od siebie różni. Pewnym rozszerzeniem modelu jest ograniczenie
losowości kolejnych prób adsorpcji na rzecz wprowadzenia rozkładu pozycji zależnego
od stanu otoczenia (taka modyfikacja uwzględnia np. oddziaływania cząsteczek z ad-
sorbatem jeszcze przed przyłączeniem się). Aby uwzględnić wpływ mechanizmu trans-
portu cząsteczek na badane procesy, modyfikuje się model, włączając do niego dyfuzję
adsorbowanych cząsteczek (dominujące siły typu brownowskiego) albo zakładając ruch
balistyczny (obiekt adsorbowany trafiając na zajęte już miejsce próbuje ześlizgnąć się
w linii największego spadku w kierunku podłoża: jeśli na nie upadnie — zostaje, jeśli nie
— wraca do roztworu; odpowiada to sytuacji zdominowanej siłami grawitacji). W niek-
tórych modelach dopuszcza się także możliwość desorpcji, tzn. spontanicznego odłączenia
się cząsteczek z powrotem do roztworu. Zupełnie odrębną podklasę stanowią modele ad-
sorpcji, w których rozpatruje się różne rodzaje cząsteczek (od mieszaniny dwóch typów
cząsteczek do ciągłego rozkładu wielkości charakteryzującej cząsteczki). Wówczas za-
chowanie układu istotnie zależy od przyjętych parametrów mieszaniny, takich jak wielkość
cząsteczek, ich względna ilość itp. Można także rozpatrywać adsorpcję cząsteczek jed-
nego rodzaju na podłoże uprzednio zanieczyszczone, tzn. pokryte do pewnego stopnia
innego rodzaju cząsteczkami. Aby modelować procesy wzrostu za pomocą adsorpcji sek-
wencyjnej, można wprowadzić do modelu możliwość układania się jednych cząsteczek na
drugich, otrzymując wielowarstwowy adsorbat. Wreszcie na charakterystykę układu za-
sadniczy wpływ ma wielkość i kształt obiektów, które podlegają adsorpcji. W przypadku
ciągłym bada się adsorpcję m.in. dysków, kwadratów, prostokątów, elips, a dla sieci
dyskretnych — dimerów, trimerów, liniowych łańcuchów, a także polimerów o bardziej
złożonych kształtach.

Jednowymiarowy ciągły model adsorpcji odcinków na prostej (tzw. problem parkowa-
nia samochodów) daje się rozwiązać ściśle [3]. Otrzymana gęstość adsorbatu θ(t) w granicy
długich czasów zmierza do progu zablokowania θ(∞) ≈ 0, 7476 w sposób potęgowy:
θ(t)− θ(∞) ∝ t−1. Funkcja rozkładu G przerw o długości h między odcinkami w granicy
długich czasów wykazuje logarytmiczną rozbieżność wokół h = 0: G(h, t = ∞) ∝ − lnh.
Otrzymana w tym modelu dwupunktowa funkcja korelacyjna zanika na dużych odległoś-
ciach dużo szybciej niż wykładniczo (w przeciwieństwie do wykładniczego zaniku w ty-
powych układach równowagowych).

W większej liczbie wymiarów modele nie dają się rozwiązać ściśle i stosuje się metody
przybliżone (analityczne i numeryczne). Okazuje się, że charakterystyki modelu jed-
nowymiarowego są również typowe dla wyższych wymiarów — mamy także do czynienia
z nietrywialnym progiem zablokowania (np. θ(∞) ≈ 0, 547 dla dysków), wolną kine-
tyką (θ(t) − θ(∞) ∝ t−1/2 dla dwóch wymiarów), logarytmiczną rozbieżnością funkcji
korelacyjnej dla h = 0 i nierównowagowością osiągniętego stanu granicznego. Sytuacja
jest tu inna niż w przypadku równowagowej mechaniki statystycznej, dla której modele
jednowymiarowe istotnie różnią się od 2- i 3-wymiarowych odpowiedników (w jednym
wymiarze nie ma termodynamicznych przejść fazowych).
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Ponieważ w wielu zastosowaniach mamy do czynienia z adsorpcją obiektów anizotropo-
wych (np. silnie wydłużonych w jednym kierunku), w wielu pracach analizuje się adsorpcję
takich obiektów jak elipsy, prostokąty (zwykłe i zaokrąglone) albo nawet nieskończenie
cienkie igły. Okazuje się, że z reguły: a) maksymalne zapełnienie otrzymuje się dla
obiektów o stosunku rozmiarów (długość/szerokość) rzędu 2; b) dla bardzo wydłużonych
obiektów granica zapełnienia jest bliska zeru; c) dla obiektów anizotropowych graniczna
wartość zapełnienia jest osiągana wolniej niż dla dysków.

W przypadku sieci dyskretnej dla klasycznego jednowymiarowego modelu adsorpcji
dimerów [2] z granicznym zapełnieniem θ(∞) = 1 − e2 ≈ 0, 8647 korelacje przestrzenne
zanikają z odległością szybciej niż wykładniczo, podobnie jak ma to miejsce w przypadku
ciągłym. W jednym wymiarze przejście między przypadkiem dyskretnym i ciągłym otrzy-
muje się w granicy wielkości cząsteczek k → ∞ (dla dużych k słuszne jest rozwinięcie
θ(k) = θ(∞) + 0, 216181/k + 0, 362559/k2 + ...). Na dyskretnej sieci inna jest jednak
dynamika dochodzenia do stanu zapełnienia — od pewnego momentu różnica między gęs-
tością adsorbatu a progiem zablokowania maleje wykładniczo z czasem: θ(∞) − θ(t) ∝
exp(−t/const) [4] (w przeciwieństwie do zaniku potęgowego dla przypadku ciągłego).
Słynna hipoteza Palastiego mówi o tym, że próg zablokowania dla adsorpcji n-wymiaro-
wych kostek o boku k na sieci hiperkubicznej jest n-tą potęgą progu zablokowania dla
problemu adsorpcji k-meru w jednym wymiarze2.

Dla adsorpcji liniowych k-merów na sieci kwadratowej otrzymano [5] analitycznie przy-
bliżony związek granicznego zapełnienia θ(k) = 0, 664+0, 827/k−0, 699/k2 (co pozostaje
w zgodności z wynikami Monte Carlo z dokładnością do 2%). Badania procesu adsorpcji
liniowych k-merów na dyskretnym substracie były prowadzone tylko w przypadku sieci
węzłów, natomiast ujęcie sieci wiązań nie było wcześniej badane (co jest przedmiotem
pracy [H2]).

Oprócz analizy kinetyki adsorpcji i stanu zablokowanego w procesach adsorpcji sek-
wencyjnej często zwraca się szczególną uwagę na zagadnienia perkolacji. Bada się warunki,
w jakich powstaje klaster rozpinający (tzn. zbiór bezpośrednio sąsiadujących ze sobą
obiektów sięgający brzegów układu). Jest to jeden z prostszych i równocześnie fundamen-
talnych modeli przejść fazowych, który znajduje szerokie zastosowanie w fizyce statysty-
cznej. Przypadek perkolacji jest klasycznym przykładem jednej z podstawowych klas
uniwersalności zjawisk krytycznych (tzw. klasy uniwersalności perkolacji). Wykładniki
krytyczne, decydujące o przynależności do klas, opisują zachowanie się szeregu wielkości
charakteryzujących układ (korelacje przestrzenne, wielkość klastra maksymalnego itp.)
przy zbliżaniu się do punktu krytycznego. Od początków zainteresowania perkolacją [6],
kiedy autorzy badali perkolację nieskorelowanych monomerów na sieci, do chwili obecnej
tematyka pozostaje ciągle interesująca i ukazuje się wiele prac jej poświęconych (patrz
np. przeglądy [7, 8, 9, 10]).

2Chociaż hipoteza nie jest ściśle prawdziwa, daje zaskakująco dobre wyniki liczbowe, np. θ(2 × 2) ≈
0, 74788, a θ(2)2 ≈ 0, 74765, θ(3× 3× 3) ≈ 0, 5595, a θ(3)3 ≈ 0, 5588.
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Modele perkolacji w procesach adsorpcji sekwencyjnej można podzielić na dwie grupy:
ciągłe i dyskretne. W ramach podejścia ciągłego rozważa się obiekty sztywne (np. twarde
dyski, kule), ze sztywnym jądrem (ang. hard core soft shell), a także z możliwością
nawet całkowitego nakładania się (model typu sera szwajcarskiego, w którym w jedno-
litym bloku materiału wycina się dziury odpowiedniego kształtu). Ponadto rozważa się
adsorpcję nieskończenie cienkich linii, które modelują pęknięcia materiału (to podejście
wykorzystuje się m.in. w petrologii do opisu ośrodków porowatych) bądź odpowiadają
włóknom tworzącym kompozyt. Modele rozszerza się, podając zamiast jednej wielkości
charakteryzującej adsorbowane obiekty cały ich rozkład (w rzeczywistości często mamy
do czynienia ze zbiorem obiektów podobnych, ale jednak różniących się rozmiarami).
W różny sposób zadaje się kryterium łączenia obiektów w klastry — od bezpośred-
niego styku (zachodzenia na siebie), przez minimalną odległość, aż do losowania spośród
bliskich sąsiadów. W jeszcze innym podejściu modeluje się proces wzrostu domen przez
umieszczenie punktowych zarodków domen, które następnie się powiększają (puchną), aż
zetkną się z sąsiednimi domenami. W ramach teorii perkolacji bada się także bardziej
skomplikowane ciągłe modele polimerów, które będąc w roztworze podlegają wielu siłom
wewnątrz- i międzycząsteczkowym, w efekcie których następują zmiany konformacyjne
i przejścia fazowe typu np. zol-żel. We wszystkich wyżej wymienionych modelach bada
się wykładniki krytyczne, progi perkolacji, funkcje korelacyjne itp. Okazuje się, że wiele
różnych modeli — m.in. ciągła perkolacja sztywnych dysków, dysków ze sztywnym ją-
drem, nieskończenie cienkich igieł, a nawet dyskretna perkolacja dimerów, trimerów itp.
na sieciach jednorodnych i niejednorodnych — należy do jednej klasy uniwersalności perko-
lacji (wykładniki krytyczne zależą tutaj raczej od wymiaru przestrzennego modelu niż od
szczegółów samej dynamiki).

Odrębną klasę tworzą modele sieciowe, dla których położenia i orientacje obiektów
mogą przyjmować wartości ze zbioru dyskretnego. Ograniczenie to, z jednej strony,
stanowi pewne uproszczenie ułatwiające dalszą analizę, a z drugiej — lepiej pasuje do
rzeczywistości fizycznej w przypadkach, w których np. substrat ma strukturę periody-
czną i tylko w niektórych miejscach cząsteczki mogą się do niego przyłączyć. Ponieważ
kształt cząsteczek może mieć istotny wpływ na ich zachowanie się, obecnie bada się modele
perkolacji w układzie prostokątów, igieł oraz, w ogólności, k-merów, utworzonych z po-
jedynczych atomów na różne sposoby. Pomiędzy liniowym kształtem łańcucha z jednej
strony a kształtem otrzymanym przez losowe błądzenie z samounikaniem z drugiej ist-
nieje całe spektrum możliwości, którego zbadaniu poświęcone są m.in. prace [H3] i [H6].
Analizuje się także wpływ składu na perkolację dla mieszanin różnych typów cząsteczek.
Aby opisać sytuacje bardziej skomplikowane (i często bliższe rzeczywistości), wprowadza
się niejednorodność sieci przez modyfikacje dostępnych wiązań (tzw. site-bond problem)
albo nawet tworząc sieć zupełnie od nowa (do tej szerokiej klasy problemów należy np.
zagadnienie odporności sieci na atak z zewnątrz). Odrębną sprawą jest związek perkolacji
z zablokowaniem — czy np. klaster perkolujący jest szkieletem dla fazy zablokowanej
(temu poświęcona jest m.in. praca [H1]).

Jeśli chodzi o badanie adsorpcji obiektów rozciągłych, okazuje się, że jedynie mo-
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dele jednowymiarowe dają się w niektórych przypadkach rozwiązać ściśle do końca [3].
Zwykle pozostają metody przybliżone, które można podzielić na dwie grupy. W pierwszej
grupie metod analitycznych znajdują się m.in.: podejście bazujące na użyciu argumentów
geometrycznych i rozwinięcia funkcji korelacyjnych na wzór teorii równowagowej (rów-
nania typu Mayera-Montrolla, Kirkwooda-Salsburga, Ornsteina-Zernike’a). Drugą grupę
stanowią metody numeryczne, m.in. symulacje Monte Carlo, które w wielu przypadkach
wnoszą najwięcej informacji o badanym procesie, gdyż napotykane trudności techniczne
często znacznie ograniczają stosowalność metod z grupy pierwszej.

Istnieje wiele prac eksperymentalnych weryfikujących modele adsorpcji sekwencyjnej.
Już w latach osiemdziesiątych XX wieku mierzono progi zablokowania dla lateksowych
kulek wytrącających się z roztworu koloidalnego [11] i wykorzystywano perkolację do wy-
jaśnienia charakterystyki przewodnictwa kompozytów z włókien węglowych [12]. Badano
eksperymentalnie adsorpcję sferycznych cząsteczek koloidów podlegających dyfuzji oraz
grawitacji, otrzymując dobrą zgodność z modelem teoretycznym [13]. Ciekawym przykła-
dem doświadczalnego badania związku nadprzewodnictwa z orientacją ziaren Nb3Sn na
gruncie perkolacji jest niedawna praca [14]. Również pewne własności elektryczne ostatnio
tak popularnych kompozytów utworzonych z nanorurek węglowych próbuje się tłumaczyć
za pomocą opisanego wyżej schematu teoretycznego [15, 16]. Niektóre niedawne ekspery-
menty sugerują wykorzystanie modeli adsorpcji na sieciach dyskretnych [17]. W części
doświadczeń substrat jest poddawany naturalnym procesom, ograniczającym wolną prze-
strzeń, na której może występować adsorpcja [17] — do opisu tego typu sytuacji odpo-
wiedni jest model adsorpcji na uprzednio zanieczyszczonej powierzchni [H4, H5].
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Rozdział 2

Cel i tezy rozprawy

2.1 Cel rozprawy
Celem rozprawy jest analiza procesów adsorpcji sekwencyjnej na dwuwymiarowych sub-
stratach ze szczególnym naciskiem położonym na własności związane z perkolacją (tworze-
niem się globalnego klastra złożonego z sąsiadujących cząsteczek danego typu) oraz z za-
blokowaniem (ang. jamming), które ma miejsce, gdy bieżąca konfiguracja przyłączonych
czasteczek (adsorbat) nie pozwala na adsorpcję kolejnej cząsteczki. Moje podejście bazuje
na stosunkowo prostych modelach teoretycznych, które jednak nie dają się rozwiązać
analitycznie. Właściwym narzędziem do realizacji tego zadania są numeryczne symu-
lacje Monte Carlo wzbogacone o odpowiednią obróbkę statystyczną i argumenty natury
fizycznej. Punktem wyjścia jest uzyskanie zależności odpowiednich progów (perkolacji,
zablokowania) w funkcji parametrów modelu (np. wielkości cząsteczek, ich sztywności,
wielkości substratu). Dalszy krok w analizie to wyeliminowanie efektów brzegowych
związanych ze skończonością próbki, na którą adsorbują cząsteczki – używam tutaj m.in.
skalowania skończonych rozmiarów (ang. finite size scaling). Tak przygotowane dane
podlegają dalszej analizie w celu głębszego zrozumienia dynamiki modelu i przyczyn ob-
serwowanego zachowania. W moich badaniach zajmuję się istniejącymi modelami, które
analizuję w nowy sposób ([H1]), oraz – w przeważającej części – tworzę nowe modele,
będące rozszerzeniem już istniejących (prace [H2-H6]).

W cyklu prac [H1-H6] wchodzących w skład rozprawy rozważam różne sytuacje mo-
delowe, które można podzielić na grupy ze względu na cztery następujące kryteria:

• typ badanego zjawiska:

– perkolacja

– zablokowanie

• jakość substratu:

– czysty

17
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– uprzednio zanieczyszczony

• struktura cząsteczek:

– sztywne igły

– giętkie łańcuchy

• typ sieci substratu:

– kwadratowa sieć punktów (KP)

– kwadratowa sieć wiązań (KW)

– trójkątna sieć punktów (TP).

Poniższa tabela pokazuje w graficzny sposób obszar badań będący przedmiotem po-
szczególnych prac wchodzących w skład rozprawy:

PERKOLACJA ZABLOKOWANIE
czysty zanieczyszczony czysty zanieczyszczony

KP H1 H1

sztywne
KW H2 H2

igły

TP H4 H5

KP H3, H6

giętkie
KW

łańcuchy

TP H3, H6

Zanim przejdę do szczegółowego omówienia tez rozprawy, chciałbym najpierw opisać
wykorzystany we wszystkich pracach wchodzących w jej skład mechanizm symulacji Monte
Carlo, za pomocą którego otrzymuje się dane podlegające dalszej analizie.
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2.2 Losowa adsorpcja sekwencyjna i symulacje Monte
Carlo

Punktem wyjścia jest substrat – pewien skończony podzbiór dwuwymiarowej regularnej
sieci (w rozprawie będą to sieci kwadratowe punktów [węzłów], sieci kwadratowe wiązań
oraz sieci trójkątne punktów). Modeluje on skończoną powierzchnię rzeczywistej próbki,
na której osiadają cząsteczki (drobinki, kryształy itp.). W praktyce wybieram kwadrat
o boku L bądź sześciokąt (dla sieci trójkątnej) także o boku L jednostek1. Wielkość L jest
parametrem, którgo wartości zawierają się w przedziale od 30 do 3000. Przyjmuję szty-
wne warunki brzegowe (hard wall b.c.), które mają naśladować zachowanie prawdziwych
próbek (cykliczne warunki brzegowe zmniejszają wprawdzie wpływ skończonego rozmiaru
próbki na wynik, ale są w tym kontekście niefizyczne). Sprawdziłem również ([H1, H2]), że
przyjęcie otwartych warunków brzegowych nie zmienia zachowania modelu. W zależności
od wariantu modelu pierwotnie substrat jest czysty (sieć jest pusta) bądź zanieczyszczony
(pokryty częściowo cząsteczkami zanieczyszczenia).

Zasadniczym elementem modelu są cząsteczki2, które mogą ulegać nieodwracalnej
adsorpcji na powierzchni substratu. Adsorbujące cząsteczki obowiązuje reguła nieza-
chodzenia na siebie, a adsorbat (tj. wszystkie zaadsorbowane do tej pory cząsteczki)
przez cały czas mieści się w warstwie jednoatomowej. Rozważam tutaj dwa rodzaje
cząsteczek: sztywne igły, które składają się z kolejno po sobie następujących atomów
wzdłuż linii prostej, a odległość między kolejnymi atomami jest równa stałej sieci, oraz
giętkie łańcuchy tworzące linię łamaną łączącą kolejne punkty (wiązania) sieci. Pod-
stawowym parametrem opisującym wielkość cząsteczki jest liczba atomów, z których
się ona składa (oznaczenie: a). Wartość a zawiera się zwykle między 1 a 50 (choć
w [H1] używam również większych wartości, ale w celu zilustrowania wpływu skończo-
nych rozmiarów układu na wynik). W przypadku giętkich łańcuchów wprowadzam do-
datkowy parametr pośrednio opisujący ich sztywność. W pracy [H3] jest nim temperatura,
wchodząca do czynnika Boltzmanna exp(−∆E/kT ), który bezpośrednio reguluje praw-
dopodobieństwo uzyskania w cząsteczce odpowiednio wygiętego fragmentu łańcucha (dla
temperatur bardzo niskich dozwolone są jedynie proste łańcuchy, natomiast dla bardzo
wysokich temperatur rozkład otrzymanych kształtów odpowiada błądzeniu losowemu z sa-
mounikaniem [self avoiding random walk ]). W pracy [H6], która opiera się na rozsze-
rzonej wersji modelu, parametrem opisującym kształt jest wprost procentowa zawartość
odpowiednich typów wiązań (zgięć) w łańcuchu — dla sieci kwadratowej p0 opisuje odsetek
wiązań prostych (typu S0, zob. rys. 1), a p1 = 1 − p0 wiązań pod kątem prostym (typu
S1). Dla sieci trójkątnej mamy trzy sumujące się do jedynki parametry opisujące kształt:

1Jednostką długości jest tutaj stała sieci.
2Pojęcie cząsteczka jest tu użyte nie tylko w dosłownym tego słowa znaczeniu, ale także do opisu

większych struktur, które jako całość podlegają adsorpcji, np. metalowe igły, włókna itp.
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p0, p1 i p2, dotyczące typów, odpowiednio, T0, T1 i T2.

S0 S1

T0 T1 T2
Rys. 1. Typy wiązań występujących w giętkich łańcuchach.

Adsorpcja cząsteczek jest losowa – położenie i orientacja cząsteczki, która ma być zaad-
sorbowana, są wybierane losowo z rozkładu jednostajnego. Próba adsorpcji jest zakończo-
na sukcesem, jeśli cząsteczka o wybranym położeniu i orientacji nie nakłada się na żadną
inną cząsteczkę uprzednio zaadsorbowaną. W przeciwnym razie wybiera się nową konfi-
gurację cząsteczki i ponawia próbę aż do skutku. Adsorpcja jest też sekwencyjna – podej-
muje się próbę adsorpcji kolejnej cząsteczki po zakończeniu poprzedniej próby. W trakcie
adsorpcji coraz to nowych cząsteczek tworzy się na substracie adsorbat, którego pewne
charakterystyki są na bieżąco monitorowane. W przypadku badania perkolacji sprawdzam
wielkość adsorbatu (stopień zapełnienia sieci zaadsorbowanymi atomami) w momencie,
w którym pojawiła się perkolacja (powstał klaster łączący przeciwległe brzegi układu).
W przypadku badania zablokowania w układzie sprawdzam wielkość adsorbatu w takim
momencie, w którym nie ma już możliwości dodania do adsorbatu nowych cząsteczek ze
względu na brak wolnego miejsca.

Dla zapewnienia statystycznej wiarygodności powtarzam pojedyncze symulacje, za-
pisując otrzymane progi (perkolacji, zablokowania). Do dalszej analizy biorę wartość
średnią progu z serii N symulacji, a szerokość rozkładu mierzę za pomocą odchylenia
standardowego σ. Zwykle wybór N = 100 daje dobrą statystykę wyników, choć w niektó-
rych przypadkach (np. w badaniu rozkładu masy wszystkich klastrów w układzie w pracy
[H2]) przyjąłem N = 10 000.

W pracach do generowania liczb pseudolosowych używam znanego [18] generatora
ran2, który charakteryzuje się dobrymi parametrami.
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2.3 Szczegółowe omówienie tez rozprawy

2.3.1 Perkolacja i zablokowanie na sieci punktów (sztywne igły)

W pracy [H1] dokonałem analizy zależności progów perkolacji i zablokowania dla adsorpcji
liniowych cząsteczek (sztywnych igieł) o rozmiarze 1×a na czystym substracie. Rozważane
były sieci o wielkości L = 30, ..., 2500 i igły o długości a = 1, ..., 2000; duże wartości a były
analizowane w pracy głównie pod kątem ilustracji efektu skończonego rozmiaru układu.
Otrzymałem niemonotoniczną zależność progu perkolacji cp(a) w funkcji wielkości igieł.
Zauważyłem, że wzrost progu dla a > amin = 13 (rys. 2) można powiązać z faktem,
iż dla dłuższych cząsteczek łatwiej tworzą się zwarte domeny złożone z wielu sąsiednich
cząsteczek ułożonych równolegle do siebie. Otrzymałem zależność progu zablokowania
cj(a), którą dało się dobrze opisać prawem potęgowym cj(a) = 0, 66 + 0, 44a−0,77 dla
a = 5, ..., 45 (rys. 3).

0 10 20 30 40
a

0,45

0,50

0,55

0,60

cp

mean
σ
linear fit (a=15..45)

10 100
a

0.01

0.10

c j−
0.

66

mean
σ
power fit

Rys. 2. Próg perkolacji w funkcji długości igły. Rys. 3. Próg zablokowania w funkcji długości igły.

Po przeanalizowaniu wartości stosunku progów cp/cj wykazałem, że nie jest on stały,
jak wcześniej sądzono [19], ale po osiągnięciu plateau dla a = 3, ..., 7 następuje dalszy
wzrost jego wartości (rys. 4). Zatem trzeba odrzucić sugerowany w [19] związek struktury
klastra perkolującego z fazą pełnego zablokowania (postulowano, że ten pierwszy jest
klastrem fundamentalnym [szkieletem] dla fazy zablokowanej).
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1 10
a

0.58

0.62

0.66

0.7

0.74

cp/cj

mean
σ
log fit (a=15..45)

Rys. 4. Iloraz progów cp/cj w funkcji długości igły.

Analizując skalowanie szerokości przejścia (mierzonego odchyleniem standardowym σ)
z wielkością układu L, potwierdziłem zgodność wykładnika krytycznego νp z wartością
znaną dla standardowej nieskorelowanej perkolacji punktów ν0 = 4/3 [7]. Podobnie dla
zablokowania otrzymałem wartość νj = 1 zgodną z innymi danymi dla tego typu procesów.

Istotną sprawą jest wykazanie, że istnienie minimum progu perkolacji nie jest artefak-
tem związanym z małymi rozmiarami sieci, ale że jest to własność uniwersalna, również
dla dużych wartości L — dane prezentowane w pracy [H1], poszerzone dodatkowo o wyniki
symulacji dla sieci o rozmiarach aż do L = 5000, stanowią tego potwierdzenie (rys. 5).
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Rys. 5. Próg perkolacji w funkcji rozmiarów sieci dla igieł o długości a = 5, 20 i 40. Z wykresu jasno
wynika, że niemonotoniczność progu perkolacji w funkcji długości igły ma miejsce również dla bardzo
dużych sieci.

Przystępując do pracy nad perkolacją i zablokowaniem sztywnych igieł na sieci nie
dotarłem do żadnych źródeł, w których rozważano by taki układ, poza pracą [19], która
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stanowiła bezpośredni przyczynek do zajęcia się tą tematyką. W trakcie dalszych moich
badań nad zagadnieniami adsorpcji (już po opublikowaniu pracy [H1]) odkryłem, że
podobny problem (ale dla cyklicznych warunków brzegowych i dla innego wyboru dłu-
gości igieł) był wcześniej rozważany w literaturze [21]. Moje podejście dotyczy sztywnych
warunków brzegowych, pokazuje dla szerszego zbioru długości igieł prawidłowości w prze-
biegu funkcji cp(a) i cj(a) oraz dokonuje analizy w innym kontekście (wzajemne powiązanie
perkolacji i zablokowania).

2.3.2 Perkolacja i zablokowanie na sieci wiązań (sztywne igły)

W pracy [H2] rozważyłem progi perkolacji i zablokowania pojawiające się w procesie ad-
sorpcji sztywnych igieł w przypadku modelowania substratu na kwadratowej sieci wiązań,
a nie punktów. Odkryłem, że dla igieł o długości a > a∗ = 6 perkolacja w ogóle nie
zachodzi w dostatecznie dużych układach. Dokładniejsza analiza doprowadziła mnie do
zaobserwowania zmiany charakteru rozkładu masy w klastrach (w momencie zablokowa-
nia) przy przechodzeniu przez wartość a∗ (rys. 6). Dla igieł krótkich (a < a∗) większa
część masy jest skupiona w dużym klastrze (istnieje duży klaster perkolujący). Dla igieł
długich (a > a∗) mamy do czynienia głównie z małymi klastrami, a duże klastry występują
sporadycznie. Dla wartości przejściowej (a = a∗) zależność średniej masy zawartej w klas-
trach nie większych od s w funkcji s jest zbliżona do liniowej. Dla igieł perkolujących
(a ≤ a∗) zbadałem wykładnik Fishera opisujący potęgową zależność gęstości rozkładu
masy w momencie perkolacji [7]. Uzyskana wartość τ = 2, 02±0, 04 jest zgodna z wartoś-
cią teoretyczną τ0 = 187/91 ≈ 2, 055, uniwersalną dla wielu dwuwymiarowych modeli
perkolacji (w tym klasycznej perkolacji nieskorelowanych punktów).

Zaobserwowałem, że, podobnie jak w przypadku adsorpcji igieł na sieci punktów, próg
zablokowania zależy potęgowo od długości igły: cj(a) − c∗j ∝ a−1,05, z tym że wartość
graniczna a → ∞ dla sieci wiązań (c∗j = 0, 3350) jest połową wartości granicznej dla ad-
sorpcji na sieci punktów. Mając zależności progu perkolacji i zablokowania od długości
igły, zauważyłem, że ich stosunek jest z dobrą dokładnością funkcją liniową (rys. 7).
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2.3.3 Perkolacja giętkich łańcuchów

W pracach [H3] i [H6] zbadałem dwa warianty modelu adsorpcji giętkich łańcuchów
pod kątem perkolacji. W pierwszym przypadku ([H3]) giętkość łańcuchów jest pośred-
nio związana z temperaturą roztworu T , z którego cząsteczki pochodzą. Dla dowol-
nego łańcucha liczona jest energia konformacji, określona przez sumę energii potencjal-
nych związanych z oddziaływaniem poszczególnych atomów ze sobą — poszczególnym
kątom zgięcia łańcucha (dla przypadku rozważanej sieci trójkątnej) dla T0, T1 i T2
z rys. 1 odpowiadają energie E0 = 0, E1 = 15 oraz E2 = 100 wyrażone w pewnych,
bliżej nieokreślonych jednostkach (ich wybór jest rzeczą wtórną: wartości E0 oraz E2
są przyjęte arbitralnie, a ich zmiana odpowiada przeskalowaniu osi energii, wartość E1
wynika z przyjęcia odpychającego coulombowskiego typu oddziaływania). Prawdopodo-
bieństwo wyboru odpowiedniego kształtu cząsteczki podlegającej adsorpcji określone jest
za pomocą czynnika Boltzmanna exp(−E/T ) opisującego szansę trafienia na konforma-
cję o całkowietj energii E w równowadze; temperatura T jest mierzona w tych samych
jednostkach co energia. Badając zależność progu perkolacji cp w funkcji temperatury T
i długości igieł a (rys. 8) wyróżniłem i przeanalizowałem różne typy zachowania ograni-
czone trzema charakterystycznymi temperaturami: granicą sztywności T1 = 2, 0, poniżej
której cząsteczki perkolują tak jak sztywne igły; temperaturą T2 = 2, 65, dla której próg
perkolacji nie zależy od długości łańcucha (dla a > 10); oraz T3 = 7, 5 — temperaturą,
w której perkolacja zachodzi najłatwiej (minimum ze względu na T wspólne dla różnych
a). Zauważyłem też, że dla bardzo wysokich temperatur próg perkolacji wysyca się jak
1/T .
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Rys. 8. Perkolacja giętkich łańcuchów.

Zaobserwowałem ciekawe zjawisko zachodzące w stosunkowo niskiej temperaturze (T
< 6): energie konformacji adsorbowanych cząsteczek są istotnie niższe (w niektórych
przypadkach nawet o 40%) niż średnia energia konformacji cząsteczki swobodnej w danej
temperaturze (tzn. o kształcie wynikającym z czynnika Boltzmanna). Jest to efekt fil-
trowania z roztworu cząsteczek o kształcie pasującym do pozostałych pustych miejsc.

Potwierdziłem uniwersalność otrzymanych efektów — na sieci kwadratowej zależność
cp(a, T ) jest podobna, a otrzymane temperatury charakterystyczne pozostają w takiej
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samej proporcji na obu sieciach: T1(TRI) : T2(TRI) : T3(TRI) = T1(SQR) : T2(SQR) :
T3(SQR).

Ponadto sprawdziłem, że próg zablokowania nie jest tak czuły na temperaturę jak
próg perkolacji i właściwie od niej nie zależy.
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Rys. 9. Próg perkolacji cp(p0, p1, p2). Rys. 10. Wielkość maksimum drugiego składnika.

W drugim, uogólnionym wariancie modelu, opisanym w pracy [H6], badam wpływ
występowania różnych zgięć łańcucha na perkolację. Podstawowymi parametrami modelu
są udziały procentowe p0, p1, p2 odpowiednich typów zgięć w cząsteczkach (odpowiednio
dla T0, T1 i T2 na sieci trójkątnej oraz p0 i p1 dla S0 i S1 na sieci kwadratowej, zob. rys.
1). Dla obu przypadków sieci próg perkolacji w funkcji {pi}i=0,1,2 można przedstawić jako
sumę liniowego składnika oraz funkcji przyjmującej ostre maksimum w zerze3 i szybko
znikającej poza nim (na rys. 9 przedstawiona jest zależność cp({pi}) dla sieci trójkątnej).
Wartość samego maksimum jest wielkością uniwersalną — nie zależy od typu sieci, ale
tylko od długości łańcucha (rys. 10). Wielkość ta opisuje, na ile sztywne igły różnią się
pod względem perkolacji od giętkich łańcuchów.

Zaobserwowałem, że w rozszerzonym modelu występuje zjawisko braku perkolacji
w przypadku długich łańcuchów (a > 23) i wysokiej zawartości zgięć typu T2 bądź
S1 (w zależności od rodzaju sieci). Dokonałem analizy skalowania wielkości NoP opisu-
jącej względną liczbę pojedynczych symulacji w serii, które nie zakończyły się perkolacją.
Przejście między obszarami z NoP = 0 a NoP = 1 ma cechy przejścia fazowego (wraz
ze wzrostem rozmiaru sieci obszar parametrów (a, {pi}) z wartością 0 < NoP < 1 zawęża
się).

Z dokonanej przeze mnie analizy związku między progiem perkolacji a średnim promie-
niem bezwładności (żyracji) adsorbowanych cząsteczek i średnią odległością między koń-
cami łańcucha wynika, że nie istnieje bezpośrednie powiązanie tych wielkości. Natomiast
zauważyłem istnienie znaczących korelacji między wartością progu perkolacji a ilością
atomów w adsorbacie, które w chwili perkolacji mają dokładnie dwóch sąsiadów (na sieci
kwadratowej).

Analiza skalowania progu perkolacji z rozmiarem układu pozwoliła ustalić, że dla tego

3Wartość zero przyjmują parametry p1 i (dla sieci trójkątnej) p2.
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modelu wykładnik krytyczny ν jest zgodny z wartością 4/3 uniwersalną dla wielu modeli
w dwóch wymiarach.

2.3.4 Perkolacja na zanieczyszczonym substracie (sztywne igły)

W pracy [H4] rozważyłem wpływ zanieczyszczeń na perkolację w układzie. Bardzo często
dzieje się tak, że substrat, na który adsorbują cząstki, nie jest czysty, ale już od samego
początku pokrywa go pewna ilość zanieczyszczeń. Ich poziom oraz właściwości cząsteczek
zanieczyszczenia mają istotny wpływ na procesy przebiegające na powierzchni substratu.
W pracy [H4] badam sytuację następującą: substrat jest początkowo pokrywany (w pro-
cesie losowej adsorpcji sekwencyjnej) cząsteczkami zanieczyszczeń do poziomu zapełnienia
id; cząsteczki te mają postać sztywnych igieł o długości ad stałych sieci (w pracy rozważam
wartości ad = 1, ..., 24). Na tak przygotowany substrat następuje adsorpcja punktowych4

cząsteczek przewodnika5. Jedną z podstawowych wielkości badanych w tym modelu jest
próg perkolacji cząsteczek przewodnika w funkcji wielkości cząsteczek zanieczyszczenia
i całkowitego poziomu zanieczyszczeń. Zauważyłem, że można wyróżnić dwie całkowicie
odmienne sytuacje: układ zachowuje się inaczej dla zanieczyszczeń punktowych (ad = 1)
niż dla wszystkich innych przypadków (ad > 1).

W sytuacji ad = 1 (punktowe zanieczyszczenia) otrzymany próg perkolacji w ogóle
nie zależy od poziomu zanieczyszczeń, pod warunkiem jednak, że poziom zanieczyszczeń
id < 0, 5. W pracy [H4] podałem prosty argument kombinatoryczny wyjaśniający to,
skądinąd zaskakujące, zachowanie. To, że perkolacja nie występuje dla id ≥ 0, 5, można
wyjaśnić faktem, że właśnie wartość 0,5 jest progiem perkolacji dla punktowych cząsteczek
zanieczyszczenia; wówczas cząsteczki przewodnika nie mogą już perkolować.

Zbadałem, że dla większych cząsteczek zanieczyszczeń również perkolacja cząsteczek
przewodnika jest ograniczona do pewnego obszaru zmienności poziomu zanieczyszczeń —
dla skończonych rozmiarów sieci L istnieje przedział id ∈ [id−(ad), id+(ad)], dla którego
liczba symulacji zakończonych brakiem perkolacji zwiększa się od 0 do 100%. Przedział
ten kurczy się dla L → ∞, osiągając punkt id∗(ad), będący dopełnieniem progu perko-
lacji zanieczyszczeń: id∗(ad) = 1− c∗p(ad), gdzie c∗p(ad) jest graniczną wartością poziomu
zanieczyszczeń o wielkości cząsteczek ad, dla której pojawia się perkolacja tychże zanie-
czyszczeń.

4To znaczy zajmujących pojedynczy węzeł sieci.
5Terminu cząsteczki przewodnika używam tu w sensie cząsteczek, których perkolacja jest badana.

W praktyce perkolacja może nie tylko oznaczać przejście typu izolator-przewodnik, ale także, w wielu
przypadkach, chodzi np. o pewne globalne własności mechaniczne (powstanie fazy żelu).
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Rys. 11. Próg perkolacji przy większych Rys. 12. Nakładanie się odpowiednio
cząsteczkach zanieczyszczeń. przeskalowanych zależności.

Dla większych cząsteczek zanieczyszczeń (ad > 1) próg perkolacji cząsteczek przewod-
nika zależy nietrywialnie od poziomu zanieczyszczeń (rys. 11), gdyż korelacje miejsc
zajętych przez zanieczyszczenia są niezerowe. Po systematycznym wzroście progu cp
na dużym przedziale zmienności id funkcja przestaje być monotoniczna dla argumentów
zbliżających się do granicznej wartości id∗, dla której perkolacja znika. Dokładniejsza ana-
liza zależności cp(ad, id) pozwoliła mi zauważyć pewną uniwersalność zachowania. Przy
ograniczeniu się do obszarów odległych od id∗ i odpowiednim przeskalowaniu argumen-
tów wszystkie wykresy dla różnych wartości ad nakładają się na siebie (rys. 12). Z kolei
obszar bliski id∗ jest ciekawy ze względu na pojawienie się maksimum: powyżej pewnej
wartości uprzednie zwiększenie poziomu zanieczyszczeń daje efekt obniżenia się progu
perkolacji. Zaproponowałem wyjaśnienie tej sytuacji, biorąc pod uwagę dwa czynniki: a)
obszar wolny od zanieczyszczeń dla id > id∗ ma strukturę podobną do struktury klastra
perkolującego nieco powyżej progu perkolacji, tzn. składa się z kropel (blobs), łączników
(links) i ślepych końców (dead ends) [7]; oraz b) pierwotny rozkład zanieczyszczeń jest
modyfikowany warunkiem a posteriori występowania perkolacji przewodników w układzie
(tylko symulacje kończące się perkolacją są wykorzystywane przy obliczaniu średniej cp).
Blisko granicy id∗ zwiększenie poziomu zanieczyszczeń częściej następuje w ślepych koń-
cach, gdyż: po pierwsze, stanowią one znaczący odsetek pozostałej wolnej przestrzeni, po
drugie, cząsteczki zanieczyszczeń nie mogą być zaadsorbowane w łącznikach, gdyż wte-
dy blokowana jest perkolacja przewodników, i w rezultacie symulacja nie jest liczona do
średniej. Ostatecznie daje to względne zmniejszenie gęstości ślepych końców dostępnych
dla adsorpcji cząsteczek przewodnika i prowadzi do obniżenia progu perkolacji. W pracy
zaproponowałem także użycie względnego progu perkolacji crelp (id) = cp(id)/(1−id), który
określa ile procent powierzchni wolnej od zanieczyszczeń jest zajęte przez cząsteczki prze-
wodnika w momencie perkolacji. Tak wprowadzona wielkość pozostaje rosnąca w całym
zakresie zmienności parametru id.
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2.3.5 Zablokowanie na zanieczyszczonym substracie (sztywne igły)

W pracy [H5] zbadałem wpływ zanieczyszczeń na zablokowanie w układzie. Substrat
podlega najpierw adsorpcji cząsteczek zanieczyszczenia, które, będąc sztywnymi igłami
o długości b, zapełniają czystą początkowo powierzchnię do poziomu ci. Na tak przygo-
towane podłoże następnie adsorbowane są cząsteczki drugiego typu (też sztywne igły, ale
o długości a). Po dojściu układu do stanu zablokowania (żadna cząsteczka drugiego typu
nie jest w stanie zmieścić się w pozostałej wolnej przestrzeni) sprawdzam poziom pokrycia
substratu cząsteczkami drugiego typu. Po wykonaniu odpowiedniej liczby symulacji otrzy-
muję wiarygodną wartość średnią progu zablokowania cj, która jest przedmiotem dalszej
analizy. Badając zależność progu zablokowania w funkcji wielkości poszczególnych rodza-
jów cząsteczek oraz poziomu zanieczyszczenia układu cj(a, b, ci), zauważam, że należy roz-
graniczyć dwa jakościowo różne przypadki: kiedy a < b (większe są cząsteczki zanieczysz-
czeń) oraz kiedy a > b (większe są cząsteczki drugiego rodzaju). Przypadek graniczny
a = b okazuje się trywialny (cj(a, a, ci) = cj(a, a, 0) − ci). Dla sytuacji, gdy a > b,
odkryłem, że odpowiednio przeskalowany próg zablokowania y spełnia z dobrą dokład-
nością proste równanie x + yβ = 1, gdzie x jest odpowiednio przeskalowanym poziomem
zanieczyszczeń, a wykładnik β zależy tylko od różnicy długości igieł obu typów (rys. 13).
W drugim przypadku a < b (większe są cząsteczki zanieczyszczeń) wyznaczyłem wykład-
nik krytyczny ν oraz wydzielając z fluktuacji część odpowiedzialną za niejednorodność
zanieczyszczonego substratu [20], otrzymałem fraktalny wymiar przestrzeni wolnej od
zanieczyszczeń równy 2.
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Rys. 13. Wykładnik β w funkcji różnicy długości igieł obu typów.



Rozdział 3

Podsumowanie wyników

W niniejszym rozdziale znajduje się zbiorcze zestawienie nowych wyników uzyskanych
przeze mnie i opublikowanych w pracach wchodzących w skład rozprawy.

[H1] G. Kondrat, A. Pękalski,
Percolation and jamming in random sequential adsorption of linear segments
on a square lattice,
Phys. Rev. E 63 (2001), 051108.

• Zaproponowałem jakościowe wyjaśnienie przyczyn istnienia minimum progu perko-
lacji dla przypadku adsorpcji prostych łańcuchów (igieł) na sieci kwadratowej.

• Odkryłem brak wysycenia dla wartości ilorazu progu perkolacji do progu zablokowa-
nia dla przypadku adsorpcji prostych łańcuchów (igieł) na sieci kwadratowej — po
lokalnym wypłaszczeniu dla długości igieł a = 3–7 ów iloraz dalej rośnie ze wzrostem
wartości a.

[H2] G. Kondrat, A. Pękalski,
Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.

• Odkryłem, że dla adsorpcji prostych łańcuchów na kwadratowej sieci wiązań perko-
lacja zachodzi tylko dla łańcuchów o długości co najwyżej a∗ = 6.

• Odkryłem niemonotoniczne zachowanie progu perkolacji w funkcji długości łańcucha
(minimum dla a = 4).

• Zbadałem strukturę rozkładu masy klastrów w momencie zablokowania — funkcja
opisująca tę strukturę zmienia charakter przy przejściu przez wartość charakterysty-
czną a∗.

• Wyznaczyłem wykładnik Fishera dla tego modelu τ = 2, 02(4).

• Wyznaczyłem próg zablokowania w funkcji długości łańcucha i znalazłem prostą
postać tej zależności: cj(a)− c∗j ∝ a∆ z c∗j = 0, 3350(25) i ∆ = −1, 05(10).
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• Odkryłem liniowość ilorazu progu perkolacji do progu zablokowania w zakresie do-
puszczonym przez istnienie perkolacji.

• Dokonałem analizy zbieżności progów perkolacji i zablokowania w granicy bardzo
dużych sieci.

[H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains
adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.

• Zaproponowałem prosty model giętkich polimerów podlegających adsorpcji, w któ-
rym jeden parametr (temperatura) charakteryzuje stopień ich sztywności i zarazem
determinuje kształt cząsteczek.

• Przeanalizowałem wartość progu perkolacji w zależności od wielkości łańcuchów
i temperatury (istnieje kilka reżimów temperaturowych, dla każdego zachowanie
układu jest inne) oraz zaproponowałem wyjaśnienie otrzymanych wyników.

• Zaobserwowałem dla pewnych sytuacji efekt filtrowania, który polega na dopa-
sowywaniu się adsorbowanych cząsteczek do kształtu wolnych obszarów, co powo-
duje dla tych cząsteczek obniżenie średniej energii związanej z ich kształtem.

• Wykazałem uniwersalność zachowania modelu — otrzymane temperatury charak-
terystyczne (oddzielające różne reżimy temperaturowe) pozostają w stałym sto-
sunku dla różnych sieci.

• Zbadałem, że próg zablokowania nie zależy od temperatury.

[H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.

• Zbadałem wpływ kształtu cząsteczek i poziomu zanieczyszczeń na próg perkolacji
w procesie adsorpcji na uprzednio zanieczyszczoną powierzchnię.

• Dla przypadku punktowych zanieczyszczeń uzyskałem niezależność progu perkolacji
od poziomu zanieczyszczeń (poniżej pewnej granicznej wartości) i uzasadniłem tę
nieoczekiwaną własność modelu w sposób ścisły.

• Dla przypadku wydłużonych cząsteczek zanieczyszczeń uzyskaną zależność progu
perkolacji od parametrów udało mi się przedstawić w postaci zwartej funkcji.

• Wyjaśniłem istnienie otrzymanego maksimum progu perkolacji za pomocą argumen-
tów odwołujących się do struktury adsorbatu.
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[H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elon-
gated objects,
J. Chem. Phys. 124 (2006), 054713.

• Dla procesu adsorpcji jednych cząsteczek (P) na powierzchni zanieczyszczonej uprze-
dnio innymi cząsteczkami (I) zbadałem próg zablokowania cząsteczek typu P w za-
leżności od parametrów (wielkości obu rodzajów cząsteczek, poziom zanieczyszcze-
nia cząsteczkami typu I) i opisałem go za pomocą zwartej funkcji.

[H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.

• W zaproponowanym przeze mnie modelu giętkich łańcuchów (rozszerzenie modelu
z [H3]) zbadałem próg perkolacji w zależności od wielkości oraz składu cząsteczek
(dokładniej — od częstości występowania odpowiednich typów wiązań między ko-
lejnymi atomami).

• Zbadałem wielkość odchylenia od liniowej zależności dla prostych cząsteczek o dużej
sztywności dla dwóch różnych sieci (trójkątnej i kwadratowej).

• Zbadałem przejście „perkolacja” → „brak perkolacji”, które występuje przy pewnych
wartościach parametrów modelu.

• Odkryłem wysoką korelację między progiem perkolacji a gęstością atomów mających
dokładnie dwóch sąsiadów.
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Część II

Opis publikacji
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Rozdział 1

Wykaz publikacji wchodzących w skład
rozprawy

[H1] G. Kondrat, A. Pękalski,
Percolation and jamming in random sequential adsorption of linear segments on a square
lattice,
Phys. Rev. E 63 (2001), 051108.

[H2] G. Kondrat, A. Pękalski,
Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.

[H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.

[H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.

[H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elongated objects,
J. Chem. Phys. 124 (2006), 054713.

[H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.
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Rozdział 2

Wykaz wszystkich publikacji

Do dnia 23.08.2010 lista moich publikacji w czasopismach naukowych składała się z 16
pozycji, z czego:

• 14 prac to prace niekonferencyjne, a 2 [P4, P5] konferencyjne

• 4 prace [P1, P3-P5] wchodziły w skład doktoratu

• 11 prac to prace po doktoracie [P6-P16]

• 6 prac wchodzi w skład rozprawy habilitacyjnej [P7-P11, P13].

Opublikowałem je w następujących czasopismach:

• 6 prac w Phys. Rev. E

• 3 prace w J. Chem. Phys.

• 2 prace w J. Phys. A: Math. Gen.

• 1 pracę w Phys. Rev. Lett.

• 1 pracę w J. Stat. Mech. Theory and Experiment

• 1 pracę w Int. J. Mod. Phys. C

• 1 pracę w Chaos, Solitons and Fractals

• 1 pracę w Acta Phys. Polon. B.
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LISTA PUBLIKACJI1:

[P1] P. Garbaczewski, G. Kondrat,
Burgers Velocity Fields and Dynamical Transport Processes,
Phys. Rev. Lett. 77 (1996), 2608-2611.

[P2] A. Jadczyk, G. Kondrat, R. Olkiewicz,
On uniqueness of the jump process in event enhanced quantum theory,
J. Phys. A: Math. Gen. 30 (1997), 1863-1880.

[P3] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Burgers’ flows as Markovian diffusion processes,
Phys. Rev. E 55 (1997), 1401-1412.

[P4] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Burgers Velocity Fields and Electromagnetic Forcing in Diffusive (Markovian) Matter
Transport,
Acta Phys. Polon. B 28 (1997), 1731-1746.
Praca zaprezentowana na konferencji IX Symposium on Statistical Physics (Zakopane,
23-28.09.1996).

[P5] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Schrödinger’s Interpolating Dynamics and Burgers’ Flows,
Chaos, Solitons and Fractals 9 (1998), 29-41.
Praca zaprezentowana na konferencji International Conference on Applied Chaotic Sys-
tems (Inowłódz, 26-30.09.1996).

[P6] G. Kondrat, S. Peszat, B. Zegarliński,
Ergodicity for generalized Kawasaki dynamics,
J. Phys. A: Math. Gen. 33 (2000), 5901-5912.

[P7=H1] G. Kondrat, A. Pękalski,
Percolation and jamming in random sequential adsorption of linear segments
on a square lattice,
Phys. Rev. E 63 (2001), 051108.

[P8=H2] G. Kondrat, A. Pękalski,
Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.

1Pozycje wyróżnione pogrubioną czcionką wchodzą w skład rozprawy habilitacyjnej.
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[P9=H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains
adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.

[P10=H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.

[P11=H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elon-
gated objects,
J. Chem. Phys. 124 (2006), 054713.

[P12] G. Kondrat, K. Sznajd-Weron,
Three types of outflow dynamics on square and triangular lattices and universal scaling,
Phys. Rev. E 77 (2008), 021127.

[P13=H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.

[P14] G. Kondrat, K. Sznajd-Weron,
Percolation framework in Ising-spin relaxation,
Phys. Rev. E 79 (2009), 011119.

[P15] G. Kondrat, M. Gorzelańczyk,
On phase transitions in quantum continuous gases in the Maxwell-Boltzmann statistics,
J. Stat. Mech.: Theory and Experiment (2010), P01022.

[P16] G. Kondrat, K. Sznajd-Weron,
Spontaneous reorientations in a model of opinion dynamics with anticonformists,
Int. J. of Mod. Phys. C 21 (2010), 559-566.
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Rozdział 3

Cytowania prac wchodzących w skład
rozprawy

Prace wchodzące w skład rozprawy habilitacyjnej były cytowane 40 razy (z pominięciem
samocytowań) [39 razy bez cytowań współautorów]1.

[H1] G. Kondrat, A. Pękalski,
Percolation and jamming in random sequential adsorption of linear segments
on a square lattice;
Phys. Rev. E 63 (2001), 051108.
Praca była cytowana 17 razy:

1. Cherkasova VA, Tarasevich YY, Lebovka NI, et al., Percolation of aligned dimers
on a square lattice, EUR PHYS J B 74 (2): 205-209 MAR 2010.

2. Adamczyk P, Polanowski P, Sikorski A, Percolation in polymer-solvent systems: A
Monte Carlo study, J CHEM PHYS 131 (23): art. no. 234901 DEC 21 2009.

3. Cornette V, Ramirez-Pastor AJ, Nieto F, Adsorption of interacting monomers on
spanning clusters of polyatomic species, PHYSICA A 388 (20): 4387-4396 OCT 15
2009.

4. Adamczyk P, Romiszowski P, Sikorski A, A simple model of stiff and flexible polymer
chain adsorption: The influence of the internal chain architecture, J CHEM PHYS
128 (15): art. no. 154911 APR 21 2008.

5. Tarasevich YY, Cherkasova VA, Dimer percolation and jamming on simple cubic
lattice, EUR PHYS J B 60 (1): 97-100 NOV 2007.

6. Vygornitskii NV, Lisetskii LN, Lebovka NI, Percolation in the model of random
successive adhesion of anisotropic particles, COLLOID J+ 69 (5): 557-562 OCT
2007.

1Dane na dzień 23.08.2010 według Science Citation Index Expanded, Scopus i Google scholar.
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7. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species with the
presence of impurities, J CHEM PHYS 125 (20): art. no. 204702 NOV 28 2006.

8. Loscar ES, Borzi RA, Albano EV, Interplay between thermal percolation and jam-
ming upon dimer adsorption on binary alloys, PHYS REV E 74 (5): art. no. 051601
Part 1 NOV 2006.

9. Bea AE, Irurzun IM, Mola EE, Scaling properties in the average number of attempts
until saturation in random sequential adsorption processes, PHYS REV E 73 (5):
art. no. 051604 Part 1 MAY 2006.

10. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species on site
diluted lattices, PHYS LETT A 353 (6): 452-458 MAY 15 2006.

11. Quintana M, Kornhauser I, Lopez R, et al., Monte Carlo simulation of the percola-
tion process caused by the random sequential adsorption of k-mers on heterogeneous
triangular lattices, PHYSICA A 361 (1): 195-208 FEB 15 2006.

12. Dolz M, Nieto F, Ramirez-Pastor AJ, Site-bond percolation of polyatomic species,
PHYS REV E 72 (6): art. no. 066129 Part 2 DEC 2005.

13. Trojan K, Ausloos M, Effects of relaxation processes during deposition of anisotropic
grains on a flat substrate, PHYSICA A 351 (2-4): 332-346 JUN 15 2005.

14. Loscar ES, Borzi RA, Albano EV, Scaling behavior of jamming fluctuations upon
random sequential adsorption, EUR PHYS J B 36 (2): 157-160 NOV 2003.

15. Loscar ES, Borzi RA, Albano EV, Fluctuations of jamming coverage upon random
sequential adsorption on homogeneous and heterogeneous media, PHYS REV E 68
(4): art. no. 041106 Part 1 OCT 2003.

16. Rampf F, Albano EV, Interplay between jamming and percolation upon random
sequential adsorption of competing dimers and monomers, PHYS REV E 66 (6):
art. no. 061106 Part 1 DEC 2002.

17. Tan ZJ, Zou XW, Zhang W, et al., Pattern formation on nonuniform surfaces by
correlated random sequential absorptions, PHYS REV E 65 (5): art. no. 057201
Part 2 MAY 2002.

[H2] G. Kondrat, A. Pękalski,
Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.
Praca była cytowana 9 razy [8 razy bez cytowań współautorów]:

1. Adamczyk P, Polanowski P, Sikorski A, Percolation in polymer-solvent systems: A
Monte Carlo study, J CHEM PHYS 131 (23): art. no. 234901 DEC 21 2009.
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2. Adamczyk P, Romiszowski P, Sikorski A, A simple model of stiff and flexible polymer
chain adsorption: The influence of the internal chain architecture, J CHEM PHYS
128 (15): art. no. 154911 APR 21 2008.

3. Tarasevich YY, Cherkasova VA, Dimer percolation and jamming on simple cubic
lattice, EUR PHYS J B 60 (1): 97-100 NOV 2007.

4. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species with the
presence of impurities, J CHEM PHYS 125 (20): art. no. 204702 NOV 28 2006.

5. Loscar ES, Borzi RA, Albano EV, Interplay between thermal percolation and jam-
ming upon dimer adsorption on binary alloys, PHYS REV E 74 (5): art. no. 051601
Part 1 NOV 2006.

6. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species on site
diluted lattices, PHYS LETT A 353 (6): 452-458 MAY 15 2006.

7. Quintana M, Kornhauser I, Lopez R, et al., Monte Carlo simulation of the percola-
tion process caused by the random sequential adsorption of k-mers on heterogeneous
triangular lattices, PHYSICA A 361 (1): 195-208 FEB 15 2006.

8. Dolz M, Nieto F, Ramirez-Pastor AJ, Site-bond percolation of polyatomic species,
PHYS REV E 72 (6): art. no. 066129 Part 2 DEC 2005.

9. Pękalski A, Microreview of some non-solid state two-dimensional models, PROG
SURF SCI 74 (1-8): 415-421 DEC 2003.

[H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains
adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.
Praca była cytowana 2 razy:

1. Adamczyk P, Polanowski P, Sikorski A, Percolation in polymer-solvent systems: A
Monte Carlo study, J CHEM PHYS 131 (23): art. no. 234901 DEC 21 2009.

2. Adamczyk P, Romiszowski P, Sikorski A, A simple model of stiff and flexible polymer
chain adsorption: The influence of the internal chain architecture, J CHEM PHYS
128 (15): art. no. 154911 APR 21 2008.

[H4] G. Kondrat, The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.
Praca była cytowana 6 razy:

1. Barcenas M, Duda Y, Irreversible colloidal agglomeration in presence of associative
inhibitors: Computer simulation study, PHYS LETT A 365 (5-6): 454-457 JUN 11
2007.
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2. Starke TKH, Johnston C, Grant PS, Evolution of percolation properties in nanocom-
posite films during particle clustering, SCRIPTA MATER 56 (5): 425-428 MAR
2007.

3. del Moral FG, O’Valle F, del Moral RG, „Permeability and mass transfer as a func-
tion of the cooking temperature during the frying of beefburgers” by Oroszvari B.K.,
Rocha C.S., Sjoholm I. and Tornberg E. [Journal of Food Engineering 74 (2006)
1-12], J FOOD ENG 80 (1): 374-376 MAY 2007.

4. Loscar ES, Borzi RA, Albano EV, Interplay between thermal percolation and jam-
ming upon dimer adsorption on binary alloys, PHYS REV E 74 (5): art. no. 051601
Part 1 NOV 2006.

5. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species with the
presence of impurities, J CHEM PHYS 125 (20): art. no. 204702 NOV 28 2006.

6. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species on site
diluted lattices, PHYS LETT A 353 (6): 452-458 MAY 15 2006.

[H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elon-
gated objects,
J. Chem. Phys. 124 (2006), 054713.
Praca była cytowana 5 razy:

1. Araujo NAM, Cadilhe A, Jammed state characterization of the random sequential
adsorption of segments of two lengths on a line, J STAT MECH-THEORY EXP :
art. no. P02019 FEB 2010.

2. Matoz-Fernandez DA, Linares DH, Ramirez-Pastor AJ, Critical behavior of long
straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations,
J CHEM PHYS 128 (21): art. no. 214902 JUN 7 2008.

3. Matoz-Fernandez DA, Linares DH, Ramirez-Pastor AJ, Determination of the critical
exponents for the isotropic-nematic phase transition in a system of long rods on two-
dimensional lattices: Universality of the transition, EPL-EUROPHYS LETT 82 (5):
art. no. 50007 JUN 2008.

4. Loscar ES, Borzi RA, Albano EV, Interplay between thermal percolation and jam-
ming upon dimer adsorption on binary alloys, PHYS REV E 74 (5): art. no. 051601
Part 1 NOV 2006.

5. Cornette V, Ramirez-Pastor AJ, Nieto F, Percolation of polyatomic species with the
presence of impurities, J CHEM PHYS 125 (20): art. no. 204702 NOV 28 2006.
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[H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.
Praca była cytowana 1 raz:

1. Ziff RM, Gu H, Universal condition for critical percolation thresholds of kagome-like
lattices, PHYS REV E 79 (2): art. no. 020102 Part 1 FEB 2009.



46



Rozdział 4

Cytowania wszystkich prac

Wszystkie moje prace były cytowane łącznie 72 razy (z pominięciem samocytowań) [56
razy bez cytowań współautorów]. W tym prace wchodzące w skład rozprawy były cy-
towane 40 razy [39 razy bez cytowań współautorów], a prace niewchodzące w skład
rozprawy 32 razy [17 razy bez cytowań współautorów]1.

[P1] P. Garbaczewski, G. Kondrat,
Burgers Velocity Fields and Dynamical Transport Processes,
Phys. Rev. Lett. 77 (1996), 2608-2611.
Praca była cytowana 7 razy [2 razy bez cytowań współautorów].

[P2] A. Jadczyk, G. Kondrat, R. Olkiewicz,
On uniqueness of the jump process in event enhanced quantum theory,
J. Phys. A: Math. Gen. 30 (1997), 1863-1880.
Praca była cytowana 9 razy [4 razy bez cytowań współautorów].

[P3] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Burgers’ flows as Markovian diffusion processes,
Phys. Rev. E 55 (1997), 1401-1412.
Praca była cytowana 12 razy [7 razy bez cytowań współautorów].

[P4] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Burgers Velocity Fields and Electromagnetic Forcing in Diffusive (Markovian) Matter
Transport,
Acta Phys. Polon. B 28 (1997), 1731-1746.

[P5] P. Garbaczewski, G. Kondrat, R. Olkiewicz,
Schrödinger’s Interpolating Dynamics and Burgers’ Flows,
Chaos, Solitons and Fractals 9 (1998), 29-41.
Praca była cytowana 2 razy [2 razy bez cytowań współautorów].

1Wszystkie dane na dzień 23.08.2010 za Science Citation Index Expanded, Scopus i Google scholar.
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[P6] G. Kondrat, S. Peszat, B. Zegarliński,
Ergodicity for generalized Kawasaki dynamics,
J. Phys. A: Math. Gen. 33 (2000), 5901-5912.

[P7=H1] G. Kondrat, A. Pękalski,
Percolation and jamming in random sequential adsorption of linear segments
on a square lattice,
Phys. Rev. E 63 (2001), 051108.
Praca była cytowana 17 razy [17 razy bez cytowań współautorów].

[P8=H2] G. Kondrat, A. Pękalski,
Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.
Praca była cytowana 9 razy [8 razy bez cytowań współautorów].

[P9=H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains
adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.
Praca była cytowana 2 razy.

[P10=H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.
Praca była cytowana 6 razy.

[P11=H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elon-
gated objects,
J. Chem. Phys. 124 (2006), 054713.
Praca była cytowana 5 razy.

[P12] G. Kondrat, K. Sznajd-Weron,
Three types of outflow dynamics on square and triangular lattices and universal scaling,
Phys. Rev. E 77 (2008), 021127.
Praca była cytowana 2 razy [2 razy bez cytowań współautorów].

[P13=H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.
Praca była cytowana 1 raz.
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[P14] G. Kondrat, K. Sznajd-Weron,
Percolation framework in Ising-spin relxation,
Phys. Rev. E 79 (2009), 011119.

[P15] G. Kondrat, M. Gorzelańczyk,
On phase transitions in quantum continuous gases in the Maxwell–Boltzmann statistics,
J. Stat. Mech.: Theory and Experiment (2010), P01022.

[P16] G. Kondrat, K. Sznajd-Weron,
Spontaneous reorientations in a model of opinion dynamics with anticonformists,
Int. J. of Mod. Phys. C 21 (2010), 559-566.
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Rozdział 5

Opis prac niewchodzących w skład
rozprawy

[P1] P. Garbaczewski, G. Kondrat, Burgers Velocity Fields and Dynamical Trans-
port Processes, Phys. Rev. Lett. 77 (1996), 2608-2611.
W pracy rozważaliśmy transport cząstek znaczonych w polach prędkości spełniających
równanie Burgersa z uwzględnieniem deterministycznych sił zewnętrznych. Scharaktery-
zowaliśmy proces dyfuzyjny opisujący pole gęstości cząstek znaczonych i szczegółowo
przeanalizowaliśmy jego stochastyczne własności, używając do tego celu tzw. schematu
Schrödingera interpolacji między wartościami brzegowymi.

[P2] A. Jadczyk, G. Kondrat, R. Olkiewicz, On uniqueness of the jump process in
event enhanced quantum theory, J. Phys. A: Math. Gen. 30 (1997), 1863-
1880.
W pracy rozważaliśmy matematyczne podstawy rozszerzonej mechaniki kwantowej w ra-
mach modelu EEQT (ang. Event Enhanced Quantum Theory), w którym oddziaływanie
układów klasycznego i kwantowego opisywane jest półgrupą dynamiczną z generatorem
typu Lindblada. Wychodząc z dynamiki układu na poziomie macierzy gęstości, wykaza-
liśmy istnienie procesu stochastycznego odtwarzającego dynamikę układu oraz jego jed-
noznaczność i pokazaliśmy explicite jego postać.

[P3] P. Garbaczewski, G. Kondrat, R. Olkiewicz, Burgers’ flows as Markovian dif-
fusion processes, Phys. Rev. E 55 (1997), 1401-1412.
W ramach podejścia przedstawionego w pracy [P1] przeprowadziliśmy szczegółową analizę
sytuacji, gdy człon sił zewnętrznych w równaniu Burgersa jest niezachowawczy. Wyko-
rzystując jądra Feynmana-Kaca, otrzymaliśmy postać procesu stochastycznego dla przy-
padku zewnętrznego pola magnetycznego. Dla najprostszej nietrywialnej sytuacji stałego
i jednorodnego pola magnetycznego przedstawiliśmy postać rozwiązania fundamentalnego.

[P4] P. Garbaczewski, G. Kondrat, R. Olkiewicz, Burgers Velocity Fields and Elec-
tromagnetic Forcing in Diffusive (Markovian) Matter Transport, Acta Phys.
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Polon. B 28 (1997), 1731-1746.
Jest to praca konferencyjna opisująca wyniki z prac [P3] i [P5].

[P5] P. Garbaczewski, G. Kondrat, R. Olkiewicz, Schrödinger’s Interpolating Dy-
namics and Burgers’ Flows, Chaos, Solitons and Fractals 9 (1998), 29-41.
Przedmiotem pracy jest analiza związków równania Burgersa (w ogólności z członem sił
zewnętrznych) z dyfuzjami i problemem interpolacji między wartościami brzegowymi (tzw.
problem Schrödingera). Rozważane przez nas przykłady ilustrują szczegółowo subtelności,
które napotyka się przy rozwiązywaniu tego typu zagadnień. Jest to praca konferencyjna.

[P6] G. Kondrat, S. Peszat, B. Zegarliński, Ergodicity for generalized Kawasaki
dynamics, J. Phys. A: Math. Gen. 33 (2000), 5901-5912.
Dla uogólnionej dynamiki typu Kawasaki z potencjałem skończonego zasięgu podaliśmy
warunki dostateczne i konieczne na miarę Gibbsa, żeby spełniony był warunek przerwy
masowej oraz logarytmiczna nierówność Sobolewa. Dla odpowiednio małych gładkich
potencjałów o skończonym zasięgu pokazaliśmy istnienie miary Gibbsa, która ponadto
spełnia logarytmiczną nierówność Sobolewa. Omówiliśmy konstrukcję półgrupy Markowa
w nieskończonej objętości dla ogólnego przypadku, gdy jednocząstkową przestrzenią
stanów jest zwarta i spójna rozmaitość Riemanna.

[P12] G. Kondrat, K. Sznajd-Weron, Three types of outflow dynamics on square and
triangular lattices and universal scaling, Phys. Rev. E 77 (2008), 021127.
W pracy zaproponowaliśmy proste uogólnienie jednowymiarowej dynamiki wypływu na
sieciach dwuwymiarowych i zbadaliśmy je, a także dwa inne, znane wcześniej uogól-
nienia pod kątem rozkładu czasów relaksacji, wrażliwości na typ sieci (trójkątna, kwadra-
towa) i warunki początkowe. Przedmiotem pracy były również odpowiednie skalowania
wielkości takich jak czasy relaksacji wraz z rozmiarem układu. Odkryliśmy dwa reżimy
czasowe w rozkładzie czasów relaksacji, w których obowiązują wykładnicze zależności
ogonu dystrybuanty od czasu z różnymi współczynnikami w wykładniku.

[P14] G. Kondrat, K. Sznajd-Weron, Percolation framework in Ising-spin relax-
ation, Phys. Rev. E 79 (2009), 011119.
W pracy badaliśmy zerotemperaturowe dynamiki Glaubera i dynamiki wypływu na sie-
ciach pod kątem zrozumienia pojawiających się tam dwóch reżimów czasowych w roz-
kładzie czasów relaksacji. Zaproponowaliśmy schemat tłumaczący te zjawiska, oparty
na pojęciu perkolacji. Odkryliśmy, że szybka relaksacja związana jest z przechodzeniem
układu przez stany typu kropla, a relaksacja wolna jest związana z przechodzeniem przez
stany typu pasy.

[P15] G. Kondrat, M. Gorzelańczyk, On phase transitions in quantum continuous
gases in the Maxwell-Boltzmann statistics, J. Stat. Mech.: Theory and Ex-
periment (2010), P01022.
W pracy rozważaliśmy własności stanu Gibbsa w granicy termodynamicznej. Dla gazu
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Maxwella-Boltzmanna z nieujemnym, regularnym i ograniczonym potencjałem wykaza-
liśmy brak przejścia fazowego dla istotnie większych obszarów gęstości, niż te dotychczas
badane. W dowodzie wykorzystaliśmy podejście J. Ginibre’a i teorię dodatnich opera-
torów na stożkach w przestrzeniach Banacha. W efekcie udało nam się zbadać własności
spektralne operatora Kirkwooda-Salsburga prowadzące do analityczności odpowiednich
funkcji korelacyjnych i braku przejść fazowych.

[P16] G. Kondrat, K. Sznajd-Weron, Spontaneous reorientations in a model of opin-
ion dynamics with anticonformists, Int. J. of Mod. Phys. C 21(2010), 559-
566.
W pracy rozważyliśmy zmodyfikowany model wypływu, w którym oprócz zachowań kon-
formistycznych dopuszczone są także zachowania nonkonformistyczne. Przy odpowied-
nich wartościach parametrów zaobserwowaliśmy w modelu spontaniczne przeorganizowa-
nia całego układu i zbadaliśmy, w jakich warunkach takie przejścia zachodzą najszybciej.
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Część III

Materiały uzupełniające
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Rozdział 1

Działalność naukowa, dydaktyczna
i organizacyjna

1.1 Życiorys naukowy
• Imię i nazwisko: Grzegorz Kondrat

• Stopień i tytuł naukowy: doktor nauk fizycznych

• Data i miejsce urodzenia: 21.03.1970 Wrocław

• Miejsce pracy: Uniwersytet Wrocławski, Instytut Fizyki Teoretycznej (od
01.10.1997)

• Stanowisko: adiunkt

• Wykształcenie:

– szkoła średnia: 1984-1988 XIV L.O. im. Polonii Belgijskiej we Wrocławiu

– studia wyższe: 1988-1993 fizyka (Uniwersytet Wrocławski, Instytut Fizyki
Teoretycznej)

– praca magisterska: 17.06.1993 Stochastyczne i nieliniowe modele redukcji
wektora stanu w kwantowej teorii pomiaru, pod opieką prof. Arkadiusza Jad-
czyka

– studia doktoranckie: 1993-1997, fizyka teoretyczna (Uniwersytet Wrocław-
ski, Instytut Fizyki Teoretycznej)

– doktorat: 18.04.1997 Niestacjonarne procesy losowe w zewnętrznie zaburza-
nych układach klasycznych i kwantowych, promotor prof. Piotr Garbaczewski

• Wyróżnienia, granty, nagrody i stypendia:

– 1985-88 stypendium Krajowego Funduszu na Rzecz Dzieci
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– 1986-88 laureat Olimpiad: Astronomicznej (3 razy, w tym dwukrotne zajęcie I
miejsca) i Fizycznej (3 razy)

– 1987, 1988 wyróżnienia na Międzynarodowej Olimpiadzie Fizycznej

– 1991-93 stypendium Ministra Edukacji Narodowej

– 14.11.1997 nagroda Rektora Uniwersytetu Wrocławskiego za osiągnięcia nau-
kowe (nagroda zespołowa)

– 01.10.1998 nagroda Ministra Edukacji Narodowej (nagroda zespołowa)

– 01.01.1999-31.12.1999 grant badawczy Uniwersytetu Wrocławskiego Niestacjo-
narne procesy losowe na rozmaitościach Riemanna

– 01.08.2001-30.06.2002 grant badawczy KBN Badania modelu losowej adsorpcji
sekwencyjnej obiektów rozciągłych (jako kierownik)

– 01.10.2002 nagroda Ministra Edukacji Narodowej i Sportu (nagroda zespołowa)

1.2 Działalność naukowa
• Główne zainteresowania naukowe:

– Problem rozszerzenia mechaniki kwantowej o stochastyczny opis oddziaływania
z klasycznym układem pomiarowym, zagadnienia teorii pomiaru kwantowego
(praca magisterska, [P2]).

– Zagadnienie procesu dyfuzji w polach zewnętrznych, związek pól prędkości
procesu z równaniem Burgersa, problem Schrödingera odtwarzania procesu
stochastycznego z rozkładów początkowych i końcowych (praca doktorska, [P1,
P3-P5]).

– Pola wektorowe na rozmaitościach Riemanna, procesy dyfuzji na rozmaitoś-
ciach z hipoeliptycznym generatorem zadanym przez pola wektorowe w kon-
tekście uogólnionej dynamiki typu Kawasaki ([P6]).

– Procesy adsorpcji obiektów rozciągłych, perkolacja, zablokowanie ([P7-P11,
P13]).

– Matematyczne podstawy przejść fazowych — podejście wywodzące się z prac
Ginibre’a ([P15]).

– Uogólnienia modeli wypływu — ich dynamika, rozkłady czasów relaksacji i za-
stosowania ([P12, P14, P16]).

• Wyjazdy naukowe:

– Universität Bielefeld 17-29.07.1995 (na zaproszenie prof. Phillipe’a Blanchar-
da)

– ICTP Triest 17-31.08.1997 (w ramach programu Federation Scheme)
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– Imperial College Londyn 27.06-20.12.1998 (staż naukowy u prof. Bogusława
Zegarlińskiego)

– ICTP Triest 29.07-19.08.2001 (w ramach programu Federation Scheme)

– Katholieke Universiteit Leuven 13-20.01.2002 (na zaproszenie prof. Josepha
Indekeu)

• Recenzowanie prac w czasopismach naukowych:

– Physical Review E (8 prac)

– Physica A (1 praca)

– Physics Letters A (1 praca)

– Chemical Engineering Communications (1 praca)

• Uczestnictwo w konferencjach:

– High-TC thin films and single crystals (Ustroń 1989)

– 31 Zimowa Szkoła Fizyki Teoretycznej: Chaos, The Interplay Between Stochas-
tic and Deterministic Behaviour (Karpacz 1995)

– Quantum Theory Without Observers (Bielefeld 1995)

– Quantum Structures (Berlin 1996)

– The Dynamics of Complexity (Triest 1997)

– Nonlinear Cooperative Phenomena in Biological Systems (Triest 1997)

– Workshop on Statistical Physics of Frustrated Systems (Triest 1997)

– 34 Zjazd Fizyków Polskich (Katowice 1997)

– 10 Sympozjum Maksa Borna: Quantum future (Przesieka 1997)

– 11 Sympozjum Maksa Borna: Anomalous Diffusion: from Basis to Applications
(Lądek Zdr. 1998)

– The Future of Stochastic Analysis II – referat (Sztokholm 1998)

– 13 Sympozjum Maksa Borna: Statistical Physics in Biology (Wrocław 1999)

– 36 Zimowa Szkoła Fizyki Teoretycznej: Exotic Statistical Physics (Lądek Zdr.
2000)

– 26 MECO – poster (Praga 2001)

– School and Workshop on Dynamical Systems (Triest 2001)

– Challenges in Granular Physics (Triest 2001)

– 27 MECO – poster (Sopron 2002)

– 28 MECO – poster (Saarbrücken 2003)
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– 18 Sympozjum Maksa Borna: Statistical Physics Outside Physics (Lądek Zdr.
2003)

– 41 Zimowa Szkoła Fizyki Teoretycznej: Diffusion and Soft Matter Physics –
referat (Lądek Zdr. 2005)

– 23 Sympozjum Maksa Borna: Critical Phenomena in Complex Systems (Pola-
nica Zdr. 2007)

1.3 Działalność dydaktyczna
• Prowadzenie zajęć dydaktycznych:

– na Uniwersytecie Wrocławskim (1.10.1994-30.09.1997 jako doktorant,
od 1.10.1997 jako adiunkt w Instytucie Fizyki Teoretycznej)

– w Wyższej Szkole Informatyki i Zarządzania „Copernicus” we Wrocławiu
(1.03.2002-30.09.2002 jako starszy wykładowca, 1.10.2002-30.09.2006 jako
adiunkt, od 1.10.2006 na umowę o dzieło)

• Prowadzenie wykładów:

– metody komputerowe I

– programowanie graficznego interfejsu użytkownika

– wstęp do programowania

– algebra liniowa

– analiza matematyczna

– matematyka dyskretna

– fizyka

• Prowadzenie konwersatoriów:

– algebra

– analiza matematyczna

– rachunek różniczkowo-całkowy

– elementy probabilistyki

– elektrodynamika

– matematyka i statystyka

– fizyka

• Prowadzenie laboratoriów komputerowych:

– metody komputerowe I
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– metody komputerowe II

– programowanie obiektowe

– zastosowanie komputerów w fizyce teoretycznej

– programowanie graficznego interfejsu użytkownika

– wstęp do programowania

– grafika komputerowa

• Prace dyplomowe:

– opieka nad pracami licencjackimi: 3

– opieka nad pracami magisterskimi: 5

– opieka nad pracami inżynierskimi: 3

– recenzje prac dyplomowych: 4

1.4 Działalność organizacyjna
• Organizacja konferencji (skarbnik):

– 36 Zimowa Szkoła Fizyki Teoretycznej (2000)

– 18 Sympozjum Maksa Borna (2003)

– 23 Sympozjum Maksa Borna (2007)

– 47 Zimowa Szkoła Fizyki Teoretycznej (2011)

• Członek Komitetu Głównego Olimpiady Astronomicznej (od 1990)

• Członek International Board of International Olympiad on Astronomy and Astro-
physics (2008/9)

• Lider (opiekun) polskiej reprezentacji na 2nd International Olympiad on Astronomy
and Astrophysics (Bandung 2008)

• Koordynator Wydziału Fizyki i Astronomii ds. Dolnośląskiego Festiwalu Nauki (od
2008)

• Członek Polskiego Towarzystwa Fizycznego (2001-2009)

• Sekretarz seminarium Zakładu Dynamiki Nieliniowej i Układów Złożonych IFT (od
1996)

• Prezentacje z fizyki w szkołach ponadpodstawowych w ramach kółek fizycznych
(2010)
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Rozdział 2

Odpis dyplomu doktorskiego
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Rozdział 3

Oświadczenia współautorów

Mój udział w powstaniu prac [H1] (G. Kondrat, A. Pękalski, Percolation and jamming
in random sequential adsorption of linear segments on a square lattice, Phys. Rev. E 63
[2001], 051108) oraz [H2] (G. Kondrat, A. Pękalski, Percolation and jamming in random
bond deposition, Phys. Rev. E 64 [2001], 056118) był podobny i polegał na dyskusji
założeń, otrzymanych wyników (programy pisał samodzielnie dr Grzegorz Kondrat) oraz
na współtworzeniu ostatecznej wersji tekstu.

prof. dr hab. Andrzej Pękalski
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Część IV

Publikacje wchodzące w skład rozprawy
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Część V

Publikacje po doktoracie niewchodzące
w skład rozprawy
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Burgers Velocity Fields and Dynamical Transport Processes

Piotr Garbaczewski and Grzegorz Kondrat
Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, PL-50 204 Wrocław, Pol

(Received 13 March 1996)

We explore a connection of the forced Burgers equation with the Schrödinger (diffusive) interpo
dynamics in the presence of deterministic external forces. This entails an exploration of the cons
conditions interpreting the dispersion of passive contaminants in the Burgers flow as a Mar
diffusion process. In general, the usage of the continuity equation≠tr ­ 2=s $yrd, with $y ­ $ys $x, td the
Burgers field andr the density of transported matter, is at variance with the explicit diffusion scen
We give a complete characterization of diffusive matter transport governed by Burgers velocity
This extends both to the approximate description of the transport driven by an incompressible fl
to motions in an infinitely compressible medium. [S0031-9007(96)01263-X]

PACS numbers: 47.10.+g, 05.40.+j, 05.60.+w, 47.20.Ky
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The Burgers equation [1,2] recently has acquired
considerable popularity in a variety of physical contex
They range from an astrophysical issue of the strati
large-scale distribution of matter in the early Universe [
5], through acoustic turbulence dealing with intense no
in compressible liquids and gases [6], to primitive flu
turbulence modeling in terms of the statistics of Burg
shocks in the low viscosity regime (enhanced by rand
initial data) [1,3,7,8], eventually ending with the analy
of a fully developed Burgers turbulence that is regarded
a result of random forcing (stirring) of respective veloc
fields [9,10]. It also pertains to the turbulence-witho
pressure models [11], description of directed polym
in a random potential [10], random interface grow
problem governed by the related Kardar-Parisi equa
[12], and fluctuations or dispersion in deterministic
random flows [12,13]. An exhaustive discussion of
role in acoustic turbulence and gravitational contex
where the emergence of shock pressure fronts is cru
can be found in Ref. [14].

The Burgers equation usually is considered with
any forcing term, and its solutions are known und
the gradient form assumption. We shall preserve
latter restriction, but consider a more general form of
Burgers equation that accounts for an external force fi
$Fs $x, td,

≠t $y 1 s $y=d $y ­ nn $y 1 $Fs$x, td . (1)

Many recent investigations are devoted to the statistic
relevant curl$y ­ 0 solutions implemented by random
initial data and/or random forcing term (the random p
tential in the above-mentioned Parisis-Kardar equatio
and Burgers velocity fields (or their potentials) are a
lyzed on their own. However, an issue of matter transp
driven by those nonlinear velocity fields requires know
edge of an exact evolution of concentration and/or den
fields, much in the spirit of early hydrodynamical stud
of advection and diffusion of passive tracers [15,16];
also [17]. This particular issue is addressed in the pre
paper, under a simplifying assumption of nonrandom
0031-9007y96y77(13)y2608(4)$10.00
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tial data and deterministic force fields, by regarding t
stochastic diffusion process as a primary phenomenon
sponsible for the emergence of (1).

Knowing the Burgers fields, we may consistently a
what is the particular matter transport dynamics (of d
sity fields) that is consistent with the chosen (Burge
velocity field evolution. Then, the passive scalar (tra
or contaminant) advection-in-a-flow problem [10,13] n
urally appears through the parabolic dynamics,

≠tT 1 s $y=dT ­ nnT ; (2)

see, e.g., also [15–17]. For incompressible fluids,
coincides with the conventional Fokker-Planck equat
for the diffusion process. This feature does not persis
the compressible case.

While looking for the stochastic implementation of th
microscopic (molecular) dynamics (2) [10,13,17], it
assumed that the “diffusing scalar” (contaminant in t
lore of early statistical turbulence models) obeys the
equation,

d $Xstd ­ $ys $x, tddt 1
p

2n d $W std , (3)

$Xs0d ­ $x0 °! $Xstd ­ $x ,

where the given forced Burgers velocity field is pe
turbed by the noise term representing a molecular di
sion. In the, by now conventional, Itô representation
diffusion-type random variable$Xstd one explicitly refers
to the standard Brownian motion (e.g., the Wiener procep

2n $W std, instead of the usually adopted formal whi
noise integral

Rt
0 $hssd ds, coming from the Langevin-type

version of (3).
Under these premises, we cannot view Eqs. (1)–(3

completely independent (disjoint) problems: The veloc
field $y cannot be arbitrarily inferred from (1) or any oth
velocity-defining equation without verifying theconsis-
tencyconditions, which would allow one to associate (
and (3) with a well defined random dynamics (stochas
process), and Markovian diffusion, in particular [18].

In connection with the usage of Burgers velocity fiel
(with or without external forcing) which in (3) clearly ar
© 1996 The American Physical Society
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intended to replace the standardforward drift of the would-
be-involved Markov diffusion process, we have not fou
in the literature any attempt to resolve apparent con
dictions arising if (2) and/or (3) are defined by means
(1). Also, an issue of the necessarycorrelation (cf. [13],
Chap. 7.3, devoted to the turbulent transport and the
lated dispersion of contaminants) between the probabil
Fokker-Planck dynamics of the diffusing tracer and this
the passive tracer (contaminant) concentration (2) has
left aside in the literature.

Moreover, rather obvious hesitation could have be
observed in attempts to establish the most approp
matter transport rule, if (1)–(3) are adopted. Depend
on the particular phenomenological departure point,
adopts the standard continuity equation [3,4] that is va
to a high degree of accuracy in the low viscosity lim
n # 0 of (1)–(3), but incorrect on mathematical groun
if there is a diffusion involvedandsimultaneously a solu
tion of (1) stands for the respectivecurrentvelocity of the
flow: ≠trs $x, td ­ 2=f $ys $x, tdrs $x, tdg. Alternatively, fol-
lowing the white noise calculus tradition stating that t
stochastic integral$Xstd ­

Rt
0 $yf $Xssd, sg ds 1

Rt
0 $hssd ds

necessarily implies the Fokker-Planck equation, o
adopts≠trs $x, td ­ nnrs $x, td 2 =f $ys $x, tdrs $x, tdg which
is clearly problematic in view of the classic McKean
discussion of the propagation of chaos for the Burg
equation [19,20] and deriving the stochastic “Burg
process” in the following: “The fun begins in tryin
to describe this Burgers motion as the path of a tag
molecule in an infinite bath of like molecules” [19].

To put things on solid ground, let us consider
Markovian diffusion process, which is characterized
the transition probability density (generally inhomog
neous in space and time law of random displaceme
ps $y, s, $x, td, 0 # s , t # T , and the probability density
rs $x, td of its random variable$Xstd, 0 # t # T . The
process is completely determined by these data. For
ity of discussion, we do not impose any spatial bou
ary restrictions, nor fix any concrete limiting value ofT
which, in principle, can be moved to infinity.

The following conditions valid for any
e , 0 : (a) there holds limt#s s1yt 2

sd
R

j $y2$xjle ps $y, s, $x, td d3x ­ 0, (b) there exists a (for

ward) drift $bs $x, sd ­ limt#s s1yt 2 sd
R

j $y2xj#e s $y 2

$xdps$x, s, $y, td d3y, and (c) there exists a diffusion fun
ction (in our case it is simply a diffusio
coefficient n) as $x, sd ­ limt#s s1yt 2 sd

R
j $y2$xj#e s $y 2

$xd2ps $x, s, $y, td d3y, are conventionally interpreted to d
fine a diffusion process [18]. Under suitable restrictio
(boundedness of involved functions, their continuo
differentiability) the function

gs $x, sd ­
Z

ps$x, s, $y, T dgs $y, T d d3y (4)

satisfies the backward diffusion equation [notice that
minus sign appears, in comparison with (2)]
d
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2≠sgs $x, sd ­ nngs $x, sd 1 f $bs $x, sd=ggs$x, sd . (5)

Let us point out that the validity of (5) is known to
be anecessarycondition for the existence of a Marko
diffusion process, whose probability densityrs$x, td is to
obey the Fokker-Planck equation [the forward drift$bs $x, td
replaces the previously utilized Burgers field$ys $x, td]:

≠trs$x, td ­ nnrs $x, td 2 =f $bs $x, tdrs$x, tdg . (6)

The case of particular interest in the nonequilibriu
statistical physics literature appears whenps $y, s, $x, td is
a fundamental solutionof (5) with respect to variables
$y, s [18]; see, however, [21] for an alternative situatio
Then, the transition probability densityalso satisfies the
second Kolmogorov (e.g., the Fokker-Planck) equation
the remaining$x, t pair of variables. Let us emphasiz
that these two equations form anadjoint pair, referring
to the slightly counterintuitive for physicists, althoug
transparent for mathematicians [23–26], issue of ti
reversal of diffusions.

After adjusting (3) to the present contex
$Xstd ­

Rt
0

$bsss $Xssd, sddd ds 1
p

2n $Wstd we can utilize
standard rules of the Itô stochastic calculus [24–27],
realize that for any smooth functionfs $x, td of the random
variable $Xstd the conditional expectation value

lim
nt#0

1
nt

∑Z
ps $x, t, $y, t 1 ntdfs $y, t 1 ntd d3y 2 fs $x, td

∏
­ sD1fd sss $Xstd, tddd ­ f≠t 1 s $b=d 1 nng fs $x, td , (7)

$Xstd ­ $x ,

determines the forward drift$bs $x, td (if we set components
of $X instead off ) and introduces the local field of forwar
accelerations associated with the diffusion process, wh
we constrain by demanding (see, e.g., Refs. [24–27]
prototypes of such dynamical constraints)

sD2
1

$Xd std ­ sD1
$bd sss $Xstd, tddd

­ f≠t
$b 1 s $b=d $b 1 nn $bg sss $Xstd, tddd ­ $Fsss $Xstd, tddd ,

(8)

where, at the moment arbitrary, the function$Fs $x, td may be
interpreted as the external forcing applied to the diffusi
system [22]. In particular, if we assume that drifts rema
gradient fields, curl$b ­ 0, under the forcing, then thos
that are allowed by the prescribed choice of$Fs $x, td must
fulfill the compatibility condition (notice the conspicuou
absence of the standard Newtonian minus sign in t
analog of the second Newton law)

$Fs $x, td ­ =Vs$x, td , (9)

Vs$x, td ­ 2n

∑
≠tF 1

1
2

µ
b2

2n
1 =b

∂∏
.
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This establishes the connection of the forward d
$bs $x, td ­ 2n=Fs $x, td with the (Feynman-Kac, cf. [21,22]
potentialVs $x, td of the chosen external force field.

One of the distinctive features of Markovian diffusio
processes with the positive densityrs$x, td is that the
notion of the backward transition probability density
pps $y, s, $x, td can be consistently introduced on each fin
time interval, say0 # s , t # T ,
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t rs$x, tdpps $y, s, $x, td ­ ps $y, s, $x, tdrs $y, sd , (10)

so that
R

rs $y, sdps $y, s, $x, td d3y ­ rs $x, td andrs $y, sd ­R
pps $y, s, $x, tdrs $x, td d3x. This allows us to define the

backward derivative of the process in the condition
mean (cf. [22,27–29] for a discussion of these conce
in the case of the most traditional Brownian motion a
Smoluchowski-type diffusion processes)
lim
nt#0

1
nt

∑
$x 2

Z
pps $y, t 2 nt, $x, td$y d3y

∏
­ sD2

$Xd std ­ $bpsss $Xstd, tddd,

sD2fd sss $Xstd, tddd ­ f≠t 1 s $bp=d 2 nng fsss $Xstd, tddd .
(11)
e

)

o-
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m
re-
ial
5).
ng
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of
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wn-

se
d
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Accordingly, the backward version of the dynamic
constraint imposed on the acceleration field reads

sD2
2

$Xd std ­ sD2
1

$Xd std ­ $Fsss $Xstd, tddd , (12)

where under the gradient-drift field assumption, curl$bp ­
0, we have explicitly fulfilled the forced Burgers equatio
[cf. (1)],

≠t
$bp 1 s $bp=d $bp 2 nn $bp ­ $F , (13)

where [22,24,25], in view of$bp ­ $b 2 2n= ln r, we
deal with $Fs$x, td previously introduced in (9). A notable
consequence of the involved backward Itô calculus is t
the Fokker-Planck equation (6) can be transformed to
equivalentform of

≠trs$x, td ­ 2nnrs $x, td 2 =f $bps $x, tdrs $x, tdg , (14)

which, however, describes a density evolution in the
verse sense of time. Let us recall that a time inversion
the probabilistic evolutionrs$x, 0d ! rs $x, td ! rs$x, T d,
with 0 # t # T , readrs $x, T d ! rs$x, T 2 td ! rs$x, 0d.

At this point let us recall that Eqs. (5) and (6) for
a natural adjoint pair of equations that determine
Markovian diffusion process in the chosen time interv
f0, T g. Clearly, an adjoint of (14) reads

≠sfs $x, sd ­ nnfs $x, sd 2 f $bps $x, sd=g fs $x, sd , (15)

where

fs $x, sd ­
Z

pps $y, 0, $x, sdfs $y, 0d d3y , (16)

to be compared with (4) and (5) and the previou
mentioned passive scalar dynamics (2). Here, manifes
the time evolution of the backward drift is governed
the Burgers equation, and the diffusion equation (15
correlated [via the definition (10)] with the probabilit
density evolution rule (14).

This pair only can be consistently utilized if the
diffusion process is to be driven by forced (or unforce
Burgers velocity fields.

Let us notice that the familiar logarithmic Hopf-Co
transformation [2] of the Burgers equation into the gen
alized diffusion equation (yielding explicit solutions in th
unforced case) has received a generalization in the fra
t
n

-
f

l

y,

s

-

e-

work of the so-called Schrödinger boundary-data (interp
lation) problem [21,22,25,26,29,30]; see also [31,32].
particular, in its recent reformulation [21,22], the proble
of defining a suitable Markovian diffusion process was
duced to investigating the adjoint pairs of parabolic part
differential equations, as, e.g., (5) and (6) or (14) and (1
For gradient drift fields this amounts to checking (imposi
limitations on the admissible force field potential) wheth
the Feynman-Kac kernel

ks $y, s, $x, td ­
Z

exp

∑
2

Z t

s
csssvstd, tddd dt

∏
dm

s y,sd
sx,td svd

(17)

is positive and continuous in the open space-time area
interest, and whether it gives rise to positive solutions
the adjoint pair of generalized heat equations,

≠tus $x, td ­ nnus $x, td 2 cs $x, tdus $x, td ,

≠tys $x, td ­ 2nnys$x, td 1 cs $x, tdys $x, td ,
(18)

wherecs $x, td ­ s1y2ndVs$x, td follows from the previous

formulas. In the above,dm
s $y ,sd
s$x,td svd is the conditional

Wiener measure over sample paths of the standard Bro
ian motion.

Solutions of (18) upon suitable normalization give ri
to the Markovian diffusion process with the factorize
probability densityrs$x, td ­ us $x, tdys$x, td which inter-
polates between the boundary density datars $x, 0d and
rs $x, Td, with the forward and backward drifts of th
process defined as follows:

$bs $x, td ­ 2n =ys $x, tdyys $x, td ,

$bps $x, td ­ 22n =us $x, tdyus $x, td ,
(19)

in the prescribed time intervalf0, Tg. The transition
probability density of this process reads

ps $y, s, $x, td ­ ks $y, s, $x, td ys $x, tdyys $y, sd . (20)

Here, neitherk (17) norp (20) needs to be the fundament
solutions of appropriate parabolic equations; see, e
Ref. [21] where an issue of differentiability is analyzed.
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The corresponding [sincers $x, td is given] transition
probability density (10) of the backward process has t
form

pps $y, s, $x, td ­ ks $y, s, $x, td us $y, sdyus $x, td . (21)

Obviously [21,25], in the time interval0 # s , t # T
there holdsus $x, td ­

R
u0s $ydks $y, s, $x, td d3y andys $y, sd ­R

ks $y, s, $x, T dyT s $xd d3x.
By defining Fp ­ ln u, we immediately recover the

traditional form of the Hopf-Cole transformation for
Burgers velocity fields$bp ­ 22n=Fp. In the special
case of the standard free Brownian motion, there ho
$bs $x, td ­ 0 while $bps $x, td ­ 22n= ln rs$x, td.

Our discussion provides a complete identification of th
stochastic diffusion process underlyingboth the determin-
istically forced Burgers velocity dynamics and the relate
matter transport (14), in terms of suitable density field
The generalization of the Hopf-Cole procedure to this ca
involves a powerful methodology of Feynman-Kac ke
nel functions. Let us stress that the connection betwe
the Burgers equation and the generalization (forward) h
equation is not merely a formal trick that generates so
tions to the nonlinear problem. The forward equation (18
in fact, carriers complete information about the implic
backward stochastic evolution,that is, a Markov diffusion
process. Indeed, the transition probability density (2
obeys the familiar Chapman-Kolmogorov formula. If w
wish to analyze a concrete density field governed by th
process, any two boundary density datars$x, 0d andrs$x, T d
allow us to deduce the ultimate form of the (more trad
tional, forward) diffusion process (20), by means of th
Schrödinger boundary data problem [21,25]. Then, the a
joint pair of equations (18) gives all details of the dynam
ics, with (19)–(21) as a necessary consequence. On
other hand, the presented discussion implies a direct imp
of the shock-type (generally compressible) matter dens
profiles to the general nonequilibrium statistical physics
random phenomena.
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from KBN research Grant No. 2 P302 057 07.
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Abstract. We prove that, in constrast to the theories of continuous observation, in the formalism
of event enhanced quantum theory the stochastic process generating sample histories of pairs
(observed quantum system, observing classical apparatus) is unique. This result gives a rigorous
basis to the previous heuristic argument of Blanchard and Jadczyk.

1. Introduction

Effective time evolution of a quantum system is usually described by a dynamical semigroup:
a semigroup of completely positive, unit preserving transformations acting on the algebra
of observables of the system. A general form of generator of a norm-continuous semigroup
was published in 1976 independently by Goriniet al [1] (for matrix algebras) on the one
hand, and by Lindblad [2] (for the more general, norm-continuous case) on the other. It is
usually referred to as the Lindblad form; it reads

Ȧ = i[H,A] +
∑
α

V ∗α AVα − 1
2{3,A} (1)

whereH = H ∗ is the Hamiltonian,{ , } stands for anticommutator, and

3 =
∑
α

V ∗α Vα. (2)

In contrast to a pure unitary evolution that describes closed systems and which is time-
reversible, the second dissipative part of the generator makes the evolution of an open
system irreversible. This irreversibility is not evident from the very form of the equation, it
is connected with the positivity property of the evolution. Formally we can often solve the
evolution equation backward in time, but positivity of the reversed evolution will be lost.

We can also look at the dual time evolution of states rather than of observables. For
states, described by density matrices, we get

ρ̇ = −i[H,A] +
∑
α

VαρV
∗
α − 1

2{ρ,3} (3)

where the duality is defined by Tr(Ȧρ) = Tr(Aρ̇).
Here again only propagation forward in time is possible, when we try to propagate

backward we will have to deal with negative probabilities. This irreversibility is reflected
in the fact that pure states evolve into mixed states. How do mixed states arise? In quantum

† E-mail address: ajad@ift.uni.wroc.pl

0305-4470/97/061863+18$19.50c© 1997 IOP Publishing Ltd 1863
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theory, similarly as in classical theory, they arise when we go from individual description
to ensemble description, from maximal available information to partial information. Or
simply, they arise by mixing of pure states. Pure states are represented by one-dimensional
projection operatorsP . If dµ(P ) is a probabilistic measure on pure states, then the density
matrix ρ defined byρ = ∫

P dµ(P ) is a mixed state, unless dµ(P ) is a Dirac measure.
In contrast to classical theory, however, in quantum theory decomposition of a mixed state
into pure ones is non-unique. So, for instance, the identity operator can be decomposed into
any complete orthonormal basis:I = ∑

i |i〉〈i|, thus in indenumerably many ways. This
mysterious and annoying non-uniqueness of decomposition into pure states in quantum
theory can be simply taken as an unavoidable price for our progress from classical to
quantum—as a fact of life. And so it was. Yet it has started to cause problems in quantum
measurement theory.

The first attempt to give a precise mathematical formulation of quantum measurement
theory must be ascribed to John von Neumann. In his monograph [3] he introduced
two kinds of evolution: a continuous, unitary evolutionU of an ‘unobserved’ system,
and discontinuous ‘projections’ that accompany ‘observations’ or ‘measurements.’ His
projection postulate, later reformulated by Lüders for mixed states, is expressed as follows:
‘if we measure a propertyE of the quantum system, and if the propertyE holds, then as the
result of this measurement the system which was previously described by a density matrix
ρ switches to the new state described by the density matrixEρE/TrEρE.’

A whole generation of physicists has been influenced by this apparently precise
formulation. Few dared to ask: who are ‘we’ in the phrase ‘if we measure’ [4], what
is ‘measurement’ [5, 6], at which particular instant of time does the reduction take place?
How long does it take [7], if ever [8], to reduce? Can it be observed? Can it be verified
experimentally [9–11]? Nobody could satisfactorily answer these questions. And so it
was taken for granted that quantum theory cannot really be understood in physical terms,
that it is a peculiar mixture of objective and subjective. That it is about ‘observations,’
and so it makes little or no sense without ‘observers,’ and without ‘mind’. There were
many who started to believe that it is the sign of a new age and the sign of progress. A
few opponents did not believe the completeness of a physical theory that could not even
define what constitutes ‘observation’ [5–6]—but they could not change the overall feeling
of satisfaction with the successes of quantum theory.

This situation started to change rapidly when technological progress made it possible to
make prolonged experiments with individual quantum systems. The standard ‘interpretation’
did not suffice. Experimenters were seeing with their own eyes not the ‘averages’ but
individual sample histories. In particular, experiments in quantum optics allowed one to
almost ‘see’ the quantum jumps. In 1988 Cook [12] discussed photon counting statistics
in fluorescence experiments and revived the question ‘what are quantum jumps?’ Another
reason to pay more attention to the notion of quantum jumps came from the several groups
of physicists working on effective numerical solutions of quantum optics master equations.
The works of Carmichael [13], Dalibardet al [14, 15], Dum et al [16], Gardineret al
[17], developed the method of quantum trajectories, or the quantum Monte Carlo (QMC)
algorithm for simulating solutions of master equations. It was soon realized (cf e.g. [18–
22]) that the same master equations can be simulated either by the quantum Monte Carlo
method based on quantum jumps, or by a continuous quantum state diffusion. Wiseman
and Milburn [23] discussed the question of how different experimental detection schemes
relate to continuous diffusions or to discontinuous jump simulations. The two approaches
were recently also put to comparison by Garraway and Knight [24]. There are, at present,
two schools of simulations. Gisinet al [25] tried to reconcile the two arguing that ‘the
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quantum jumps can be clearly seen’ also in the quantum state diffusion plots. On the other
hand, already in 1986 Diosi [26] proposed a pure state, piecewise deterministic process that
reproduces a given master equation. In spite of the title of his paper that suggests uniqueness
of his scheme, his process, although mathematically canonical for a given master equation,
is not unique. This problem of non-uniqueness is especially important in theories of gravity-
induced spontaneous localization (see [27], also [28, 29] and references therein) and in the
recent attempts to merge mind-brain science with quantum theory [30–32], where quantum
collapse plays an important role.

In the next section we shall see how the situation changes completely with the new
approach to quantum measurement developed by Ph Blanchard and one of us (AJ) (see [33]
and references there)†. In section 2 we will sketch the main idea of the new approach. We
will also indicate infinitesimal proof of uniqueness of the stochastic process that reproduces
the master equation for the total system, i.e. quantum system+ classical apparatus. In
section 3 we give concrete examples of non-unicity when only a pure quantum system is
involved—as it is typical in quantum optics. In section 4 we give a rigorous, global proof
of unicity of the process, when classical apparatus is coupled in an appropriate way to the
quantum system. The technical part of the proof can be found in the appendix. Conclusions
are given in section 5. There we also comment upon the most natural question: we all
know that every apparatus consists of atoms—then how can it be classical?

2. The formalism

Let us sketch the mathematical framework of the ‘event-enhanced quantum theory’. Details
can be found in [33]. To describe events, one needs a classical systemC, then possible
events are identified with changes of a (pure) state ofC. One can think of events as ‘clicks’
of a particle counter, changes of the pointer position, or changing readings on an apparatus
LCD display. The concept of an event is of course an idealization, like all concepts in
a physical theory. Let us consider the simplest situation corresponding to a finite set of
possible events. The space of pure states ofC, denoted bySc, hasm states, labelled by
α = 1, . . . , m. Statistical states ofC are probability measures onSc—in our case just
sequencespα > 0,

∑
α pα = 1.

The algebra of observables ofC is the algebraAc of complex functions onSc—in our
case just sequencesfα, α = 1, . . . , m of complex numbers.

We use Hilbert space language even for the description of the classical system. Thus
we introduce anm-dimensional Hilbert spaceHc with a fixed basis, and we realizeAc as
the algebra of diagonal matricesF = diag(f1, . . . , fm). Statistical states ofC are then
diagonal density matrices diag(p1, . . . , pm), and pure states ofC are vectors of the fixed
basis ofHc. Events are ordered pairs of pure statesα → β, α 6= β. Each event can thus
be represented by anm × m matrix with 1 at the(α, β) entry, zero otherwise. There are
m2−m possible events.

We now come to the quantum system. LetQ be the quantum system whose bounded
observables are from the algebraAq of bounded operators on a Hilbert spaceHq . In this
paper we will assumeHq to befinite dimensional. Pure states ofQ are unit vectors inHq ;
proportional vectors describe the same quantum state. Statistical states ofQ are given by
non-negative density matriceŝρ, with Tr(ρ̂) = 1.

Let us now consider the total systemT = Q × C. For the algebraAt of observables

† Complete, actual bibliography of the quantum future project is always available under URL:
http://www.ift.uni.wroc.pl/̃ ajad/qf-pub.htm
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of T we take the tensor product of algebras of observables ofQ andC: At = Aq ⊗Ac. It
acts on the tensor productHq ⊗Hc = ⊕mα=1Hα, whereHα ≈ Hq . ThusAt can be thought
of as algebra ofdiagonalm×m matricesA = (aαβ), whose entries are quantum operators:
aαα ∈ Aq , aαβ = 0 for α 6= β.

Statistical states ofQ×C are given bym×m diagonal matricesρ = diag(ρ1, . . . , ρm)

whose entries are positive operators onHq , with the normalization Tr(ρ) =∑α Tr(ρα) = 1.
Duality between observables and states is provided by the expectation value〈A〉ρ =∑

α Tr(Aαρα).
We will now generalize slightly our framework. Indeed, there is no need for the quantum

Hilbert spacesHα, corresponding to different states of the classical system, to coincide. We
will allow them to be different in the rest of this paper. We denotenα = dim(Hα).

We now consider dynamics. It is normal in quantum theory for classical parameters
to enter the quantum Hamiltonian. Thus we assume that quantum dynamics, when no
information is transferred fromQ to C, is described by HamiltoniansHα : Hα −→ Hα,
that may depend on the actual state ofC (as indicated by the indexα). We will use matrix
notation and writeH = diag(Hα). Now take the classical system. It is discrete here. Thus
it cannot have continuous time dynamics of its own.

As in [33] the coupling of Q to C is specified by a matrixV = (gαβ), wheregαβ are
linear operators:gαβ : Hβ −→ Hα. We putgαα = 0. This condition expresses the simple
fact: we do not need dissipation without receiving information (i.e. without an event).
To transfer information fromQ to C we need a non-Hamiltonian term which provides a
completely positive (CP) coupling. As in [33] we consider couplings for which the evolution
equation for observables and for states is given by the Lindblad form

Ȧα = i[Hα,Aα] +
∑
β

g?βαAβgβα − 1
2{3α,Aα} (4)

or equivalently:

ρ̇α = −i[Hα, ρα] +
∑
β

gαβρβg
?
αβ − 1

2{3α, ρα} (5)

where

3α =
∑
β

g?βαgβα. (6)

The above equations describe the statistical behaviour of ensembles. Individual sample
histories are described by a Markov process with values in pure states of the total system.
In [33] this process was argued to be infinitesimally unique. For the sake of completeness
we repeat here the arguments. First, we use equation (5) to computeρα(dt) when the initial
stateρα(0) is pure:

ρα(0) = δαα0|ψ0〉〈ψ0|. (7)

In the equations below we will discard terms that are higher than linear order in dt . For
α = α0 we obtain

ρα0(dt) = |ψ0〉〈ψ0| − i[Hα0, |ψ0 >< ψ0|] dt − 1
2{3α0, |ψ0〉〈ψ0|} dt (8)

while for α 6= α0

ρα0(dt) = gαα0|ψ0〉〈ψ0|g?αα0
dt. (9)

The term forα = α0 can be written as

ρα0(dt) = pα0|ψα0〉〈ψα0| (10)
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where

ψα0 =
exp(−iHα0 dt − 1

23α0 dt)ψ0

‖ exp(−iHα0 dt − 1
23α0 dt)ψ0‖

(11)

and

pα0 = 1− λ(ψ0,3α0ψ0) dt. (12)

The term withα 6= α0 can be written as

ρα(dt) = pα|ψα〉〈ψα| (13)

where

pα = ‖gαα0ψ0‖2 dt (14)

and

ψα = gαα0ψ0

‖gαα0ψ0‖ . (15)

This representation is unique and it defines the infinitesimal version of a piecewise
deterministic Markov process. The process is defined by the following piecewise
deterministic algorithm (cf [33]).

Let us assume a fixed, sufficiently small, time step dt . Suppose that at timet the
system is described by a quantum state vectorψ0 and a classical stateα0. Compute the
scalar productλ(ψ0, α0) = 〈ψ0,3α0, ψ0〉. Choose a uniform random numberp ∈ [0, 1].
Jump if p < λ(ψ0, α0) dt . Otherwise do not jump. When jumping, changeα0 → α with
probability pα0→α = ‖gαα0ψ0‖2/λ(ψ0, α0), and changeψ0 → gαα0ψ0/‖gαα0ψ0‖. If not
jumping, change

ψ → exp{−iHα0 dt − 1
23α0 dt}ψ0

‖ exp{−iHα0 dt − 1
23α0 dt}ψ0‖

t → t + dt.

Repeat the steps.

3. Non-uniqueness in the pure quantum case

In this section we will show on simple examples the nature of non-uniqueness in the pure
quantum case. At first let us note that so-called ‘canonical decomposition’ of a dynamical
generatorL is not unique. To see this suppose that

L(ρ) = −i[H, ρ] +
n∑
k=1

akρa
∗
k −

1

2

{ n∑
k=1

a∗k ak, ρ
}

whereH = H ∗ is the Hamiltonian andak are arbitrary bounded operators. Let us define

H̃ = H + 1

2i
(S − S∗) ãk =

n∑
l=1

λklal + zk

wherezk ∈ C, (λkl) is a unitary matrix andS =∑k,l zkλklal . ThenL̃(ρ) given by

L̃(ρ) = −i[H̃ , ρ] +
n∑
k=1

ãkρãk
∗ − 1

2

{ n∑
k=1

ãk
∗
ãk, ρ

}
coincides withL(ρ). For more details see [34].
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Now we show that the nature of the non-uniqueness is much deeper than that described
above. For simplicity let us consider a two-state quantum system whose algebra of
observables is equal toM2×2. Let Tt be a dynamical semigroup with a generatorL given by

L(ρ) = aρa∗ − 1
2{a∗a, ρ}

wherea ∈ M2×2.

3.1. Pure diffusion process

First let us show that the time evolution determined byL can be described by a diffusion
process with values inCP 1 [35]. Let a two-component complex valued processψt =
(ψ1

t , ψ
2
t )′ (prime denotes the transposition) be given by the following stochastic differential

equation,

dψi
t = fi(ψt ) dBt + gi(ψt ) dt i = 1, 2

whereBt is a one-dimensional real Brownian motion and

gi(ψt ) =
∑
j

(〈a∗〉t aij − 1
2(a
∗a)ij )ψ

j
t − 1

2〈a∗〉t 〈a〉tψi
t

fi(ψt ) =
∑
j

aijψ
j
t − 〈a〉tψi

t

〈a〉t = 〈ψt |a|ψt 〉〈ψt |ψt 〉 〈a∗〉t = 〈ψt |a
∗|ψt 〉

〈ψt |ψt 〉 .

Moreover, let us choose an initial conditionψ0 = (z1
0, z

2
0)′ such that|z1

0|2 + |z2
0|2 = 1.

Becausefi and gi are continuously differentiable (in the real sense) onC2 \ {0} so there
exists a local solution with a random explosion timeT (see, for example, [36]). But

d|ψi
t |2 = ψi

t dψ̄ i
t + ψ̄ i

t dψi
t + d[ψi

t , ψ̄
i
t ]t

where [ψi
t , ψ̄

i
t ]t is the quadratic covariation ofψi

t and ψ̄ i
t . Thus

d[ψi
t , ψ̄

i
t ]t = |fi(ψt )|2 dt

and so

d‖ψt‖2 =
∑
i

(ψi
t dψ̄ i

t + ψ̄ i
t dψi

t )+ ‖f (ψt)‖2 dt = 0.

It implies thatT = ∞ with probability one and so our process is a diffusion with values in
a sphereS3. Let us define a processPt with values in one-dimensional projectors by

Pt = |ψt 〉〈ψt | =
∑
i,j

ψi
t ψ̄

j
t eij

whereeij form the standard basis inM2×2. Then, using the equation

d(ψi
t ψ̄

j
t ) = (f̄jψi

t + fiψ̄j
t ) dBt + (ḡjψi

t + giψ̄j
t + fif̄j ) dt

we obtain that

dPt = [(a − 〈a〉t )Pt + Pt(a∗ − 〈a∗〉t )] dBt − 1
2{a∗a, Pt } dt + aPta∗ dt.

SinceBt is a martingale then after taking the average we get

dE[Pt ] = aE[Pt ]a
∗ dt − 1

2{a∗a,E[Pt ]} dt.
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Let us define a density matrixρt = E[Pt ]. Then

ρ̇t = aρta∗ − 1
2{a∗a, ρt }

and so the average of the diffusion gives the quantum dynamical evolution.
Finally, we show thatρt =

∫
P(t, x0, dy)Py , where Py = |y〉〈y|, x0 = |ψ0〉〈ψ0|

andP(t, x,dy) is the transition probability of the described diffusion. By the definition,
P(t, x0, 0) is the distribution of the random variableP x0

t such thatP x0
0 = x0. It implies

that for every bounded and measurable functionf defined onCP 1 we have

E[f (P x0
t )] =

∫
f (y)P (t, x0, dy).

Let us consider a function given byf (y) = Tr(APy), whereA ∈ M2×2. Then∫
Tr(APy)P (t, x0, dy) = E[Tr(AP x0

t )] = Tr(Aρt ).

So Tr(A
∫
P(t, x0, dy)Py)) = Tr(Aρt ) for everyA and thusρt =

∫
P(t, x0, dy)Py with

ρ0 = x0.

3.2. Piecewise deterministic solution

On the other hand, it is possible to associate with the same quantum dynamics a piecewise
deterministic process, as in the method of quantum trajectories [13]. Now the situation
is more complicated, because, in general, we cannot replace the Brownian motion by the
Poisson process. We have to solve a stochastic differential equation for an unknown process
(Ñt , ψt ).

dψi
t = fi(ψt−) dÑt + gi(ψt ) dt

wherefi and gi are prescribed functions, together with the following constrain:Ñt is a
semimartingale such that

(a) [Ñ, Ñ ]t = Ñt , Ñ0 = 0, E[Ñt ] <∞ for all t > 0;
(b) for a given non-negative functionλ : C2→ R the processMt := Ñt −

∫ t
0 λ(ψs) ds

is a martingale.
It is clear thatMt will be a purely discontinuous martingale. A continuous, increasing

and with paths of finite variation on compacts process
∫ t

0 λ(ψt) ds is called the compensator
of Ñt . In our case due to assumption (a) it is also the conditional quadratic variation ofÑt
[36]. The functionalλ(ψt) is called the stochastic intensity and plays the role of the intensity
of jumps. Let us recall that for the (homogeneous) Poisson processNt −

∫ t
0 λ ds = Nt − λt

is a martingale. From the assumption (a) above we obtain thatÑt is quadratic pure jump,
its continuous part is equal zero and4Ñs = (4Ñs)2, where4Ñs = Ñs − Ñs—so it is a
point process. Let us emphasize that in general it is not an inhomogeneous Poisson process
since its compensator would be a deterministic function equal toE[Ñt ] [37]. So it will be
the case only when the stochastic intensity is a deterministic function depending ont .

Moreover, [Ñ, t ]t = 0 as Ñt is of finite variation on compacts. This implies the
following symbolic rules:

(dÑ)2 = dÑ dÑ dt = dt dÑ = 0.

From assumption (b) we get dMt = dÑt − λ(ψt) dt . Let Ft be aσ -algebra of all events up
to time t . BecauseMt is a martingale, soE[dMt |Ft ] = 0 which implies

E[dÑt |Ft ] = λ(ψt) dt

see [39].
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Up until now the operatora ∈ M2×2 was arbitrary. A particular simple case is if we
take

a∗ = a =
(

0 1
1 0

)
.

ThenL(ρt ) = aρta − ρt and so the intensity

λ(ψt) = 〈a∗a〉t = 〈ψt |a
∗a|ψt 〉

〈ψt |ψt 〉 = 1

which implies thatÑt = Nt . Because there is no deterministic evolution (we do not have
the Hamiltonian part and the jump rate is constant) so in this case we can putg1 = g2 = 0
andf1(ψt ) = ψ2

t − ψ1
t , f2(ψt ) = ψ1

t − ψ2
t as the probability of a particular jump depends

on the difference betweenψ1
t andψ2

t . Thus we arrive at

dψi
t = fi(ψt−) dNt .

Using the identity d[ψi, ψj ]t = fif̄j dNt we find that d‖ψ‖2 = 0 and dPt = (aPta−Pt) dNt .
Taking the average we obtaiṅρt = aρta − ρt , sinceNt − λt is a martingale. The above
stochastic differential equation admits the following solution:

ψ1
t = z1

0
1+ (−1)Nt

2
+ z2

0
1− (−1)Nt

2

ψ2
t = z1

0
1− (−1)Nt

2
+ z2

0
1+ (−1)Nt

2
.

This implies that

Pt = x0
1+ (−1)Nt

2
+ y0

1− (−1)Nt

2

wherex0 = |ψ0〉〈ψ0| andy0 = |φ0〉〈φ0|, φ0 = (a + a∗)ψ0 = (z2
0, z

1
0)′.

If we take

a =
(

0 1
0 0

)
as is usual in quantum optics problems, then we have

λ(ψt) = |ψ
2
t |2

‖ψt‖2
.

So we need a point process whose rate function is random and the situation is slightly more
complicated. We have to use the more general method described at the beginning of this
paragraph.

Let us start with calculating functionsgi , which are responsible for the deterministic
flow. They are obtained by taking the derivative of

ψs =
exp(− 1

2sa
∗a)ψt

‖ exp(− 1
2sa
∗a)ψt‖

‖ψt‖

with respect tos and at the instants = 0. So we get

g(ψt) = 1
2(−a∗a + 〈a∗a〉t )ψt .

It can be checked that the only functionsfi which lead to the Lindblad equation are of the
following type,

f1(ψt ) = −ψ1
t +

√
〈ψt |ψt 〉 eih(ψt ) f2(ψt ) = −ψ2

t
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where h : C2 → R is an arbitrary Lipschitz function. Let us point out that if we put
eih = ψ2

t /|ψ2
t | then we can writef in a compact form

f (ψt) =
(

a√〈a∗a〉t
− 1

)
ψt

see [39], but it needs a careful interpretation because zero can appear in the denominator.
Again by simple calculations we find that d‖ψt‖2 = 0 and

dPt =
( |ψ2

t |2 −ψ1
t ψ̄

2
t

−ψ̄1
t ψ

2
t −|ψ2

t |2
)
−

dÑt

+ 1

2〈ψt |ψt 〉
(

2|ψ1
t |2|ψ2

t |2 ψ1
t ψ̄

2
t (|ψ2

t |2− |ψ1
t |2)

ψ̄1
t ψ

2
t (|ψ2

t |2− |ψ1
t |2) −2|ψ1

t |2|ψ2
t |2

)
dt.

However, dÑt = dMt + λ(ψt) dt so after averaging we get the quantum evolution equation
for ρt = E[Pt ].

4. Global existence and uniqueness

After analysing a typical example of non-uniqueness in the pure quantum case, here we will
return to the general EEQT scheme as described in section 2. LetTt be a norm-continuous
dynamical semigroup on states of the total algebraAT corresponding to equation (5). We
extendTt by linearity to the whole predual spaceAT ∗, which is equal toAT , because the
total algebra is finite-dimensional. LetE denote a space of all one-dimensional projectors
in AT . BecauseAT = ⊕α=mα=1 M(nα×nα) we obtain thatE = ∪̇αCPα and soE is a disjoint
sum of compact differentiable manifolds (complex projective spaces inHα). We would like
to associate withTt a homogeneous Markov–Feller process with values inE such that for
everyx ∈ E

Tt(Px) =
∫
E

P (t, x,dy)Py (16)

whereP(t, x,dy) is the transition probability function for the processξt and y → Py is
the tautological map, which assigns to every pointy ∈ E a one-dimensional projectorPy .
This leads us to the following definition.

Definition. Let M(E) denote a Banach space of all complex, finite, Borel measures on
E. We say that a positive and contractive semigroupUt : M(E) →M(E) with a Feller
transition functionP(t, x, 0) is associatedwith Tt iff equation (16) is satisfied.

Let us describe this notion more precisely. Letπ be a map between the two Banach
spacesM(E) andAT ∗ given by

π(µ) =
∫
E

µ(dx) Px.

It is clear thatπ is linear, surjective, preserves positive cones and‖π‖ = 1. An intuitive
meaning of the mapπ is clear: every measure on one-dimensional projections of the
total algebra defines an operator and every operator in the algebra decomposes into one-
dimensional projections. This decomposition is non-unique, because of the non-uniqueness
of the quantum decomposition of the unit, and kerπ measures this non-uniqueness.

Proposition 1. Ut is associated withTt iff ker π is Ut invariant andÛt = Tt , whereÛt is
the quotient group ofUt by kerπ .
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Proof. Let Ut be associated withTt . It implies that∫
E

P (t, x, dy) Py = Tt (Px)

thus for anyµ0 ∈ kerπ we have∫
E

(Utµ0)(dx) Px =
∫
E

∫
E

P (t, y,dx)µ0(dy) Px =
∫
E

Tt (Py)µ0(dy)

= Tt
[ ∫

E

µ0(dy) Py

]
= 0

and soUtµ0 ∈ kerπ . Moreover,∀µ ∈M(E)

Ûtπ(µ) = π(Utµ) =
∫
E

(Utµ)(dy)Py =
∫
E

∫
E

P (t, x,dy)µ(dx)Py

= Tt
[ ∫

E

µ(dx)Px

]
= Ttπ(µ).

Now let us assume that̂Ut = Tt , i.e. ∀µ ∈M(E) we haveÛtπ(µ) = Ttπ(µ). Let us take
µ = δx . Then

Ûtπ(δx) = π(Utδx) =
∫
E

(Utδx)(dy) Py =
∫
E

∫
E

P (t, z,dy)δx(dz)Py

=
∫
E

P (t, x,dy)Py

andTtπ(µ) = Tt (Px) so Tt (Px) =
∫
E
P (t, x,dy)Py . �

This means that to findUt is to extend the semigroupTt fromM(E)/ kerπ toM(E)

in an invariant way. It should be emphasized that, in general, such an ‘extension’ may not
exist or, if it exists, need not be unique. We show that in our case, under mild assumptions,
the existence and the uniqueness can be proved.

Let us write the evolution equation for states in the Lindblad form

ρ̇ = −i[H, ρ] +
∑
k

V ∗k ρVk −
1

2

{
ρ,
∑
k

VkV
∗
k

}
whereH = diag(H1, . . . , Hm),Hα = H ∗α ∈ M(nα × nα) and Vk satisfy the following
assumptions:

(a) (Vk)αα = 0 for everyk andα;
(b) if for somek, l, α, β (Vk)αβ 6= 0 and(Vl)αβ 6= 0 thenk = l†.
We will now construct a Markov process on pure states of the total system, associated

with the above master equation, and then prove its uniqueness. Because we can already
guess the process from the infinitesimal argument of section 2, we start with the description
of the generator of the semigroupUt that describes the process.

Let A be a densely defined linear operator onC(E) with D(A) = C1(E) given by

(Af )(x) =
∑
α 6=α0

cα(x)f (xα)− c(x)f (x)+ v(x)f

† In general, we can allow for a weaker version:(Vk)αβ 6= 0 and(Vl)αβ 6= 0⇒ ∃c ∈ C : (Vk)αβ = c(Vl)αβ , but

this simply reduces to (b) above by the substitution(Ṽk)αβ :=
√

1+ |c|2(Vk)αβ and(Ṽl )αβ = 0 for k 6= l.
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wherex ∈ CPα0, cα(x) = Tr(PxWα0αW
∗
α0α
), Wα0α =

∑
k(Vk)α0α ∈ L(Hα,Hα0), W

∗
α0α
=∑

k(Vk)
∗
α0α
∈ L(Hα0, Hα), c(x) =

∑
α 6=α0

cα(x), Pxα = W ∗α0α
PxWα0α/Tr(PxWα0αW

∗
α0α
) ∈

CPα andx → v(x) is a vector field onE given by

v(x) = −i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

}
+ Px Tr

(
Px
∑
α 6=α0

Wα0αW
∗
α0α

)
.

It may be easily checked thatv(x) ∈ TxCPα = TxE. Because

gt (Px) =
exp[t (−iHα0 − 1

2

∑
α 6=α0

Wα0αW
∗
α0α
)]Px exp[t (iHα0 − 1

2

∑
α 6=α0

Wα0αW
∗
α0α
)]

Tr(Px exp[−t∑α 6=α0
Wα0αW

∗
α0α

])

is an integral curve forv, we have thatv is a complete vector field.

Theorem 2. A is a generator of a strongly continuous positive semigroup of contractions
St on C(E).

Proof. A = A1 + A2, where (A1f )(x) =
∑

α 6=α0
cα(x)δxαf − c(x)δxf and A2 = v.

It is clear thatA1 is a bounded and dissipative operator. It is also a dissipation,
i.e. A1(f

2) > 2fA1(f ) for f = f̄ . BecauseA2 generates a flow onE given by
f (x)→ f (gt (x)), wheregt (x) is the integral curve ofv starting at the pointx, it follows
thatA = A1+A2 is the generator of a strongly continuous semigroup of contractions (see,
for example, [40]). Positivity follows from the Trotter product formula, since bothA1 and
A2 generate positive semigroups. �

Let P(t, x, 0) denote the transition function ofSt . It is clear that this is a Feller
transition function [41].

Now prove that our process reproducesTt .

Theorem 3. Let (Utµ)(0) := ∫
E
P (t, x, 0)µ(dx) for µ ∈M(E). ThenUt is associated

with Tt .

The proof is given in the appendix. We can pass to the uniqueness problem. Let us
consider a Markov pregeneratorB0 given by

(B0u)(x) =
∑
ij

T ij (x)(∂i∂ju)(x)+
∑
i

V i(x)(∂iu)(x)

+
∫
E

µ0(x, dy)u(y)− µ0(x, E)u(x) (17)

where (T ij (x)) form a positive matrix andµ0(x, dy) is a positive measure such that
µ0(x, {x}) = 0 for everyx ∈ E. Its domainD(B0) consists ofC∞-functions. It follows
from the theory of Dirichlet forms that this is the most general form of a pregenerator of a
Markov semigroup (see [42]).

Theorem 4. LetB be the operator closure ofB0. If B generates a Markov–Feller semigroup
associated withTt thenD(A) = D(B) andA = B.

The proof is given in the appendix. Thus we have the uniqueness. In the proof we
used repeatedly the fact that our Hilbert spaces were finite-dimensional. In an infinite-
dimensional case the problem is much harder and we have no rigorous result. Our intuition
is shaped here only by the infinitesimal argument of section 3.
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5. Conclusions

We have seen that the special class of couplings between a classical and a quantum system
leads to a unique piecewise deterministic process on pure states of the total system that, after
averaging, recovers the original master Liouville equation for statistical states. Irreversibility
of the master equation describing time evolution of ensembles is reflected by going from po-
tential to actual in the course of quantum jumps that accompany classical events. Why is this
uniqueness result so interesting? During the roundtable discussions at the conferenceQuan-
tum Theory Without Observers, held in Bielefeld in August 1995, the following wish was
repeatedly expressed: ‘in a complete quantum theory all should be in the equations, nothing
relegated to the background.’ Although this statement was made in particular reference to
the consistent histories approach to quantum measurement theory, it applied as well to the
problem of quantum mechanical descriptions of individual quantum systems. The necessity
of having such a description became increasingly apparent as progress in technology enabled
us to perform continuous observations of individual atoms. Quantum opticians were among
the first to propose and to look for the philosophical consequences of stochastic algorithms
reproducing a given master equation (ME). It soon became apparent that not all is in the
equations. As we have illustrated in section 3 there are infinitely many different algorithms
that, after averaging, lead to the same ME. Yet, in each case, Nature chooses only one of
them. Our position is that the only way to have all in the equation is by admitting explicitly
the classical nature of part of the experimental set-up—according to Bohr’s philosophy. We
interpret the results of the present paper as confirming that this is, indeed, the case.

One may ask what are the possible implications of EEQT in general, and of the
uniqueness theorem in particular? One of the simplest applications that is already worked
out is in the solution of Mielnik’s ‘waiting screen problem’ [43]. As shown in [11] the long
standing problem of the time of arrival observable in quantum theory (cf [44] for a recent
review) finds a simple solution within EEQT. Moreover, in [45] a relativistic formulation
of the event generating algorithm has been given. The uniqueness theorem of the present
paper applies also to this relativistic generalization—provided time is replaced by proper
time.

Our results may be compared to those obtained by Diosi [26]. As noted in the
introduction his ‘ortho-process’, using only the quantum master equation, although canonical
(in cases where there is no infinite-dimensional degeneracy) isnot unique. It is, however,
interesting to observe that if the method by Diosi is generalized and extended to a hybrid
classical+ quantum system then his prescription coincides with our process. This is not a
surprise because, as we have proven in this paper, our processis a unique one for the total
system.

That is all fine and good, but the natural question arises: whatis classical? There
are several options possible when answering this question. First of all the theory may be
considered as phenomenological—then we choose as classical that part of the measurement
apparatus (or observer) whose quantum nature is simply irrelevant for the given problem.
Second, we may think of superselection quantities [46, 47] as truly classical variables. Some
of them may play an important role in the dynamics of the measurement process—this
remains for a while just a hypothesis. It is to be noted that Jibu and Yasue (cf [48],
especially the last section ‘Quantum measurement by quantum brain’ puts forward a similar
hypothesis in relation to the possible role of microtubules in the quantum dynamics of
consciousness.

Finally, a careful reader certainly noticed that in the formalism of EEQT one never really
needsC to be aclassical system. It can be a quantum system as well. What is important
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is that the the Liouville evolution preserves the diagonal ofC. Thus the end product of
the decoherence program [49–51] can be directly fed into the EEQT event engine. The
uniqueness result above will be immediately relevant in this case also.
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Appendix

A.1. Proof of theorem 3

At first we show that∀x ∈ E
L(Px) = [A(P )](x) (18)

whereL is the generator ofTt , A is the generator ofSt andP : x → Px.

Let x ∈ CPα0. In H = ⊕mα=1Hα let us choose any orthonormal basis{eα,iα }α=1,...,m
iα=1,...,nα

, for
which eα,iα ∈ Hα. Obviously, for anyPx ∈ AT ∗〈eα,iα |L(ρ)|eβ,iβ 〉 = 0 for α 6= β and the
same is true for [A(P )](x). So it is enough to evaluate the(β, iβ, jβ)th matrix elements of
both sides of equation (18):

〈eβ,iβ |[A(P )](x)|eβ,jβ 〉 =
∑
α 6=α0

Tr(PxWα0αW
∗
α0α
)
〈eβ,iβ |W ∗α0α

PxWα0α|eβ,jβ 〉
Tr(PxWα0αW

∗
α0α
)

−
∑
α 6=α0

Tr(PxWα0αW
∗
α0α
)〈eβ,iβ |Px |eβ,jβ 〉

+〈eβ,iβ |
(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

}
+Px Tr

(
Px
∑
α 6=α0

Wα0αW
∗
α0α

))
|eβ,jβ 〉 = 〈eβ,iβ |W ∗α0β

PxWα0β |eβ,jβ 〉

+δα0β〈eβ,iβ |
(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

})
|eβ,jβ 〉. (19)

On the other hand, theβth component ofL(Px)

(L(Px))β =
∑
k

(Vk)
∗
α0β
Px(Vk)α0β + δα0β −

(
i[Hα0, Px ] + 1

2

{
Px,

∑
k,α

(Vk)βα(Vk)
∗
βα

})
= W ∗α0β

PxWα0β + δα0β

(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

})
(20)

where the last equality holds owing to assumptions (a) and (b) above. Taking the(β, iβ, jβ)th
matrix element of (20) we see that it coincides with (19), thus, due to arbitrariness of
(β, iβ, jβ), we have proved equation (18).
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Let F denote the finite-dimensional space of functions generated byx → 〈ψ |Px |φ〉. It
is clear thatF = {f : f (x) = Tr(APx), A ∈ AT }. So dimF = dim AT . We show thatF
is the null space for kerπ . Let f (x) =∑i,j 〈ψi |Px |ψj 〉 and letµ0 ∈ ker π . Then

µ0(f ) =
∫
µ0(dx) f (x) =

∑
i,j

〈ψi |
∫
µ0(dx) Px |ψj 〉 = 0.

Moreover, because(A〈ψi |P |ψj 〉)(x) = 〈ψi |L(Px)|ψj 〉 we have thatA : F → F and so
St : F → F . This implies thatUt : ker π → ker π sinceUtµ(f ) = µ(Stf ). Let Ût be the
quotient semigroup. Then

lim
t→0

1

t
[Ût (Px)− Px ] = lim

t→0

1

t
[π(Utδx)− Px ]

= lim
t→0

1

t

(∫ ∫
P(t, z,dy) δx(dz) Py − Px

)
= (AP )(x) = L(Px)

so Ût andTt have the same generator and thus coincide. By proposition 1Ut is associated
with Tt . �

A.2. Proof of theorem 4

At first we show the following lemma.

Lemma 1. (Vk)αα = 0 ⇒ ∀α ∈ {1, . . . , m} ∀x, y ∈ CPα such thatPx⊥Py the equality
Tr[PyL(Px)] = 0 is satisfied.

Proof. Let x, y ∈ CPα andPx⊥Py . Then

Tr[PyL(Px)] = −i Tr(Py [Hα, Px ])+
∑
k

Tr[Py(V
∗
k PxVk)αα]

−1

2

∑
k

Tr[Py{Px, (VkV ∗k )αα}] =
∑
k

Tr[Py(V
∗
k PxVk)αα].

But

(V ∗k PxVk)αα = (Vk)∗ααPx(Vk)αα = 0

so the assertion follows. �
We are now in position to show that the diffusion part is necessarily zero.

Lemma 2. T ij (x) ≡ 0 for everyi, j .

Proof. Because

B[Tr(PyP )](x) = Tr[PyL(Px)]

so, by the above lemma, for everyα and everyx, y ∈ CPα such thatPy⊥Px we have that
B[Tr(PyP )](x) = 0. Let us denote the functionz → Tr(PyPz) by fy(z). Then, becusefy
is a smooth function,

(B0fy)(x) =
∫
CPα

µ0(x, dz) fy(z)+
∑
ij

T ij (x)(∂i∂jfy)(x)+
∑
i

V i(x)(∂ify)(x).

Becausefy possesses a minimum at pointx, so
∑

i V
i(x)(∂ify)(x) = 0 and we arrive at∫

CPα
µ0(x, dz)fy(z)+

∑
ij

T ij (x)(∂i∂jfy)(x) = 0.
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But (∂i∂jfy(x)) and(T ij (x)) are positive matrices so, by Schur’s lemma,(T ij (x)∂i∂jfy(x))

is also a positive matrix. It follows that∑
ij

T ij (x)∂i∂jfy(x) = 0.

Now let us introduce a chart at pointx, say,x = [(1, 0, . . . ,0)], (U0, φ0) such that

U0 =
{

[(z0, z1, . . . , zn−1)] : zi ∈ C,
∑
i

|zi |2 = 1, z0 6= 0

}
φ0[(z0, z1, . . . , zn−1)] =

(
z1

z0
, . . . ,

zn−1

z0

)
= (x1, y1, . . . , xn−1, yn−1)

where xi = Re(zi/z0), yi = Im(zi/z0). Then φ0(x) = 0 ∈ R2(n−1). Let us choose
y = [(0, 1, 0, . . . ,0)]. It is clear thatPy⊥Px and so

n−1∑
i,j=1

[
T ijx,x(x)

∂2(fy ◦ φ−1
0 )

∂xi∂xj
(0)+ 2T ijx,y(x)

∂2(fy ◦ φ−1
0 )

∂xi∂yj
(0)+ T ijy,y(x)

∂2(fy ◦ φ−1
0 )

∂yi∂yj
(0)
]
= 0.

But for everyj > 2 we have

∂2(fy ◦ φ−1
0 )

∂x2
j

(0) = lim
h→∞

1

h

[
∂(fy ◦ φ−1

0 )

∂xj
(0, . . . , xj = h, 0, . . . ,0)− ∂(fy ◦ φ

−1
0 )

∂xj
(0)

]
= 0.

In the same way we prove that for everyj > 2

∂2(fy ◦ φ−1
0 )

∂y2
j

(0) = 0.

By positivity of the matrixD2(fy ◦ φ−1
0 )(0) we obtain that

T 11
x,x(x)

∂2(fy ◦ φ−1
0 )

∂x2
1

(0)+ 2T 11
x,y(x)

∂2(fy ◦ φ−1
0 )

∂x1∂y1
(0)+ T 11

y,y(x)
∂2(fy ◦ φ−1

0 )

∂y2
1

(0) = 0.

Let λ be an embeddingλ : CP 1→ CPα given by

λ[(z0, z1)] = [(z0, z1, 0, . . . ,0)].

It is clear thatx = λ(n0) andy = λ(n) for some uniquen0,n ∈ CP 1 = S2. Let ψ0 be a
chart atn0 given by

ψ0 : CP 1− {n} → C ψ0(m) = p ◦ φ0 ◦ λ(m)
wherep = Cn→ C is the projection onto the first coordinate. So we may write that

a11(n0)
∂2(fn ◦ ψ−1

0 )

∂q2
1

(0)+ 2a12(n0)
∂2(fn ◦ ψ−1

0 )

∂q1∂q2
(0)+ a22(n0)

∂2(fn ◦ ψ−1
0 )

∂q2
2

(0) = 0

wherea11(n0) = T 11
x,x(x), a

12(n0) = T 11
x,y(x), a

22(n0) = T 11
y,y(x) and q1(m) = x1(λ(m)),

q2(m) = y1(λ(m)). Let us change the chartψ0 onto spherical coordinates(θ, ϕ),
0 6 θ 6 π , 0 6 ϕ 6 2π in such a way thatθ(n0) = π/2, ϕ(n0) = 0, i.e.n0 = (1, 0, 0)
andθ(n) = π/2, ϕ(n) = π , i.e.n = (−1, 0, 0). Because

fn(m) = Tr(PnPm) = 1
2(1+ 〈n,m〉) = 1

2(1− sinθ cosϕ)

so

∂2fn

∂θ∂ϕ
(n0) = 0

∂2fn

∂θ2
(n0) = ∂2fn

∂ϕ2
(n0) = 1

2
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which implies thatã11(n0) = ã12(n0) = ã22(n0) = 0, whereãij are the coefficients in the
chart(θ, ϕ). But it is equivalent to

T 11
x,x(x) = T 11

x,y(x) = T 11
y,y(x) = 0.

Changingy = [(0, 1, 0, . . . ,0)] into y = [(0, 0, 1, 0, . . . ,0)] we obtain that

T 22
x,x(x) = T 22

x,y(x) = T 22
y,y(x) = 0

and so on. Thus, by the positivity,T ij (x) = 0 for everyi, j . Becausex was arbitrary the
assertion follows. �

From the above lemma we conclude that the generatorB is the closure of

B0u(x) = V (x)u+
∫
E

µ0(x, dy) u(y)− µ0(x, E)u(x).

Lemma 3. Let X be a tangent vector toCPα at pointPx . ThenPx +X > 0⇔ X = 0.

Proof. BecauseX ∈ TxCPα so PxX + XPx = X. This implies thatPxXPx = 0 and
P⊥x XP

⊥
x = 0, whereP⊥x = I − Px . Therefore, in a basisPxH ⊕ P⊥x HX is of the form(

0 X∗

X 0

)
. SoPx +X is a positive matrix if and only ifX = 0. �

Lemma 4. B0 = A|C∞ .

Proof. BecauseA andB are generators of semigroups which are associated withTt , for
everyx ∈ E we have that [(B − A)P ](x) = 0. Let x ∈ CPα0. Then

V (x)P +
m∑
α=1

∫
CPα

µ0,α(x, dy) Py − µ0(x, E)Px −
∑
α 6=α0

cα(x)Pxα + c(x)Px − v(x)P = 0

whereµ0,α(x, dy) denotes the restriction ofµ0(x, dy) ontoCPα. It is an operator valued
equation so it has to be satisfied for everyα separately. So for anyα 6= α0 we get∫

CPα
µ0,α(x, dy) Py = cα(x)Pxα

which implies thatµ0,α(x, dy) = cα(x)δ(xα)(dy). For α0 we have∫
CPα0

µ0,α0(x, dy) Py − µ0(x, E)Px + c(x)Px + V (x)− v(x) = 0.

Let us introducea(x) = c(x)− µ0(x, E) andw(x) = V (x)− v(x). Then taking the trace
of the above equation we obtaina(x) 6 0. Let us assume thata(x) < 0. This implies that

1

|a(x)|
∫
CPα0

µ0,α0 (x, dy) Py = Px − 1

|a(x)|w(x).

The left-hand side of the above equation gives a positive operator andw(x) ∈ TxCPα0 so,
by lemma 3,w(x) = 0. Thus we arrive at the contradiction becauseµ0,α0(x, {x}) = 0. So
a(x) = 0 and we obtain that∫

CPα0

µ0,α0(x, dy)Py + w(x) = 0.

Evaluating the trace we get thatµ0,α0(x,CPα0) = 0. Because it is a positive measure it
vanishes on every Borel subset ofCPα0. Sow(x) = 0 too and henceA|C∞ = B0. �

BecauseB is the closure ofB0 andC∞(E) is a core forA, D(A) = D(B) andA = B.
This ends the proof of theorem 4. �
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We analyze the unforced and deterministically forced Burgers equation in the framework of the~diffusive!
interpolating dynamics that solves the so-called Schro¨dinger boundary data problem for random matter trans-
port. This entails an exploration of the consistency conditions that allow one to interpret dispersion of passive
contaminants in Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation

] tr52¹W (vW r), wherevW 5vW (xW ,t) stands for the Burgers field andr is the density of transported matter, is at
variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterization
of the diffusive transport that is governed by Burgers velocity fields. The result extends both to the approxi-
mate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible
medium. Also, in conjunction with the Born statistical postulate in quantum theory, it pertains to the proba-
bilistic ~diffusive! counterpart of the Schro¨dinger picture quantum dynamics. We give a generalization of this
dynamical problem to cases governed by nonconservative force fields when it appears indispensable to relax
the gradient velocity field assumption. The Hopf-Cole procedure has been appropriately generalized to yield
solutions in that case.@S1063-651X~97!04302-X#

PACS number~s!: 02.50.2r, 05.20.2y, 03.65.2w, 47.27.2i
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I. BURGERS VELOCITY FIELDS AND THE RELATED
STOCHASTIC TRANSPORT PROCESSES

The Burgers equation@1,2# recently has acquired consid
erable popularity in a variety of physical contexts@3–20#. An
exhaustive discussion of its role in acoustic turbulence
gravitational contexts, where the emergence of shock p
sure fronts is crucial, can be found in Ref.@17#.

As is well known, the logarithmic Hopf-Cole transforma
tion @2# allows one to replace the nonlinear problem~nonlin-
ear diffusion equation@1#! by a linear parabolic equation
Because of this equivalence all gradient-type solutions of
Burgers equation are known exactly.

At the moment we shall preserve the gradient form
striction for Burgers velocity fields, but consider a more ge
eral form of the Burgers equation that accounts for an ex
nal force fieldFW (xW ,t):

] tvW 1~vW •¹W !vW 5nDvW 1FW ~xW ,t !. ~1!

Let us mention that many recent investigations were devo
to the analysis of curlvW 50W solutions that are statistically re
evant in view of the random initial data choice and/or inc
sion of the random forcing term~the random potential in the
related Parisi-Kardar equation@11#!.

However, irrespective of whether we do or do not ne
the statistical input, an issue of matter transport driven
those nonlinear velocity fields requires the knowledge of
exact evolution of concentration and/or density fields, mu
in the spirit of early hydrodynamical studies of advection a
diffusion of passive tracers@21,22#; see also@23#. This par-
ticular issue is addressed in the present paper, under a
plifying assumption of nonrandom initial data and determ
istic force fields.

Following the traditional motivation~applicable both to
incompressible and infinitely compressible liquids@1#!, we
551063-651X/97/55~2!/1401~12!/$10.00
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regard the stochastic diffusion process as a primary phen
enon responsible for the emergence of Eq.~1! and thus jus-
tifying the ‘‘nonlinear diffusion equation’’ phrase in thi
context.

Knowing the Burgers velocity fields, one is tempted
ask what is the particular dynamics~of matter or probability
density fields! that is consistent with the chosen Burgers v
locity field evolution. The corresponding passive sca
~tracer or contaminant! advection-in-a-flow problem
@14,11,16# is normally introduced through the parabolic d
namics:

] tT1~vW •¹W !T5nDT; ~2!

see, e.g.,@21–23#. For incompressible fluids, Eq.~2! coin-
cides with the conventional Fokker-Planck equation for
diffusion process. This feature does not persist in the co
pressible case.

While looking for the stochastic implementation of th
microscopic~molecular! dynamics, Eq.~2! @11,16,23,24#, it
is assumed that the ‘‘diffusing scalar’’~contaminant in the
lore of early statistical turbulence models! obeys an Itoˆ equa-
tion:

dXW ~ t !5vW ~xW ,t !dt1A2ndWW ~ t !, ~3!

XW ~0!5xW0→XW ~ t !5xW ,

where the given forced Burgers velocity field is perturbed
the noise term representing a molecular diffusion. In the~by
now conventional! Itô representation of diffusion-type ran
dom variableXW (t) one explicitly refers to the standar
Brownian motion~e.g., the Wiener process! A2nWW (t), in-
stead of the usually adopted formal white noise integ
*0
t hW (s)ds, coming from the Langevin-type version of Eq

~3!.
1401 © 1997 The American Physical Society
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Under these premises, while taking for granted thatthere
is a diffusion process involved, we cannot view Eqs.~1!–~3!
as completely independent~disjoint! problems: the velocity

field vW cannot be quite arbitrarily inferred from Eq.~1! or
any other velocity-defining equation without verifying th
consistencyconditions, which would allow one to associa
Eqs. ~2! and ~3! with a well defined random dynamics, an
Markovian diffusion in particular@25,26#.

In connection with the usage of Burgers velocity fiel
~with or without external forcing!, which in Eqs.~3! clearly
are intended to replace the standardforward drift of the
would-be involved Markov diffusion process, we have n
found in the literature any attempt to resolve apparent c
tradictions arising if Eqs.~2! and/or~3! are defined by mean
of Eq. ~1!. In particular, the usage of a continuity equati
] tr52¹W (vW r), wherevW 5vW (xW ,t) stands for the Burgers field
andr is the density of transported matter, is at variance w
the explicit diffusion scenario. Also, an issue of the nec
sarycorrelation ~cf. @16#, Chap. 7.3, devoted to the turbule
transport and the related dispersion of contaminants! be-
tween the probabilistic Fokker-Planck dynamics of the d
fusing tracer, and this of the passive tracer~contaminant!
concentration@Eq. ~2!#, has been left aside in the literature

Moreover, rather obvious hesitation could have been
served in attempts to establish the most appropriate m
transport rule, if Eqs.~1!–~3! are adopted. Depending on th
particular phenomenological departure point, one eit
adopts the standard continuity equation@3,4#, that is certainly
valid to a high degree of accuracy in the low viscosity lim
~we refer to the standard terminology that comes from v
cous fluid models; here,n stands for the diffusion constan!
n↓0 of Eqs.~1!–~3!, but incorrect on mathematical ground
if there is a diffusion involvedandsimultaneously a solution
of Eq. ~1! is interpreted as the respectivecurrentvelocity of
the flow: ] tr(xW ,t)52¹W •@vW (xW ,t)r(xW ,t)#. Alternatively, fol-
lowing the white noise calculus tradition telling that the s
chastic integralXW (t)5*0

t vW „XW (s),s…ds1*0
t hW (s)ds implies

the Fokker-Planck equation, one adopts@24#: ] tr(xW ,t)
5nDr(xW ,t)2¹W •@vW (xW ,t)r(xW ,t)#, which is clearly problem-
atic in view of the classic McKean’s discussion of the prop
gation of chaos for the Burgers equation@27–29# and the
derivation of the stochastic ‘‘Burgers process’’ in this co
text: ‘‘the fun begins in trying to describe this Burgers m
tion as the path of a tagged molecule in an infinite bath
like molecules’’ @27#.

To put things on solid ground, let us consider a Marko
ian diffusion process, which is characterized by the transit
probability density~generally inhomogeneous in space a
time law of random displacements! p(yW ,s,xW ,t),0<s,t<T,
and the probability densityr(xW ,t) of its random variable
XW (t),0<t<T. The process is completely determined
these data. For clarity of discussion, we do not impose
spatial boundary restrictions, nor fix any concrete limiti
value ofT which, in principle, can be moved to infinity.

The conditions valid for anye.0: ~a! there holds

limt↓s
1

t2sEuyW2xW u.e
p~yW ,s,xW ,t !d3x50,
t
n-

h
-

-

-
ter

r

-

-

-

f

-
n

y

~b! there exists a~forward! drift

bW ~xW ,s!5 limt↓s
1

t2sEuyW2xW u<e
~yW2xW !p~xW ,s,yW ,t !d3y,

and ~c! there exists a diffusion function~in our case it is
simply a diffusion coefficientn)

a~xW ,s!5 limt↓s
1

t2sEuyW2xW u<e
~yW2xW !2p~xW ,s,yW ,t !d3y,

are conventionally interpreted to define a diffusion proc
@25,26#. Under suitable restrictions the function

g~xW ,s!5E p~xW ,s,yW ,T!g~yW ,T!d3y ~4!

satisfies the backward diffusion equation@notice that the mi-
nus sign appears, in comparison with Eq.~2!#

2]sg~xW ,s!5nDg~xW ,s!1@bW ~xW ,s!•¹W #g~xW ,s!. ~5!

Let us point out that the validity of Eq.~5! is known to be a
necessarycondition for the existence of a Markov diffusio
process, whose probability densityr(xW ,t) is to obey the
Fokker-Planck equation. Here, the new velocity field, nam
the forward drift of the processbW (xW ,t), replaces the previ-
ously utilized Burgers fieldvW (xW ,t):

] tr~xW ,t !5nDr~xW ,t !2¹W •@bW ~xW ,t !r~xW ,t !#. ~6!

The case of particular interest in the nonequilibrium s
tistical physics literature appears whenp(yW ,s,xW ,t) is a fun-
damental solutionof Eq. ~5! with respect to variablesyW ,s
@25,26,30#; see, however,@31# for an alternative situation
Then, the transition probability densityalso satisfies the
Fokker-Planck equation in the remainingxW ,t pair of vari-
ables. Let us emphasize that these two equations form
adjoint pair, referring to the slightly counterintuitive fo
physicists, although transparent for mathematicians@33–37#,
issue of time reversal of diffusion processes.

After adjusting Eqs. ~3! to the present context
XW (t)5*0

t bW „XW (s),s…ds1A2nWW (t), we realize@35–38# that

for any smooth functionf (xW ,t) of the random variable
XW (t) the conditional expectation value

lim
Dt↓0

1

Dt F E p~xW ,t,yW ,t1Dt ! f ~yW ,t1Dt !d3y2 f ~xW ,t !G
5~D1 f !„XW ~ t !,t…5@] t1~bW •¹W !1nD# f ~xW ,t !, ~7!

XW ~ t !5xW ,

determines the forward driftbW (xW ,t) ~if we set components o
XW instead off ) and allows one to introduce the local field o
~forward! accelerations associated with the diffusion proce
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55 1403BURGERS’ FLOWS AS MARKOVIAN DIFFUSION PROCESSES
which we constrain by demanding~see, e.g., Refs.@35–38#
for prototypes of such dynamical constraints!:

~D1
2 XW !~ t !5~D1bW !„XW ~ t !,t…

5@] tbW 1~bW •¹W !bW 1nDbW #„XW ~ t !,t…

5FW „XW ~ t !,t…, ~8!

where, at the moment arbitrary, functionFW (xW ,t) may be in-
terpreted as the external deterministic forcing applied to
diffusing system@32#. In particular, if we assume that drift
remain gradient fields, curlbW 50W , under the forcing, then
those that are allowed by the prescribed choice ofFW (xW ,t)
mustfulfill the compatibility condition~notice the conspicu-
ous absence of the standard Newtonian minus sign in
analog of Newton’s second law!

FW ~xW ,t !5¹W V~xW ,t !, ~9!

V~xW ,t !52nF ] tF1
1

2
S bW 2
2n

1¹W •bW D G .
This establishes the connection of the forward d
bW (xW ,t)52n¹F(xW ,t) with the ~Feynman-Kac; cf.@31,32#!
potentialV(xW ,t) of the chosen external force field. The latt
connection, without invoking the Feynman-Kac formula,
frequently exploited in the theory of Smoluchowski-type d
fusion processes, when the Fokker-Planck equation is tr
formed into the associated generalized diffusion equation

One of distinctive features of Markovian diffusion pro
cesses with the positive densityr(xW ,t) is that the notion of
the backwardtransition probability densityp* (y

W ,s,xW ,t) can
be consistently introduced on each finite time inter
0<s,t<T:

r~xW ,t !p* ~yW ,s,xW ,t !5p~yW ,s,xW ,t !r~yW ,s!, ~10!

so that *r(yW ,s)p(yW ,s,xW ,t)d3y5r(xW ,t) and r(yW ,s)
5*p* (y

W ,s,xW ,t)r(xW ,t)d3x. This allows one to define~cf.
@32,38–40# for a discussion of these concepts in the case
the most traditional Brownian motion and Smoluchows
type diffusion processes!

lim
Dt↓0

1

Dt FxW2E p* ~yW ,t2Dt,xW ,t !yWd3yG
5~D2XW !~ t !5bW * „X

W ~ t !,t…, ~11!

~D2 f !„XW ~ t !,t…5@] t1~bW * •¹
W !2nD# f „XW ~ t !,t….

Accordingly, the backward version of the dynamical co
straint imposed on the local acceleration field reads

~D2
2 XW !~ t !5~D1

2 XW !~ t !5FW „XW ~ t !,t…, ~12!

where under the gradient-drift field assumption, curlbW *50,
we have explicitly involved the forced Burgers equation@cf.
Eq. ~1!#:
e

is

t

s-

l

f
-

-

] tbW *1~bW * •¹
W !bW *2nDbW *5FW . ~13!

Here @32,35,36#, in view of bW *5bW 22n¹W lnr, we deal with
FW (xW ,t) previously introduced in Eqs.~9!. A notable conse-
quence is that the Fokker-Planck equation~6! can be trans-
formed to anequivalentform of

] tr~xW ,t !52nDr~xW ,t !2¹@bW * ~xW ,t !r~xW ,t !#, ~14!

which, however, describes a density evolution in the reve
sense of time.

At this point let us recall that Eqs.~5! and ~6! form a
natural adjoint pair of equations that determine the Mark
ian diffusion process in the chosen time interval@0,T#.
Clearly, an adjoint of Eq.~14! reads:

]sf ~xW ,s!5nD f ~xW ,s!2@bW * ~xW ,s!•¹W # f ~xW ,s!, ~15!

where

f ~xW ,s!5E p* ~yW ,0,xW ,s! f ~yW ,0!d3y, ~16!

to be compared with Eqs.~4!, ~5!, and the previously men
tioned passive scalar dynamics@Eq. ~2!#; see also, e.g.,@24#.
Here, manifestly, the time evolution of the backward drift
governed by the Burgers equation, and the diffusion equa
~15! is correlated@via the definition~10!# with the probability
density evolution rule~14!.

This paironly can be consistently utilized if the diffusio
process is to be driven by forced~or unforced! Burgers ve-
locity fields. Certainly, the continuity equation postulated
involve the Burgers field as the current velocity does n
hold true in this context.

Let us point out that the study of diffusion in the Burge
flow may begin from first solving the Burgers equation~12!
for a chosen external force field, next specifying the pro
ability density evolution~14!, and eventually ending with the
corresponding ‘‘passive contaminant’’ concentration dyna
ics ~15! and ~16!. All that is in perfect agreement with th
heuristic discussion of the concentration dynamics given
Ref. @16#, Chap. 7.3, where the ‘‘backward dispersion
problem with ‘‘time running backwards’’ was found nece
sary topredict the concentration.

All that means that Eqs.~1!–~3! can be reconciled in the
framework set by Eqs.~4!–~16!. Then, the ‘‘nonlinear diffu-
sion equation’’ does indeed refer to consistent stochastic
fusion processes.

We are now at the point where the Burgers equation
the related matter transport can be consistently embedde
the general probabilistic framework of the so-called Schr¨d-
inger’s boundary data~stochastic interpolation! problem
@31,32,36,37,40–41#, see also@42,43#. In this setting, the fa-
miliar Hopf-Cole transformation@2,44# of the Burgers equa-
tion into the generalized diffusion equation~yielding explicit
solutions in the unforced case! receives a useful generaliza
tion.

Indeed, in that framework@31,32#, the problem of deduc-
ing a suitable Markovian diffusion process was reduced
investigating the adjoint pairs of parabolic partial different
equations, like, e.g., Eqs.~5! and~6! or Eqs.~14! and~15!. In
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1404 55GARBACZEWSKI, KONDRAT, AND OLKIEWICZ
the case of gradient drift fields this amounts to checking@this
imposes limitations on the admissible force field potent
cf. also formula~9!# whether the Feynman-Kac kernel

k~yW ,s,xW ,t !5E expF2E
s

t

c„v~t!,t…dtGdm~x,t !
~y,s!~v! ~17!

is positive and continuous in the open space-time area
interest, and whether it gives rise to positive solutions of
adjoint pair of generalized heat equations:

] tu~xW ,t !5nDu~xW ,t !2c~xW ,t !u~xW ,t !, ~18!

] tv~xW ,t !52nDv~xW ,t !1c~xW ,t !v~xW ,t !,

wherec(xW ,t)5(1/2n)V(xW ,t) follows from the previous for-

mulas. In the above,dm (xW ,t)
(yW ,s)(v) is the conditional Wiener

measure over sample paths of the standard Brownian mo
Solutions of Eqs.~18!, upon suitable normalization, giv

rise to the Markovian diffusion process with the factoriz
probability densityr(xW ,t)5u(xW ,t)v(xW ,t), which interpolates
between the boundary density datar(xW ,0) andr(xW ,T), with
the forward and backward drifts of the process defined
follows:

bW ~xW ,t !52n
¹W v~xW ,t !

v~xW ,t !
, ~19!

bW * ~xW ,t !522n
¹W u~xW ,t !

u~xW ,t !
,

in the prescribed time interval@0,T#. The transition probabil-
ity density of this process reads:

p~yW ,s,xW ,t !5k~yW ,s,xW ,t !
v~xW ,t !

v~yW ,s!
. ~20!

Here, neitherk @Eq. ~17!# nor p @Eq. ~20!# needs to be the
fundamental solutions of appropriate parabolic equatio
see, e.g., Ref.@31#, where an issue of differentiability is ana
lyzed.

The corresponding@sincer(xW ,t) is given# transition prob-
ability density~10! of the backward process has the form

p* ~yW ,s,xW ,t !5k~yW ,s,xW ,t !
u~yW ,s!

u~xW ,t !
. ~21!

Obviously @31,36#, in the time interval 0<s,t<T there
holds

u~xW ,t !5E u0~yW !k~yW ,s,xW ,t !d3y

and

v~yW ,s!5E k~yW ,s,xW ,T!vT~xW !d3x.
l,

of
e

n.

s

s;

By definingF*5 lnu, we immediately recover the tradi
tional form of the Hopf-Cole transformation for Burgers v
locity fields:bW *522n¹F* . In the special case of the stan
dard free Brownian motion, there holdsbW (xW ,t)50W while
bW * (x

W ,t)522n¹W lnr(xW,t).
Our discussion provides a complete identification of t

stochastic diffusion process underlyingboth the determinis-
tically forced Burgers velocity dynamics and the related m
ter transport~14!, the latter in terms of suitable density field
The generalization of the Hopf-Cole procedure to this c
involves a powerful methodology of the Feynman-Kac k
nel functions and yields exact formulas for solutions for t
forced Burgers equation. Let us stress that the connec
between the Burgers equation and the generalized~forward!
heat equation is not merely a formal trick that generates
lutions to the nonlinear problem. The forward equation~18!,
in fact, carries a complete information about the impli
backward stochastic evolution, that is, a Markov diffusion
process for which the Burgers-velocity driven transport
appropriate. Notice that the transition probability dens
~21! obeys the familiar Chapman-Kolmogorov formula.
we wish to analyze a concrete density field governed by
process, any two boundary density datar(xW ,0) andr(xW ,T)
allow one to deduce the ultimate form of the~more tradi-
tional, forward! diffusion process~20!, by means of the
Schrödinger boundary data problem@31,36#. Then, the ad-
joint pair of equations~18! gives all details of the dynamics
with ~19!–~21! as a necessary consequence. On the o
hand, the presented discussion implies a direct import of
shock-type matter density profiles to the general nonequ
rium statistical physics of diffusion-type processes.

II. PROBLEM OF NONCONSERVATIVE FORCING
OF BURGERS VELOCITY FIELDS

By embedding the Burgers equation in the Schro¨dinger
interpolation framework, we could consistently handle ra
dom transport that is governed by gradient velocity fields a
gradient-type external conservative forces. The natural qu
tion at this point is how to incorporate the nongradient~ro-
tational, for example! velocity fields and especially the non
conservative forces. This question may be addressed wit
reservations only in the context of the forced Burgers eq
tion. Recall that the Hopf-Cole transformation is applicab
only in the case of gradient velocity fields. Moreover, t
involved Schro¨dinger interpolation framework extends th
issue to the domain of nonequilibrium random phenome
where standard Smoluchowski diffusions@32# are normally
discussed in the case of conservative force fields~and drifts
in consequence!.

Remark: Strikingly, an investigation of typical nonconse
vative, e.g., electromagnetically, forced diffusions has
been much pursued in the literature, although an issue
deriving the Smoluchowski-Kramers equation~and possibly
its large friction limit! from the Langevin-type equation fo
the charged Brownian particle in the general electromagn
field has been relegated in Ref.@45#, Chap. 6.1, to the statu
of the innocent-looking exercise. On the other hand, the
fusion of realistic charges in dilute ionic solutions create
number of additional difficulties due to the apparent H
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55 1405BURGERS’ FLOWS AS MARKOVIAN DIFFUSION PROCESSES
mobility in terms of mean currents induced by the elect
field ~once assumed to act upon the system!; see, e.g.,@46–
48#. In connection with the electromagnetic forcing of d
fusing charges, the gradient field assumption imposes a
vere limitation if we account for typical~nonzero circulation!
features of the classical motion due to the Lorentz force, w
or without the random perturbation component. The pur
electric forcing is simpler to handle, since it has a defin
gradient field realization; see, e.g.,@49# for a recent discus-
sion of related issues. The major obstacle with respect to
previous ~Sec. I! discussion is that, if we wish to regar
either the forceFW @Eqs.~8! and~12!# or drifts bW , bW * to have
an electromagnetic origin, then necessarily we need to p
from conservative to nonconservative fields. This subj
matter has not been significantly exploited so far in the n
equilibrium statistical physics literature.

With this additional~via the Burgers equation! motiva-
tion, let us analyze how the gradient velocity field~and con-
servative force field! assumption can be relaxed and non
theless the exact solutions to the Burgers equation can
obtained,both in the unforced and forced cases, while i
volving the primoridal Markovian diffusion process scenar

It turns out that the crucial point of our previous discu
sion lies in aproper choice of the strictly positive and con
tinuous ~in an open space-time area! function k(yW ,s,xW ,t),
which, if we wish to construct a Markov process, has
satisfy the Chapman-Kolmogorov~semigroup composition!
equation. It has led us to consider a pair of adjoint par
differential equations,~18!, as an alternative to either~5! and
~6! or ~14! and ~15!.

The Feynman-Kac integration is predominantly utilized
the quantally oriented literature dealing with Schro¨dinger op-
erators and their spectral properties@50,51#. We shall exploit
some of results of this well developed theory. The pertin
Feynman-Kac potentialc(x,t) in Eqs. ~17! and ~18! is usu-
ally assumed to be a continuous and bounded-from-be
function, but these restrictions can be substantially rela
~unbounded functions are allowed in principle! if we wish to
consider general Markovian diffusion processes and di
gard an issue of the bound state spectrum and this of
ground state of the~self-adjoint! semigroup generato
@25,30#. Actually, what we need is merely that the propert
of c(xW ,t) allow for the kernelk, ~17!, that is, positive and
continuous. This property is crucial for the Schro¨dinger
boundary-data problem analysis.

Taking for granted that suitable conditions are fulfille
@31,50#, we can immediately associate with Eqs.~18! an in-
tegral kernel of the time-dependent semigroup@the exponen-
tial operator should be understood as a time-ordered exp
sion, since in generalH(t) may not commute withH(t8) for
tÞt8#:

k~yW ,s,xW ,t !5FexpS 2E
s

t

H~t!dt D G~yW ,xW !, ~22!

whereH(t)52nD1c(t) is the pertinent semigroup gen
erator. Then, by the Feynman-Kac formula@43#, we get an
expression~17! for the kernel, which in turn yields Eqs
~19!–~22!; see, e.g.,@31#. As mentioned before, Eq.~20!
combined with Eq.~17! sets a probabilistic connection be
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tween the Wiener measure corresponding to the stan
Brownian motion withbW (xW ,t)50W and that for the diffusion
process with a nonvanishing driftbW (xW ,t),curlbW 50W .

Our main purpose is to generalize Eq.~22!, so that the
positive and continuous~semigroup! kernel function can be
associated with stochastic diffusion processes, whose d
are no longer gradient fields. In particular, the forcing is
be nonconservative.

Since we have no particular hints towards Feynman-K
type analysis of rotational motions, it seems instructive
invoke the framework of the Onsager-Machlup approach
wards an identification of most probable paths associa
with the underlying diffusion process@52–54#. In this con-
text, the nonconservative model system has been inve
gated in Ref.@55#. Namely, an effectively two-dimensiona
Brownian motion was analyzed, whose three-dimensio
forward drift bW (xW ),b350 in view of ]xb1Þ]yb2, has curlbW
Þ0. Then, by the standard variational argument with resp
to the Wiener-Onsager-Machlup action@53,55#,

I $L~xẆ ,xW ,t !;t1 ,t2%

5
1

2nEt1
t2H 12 @xẆ2bW ~xW ,t !#21n¹W •bW ~xW ,t !J dt,

~23!

the most probable trajectory, about which major contrib
tions from~weighted! Brownian paths are concentrated, w
found to be a solution of the Euler-Lagrange equatio
which are formally identical to the equations of motion

q̈Wcl5EW 1qẆ cl3BW ~24!

of a classical particle of unit mass and unit charge moving
an electric fieldEW and the magnetic fieldBW . The electric field
@to be compared with Eq.~9!# is given by

EW 52¹W F, ~25!

F52
1

2
~bW 212n¹W •bW !,

while the magnetic field has the only nonvanishing comp
nent in thez direction ofR3:

BW 5curlbW 5$0,0,]xb22]yb1%. ~26!

Clearly,BW 5curlAW , whereAW 5̇bW is the electromagnetic vecto
potential. The simplest example is a notorious constant m
netic field defined byb1(xW )52(B/2)x2 ,b2(xW )5(B/2)x1.

One immediately realizes that the Fokker-Planck equa
in this case is incompatible with traditional intuitions unde
lying the Smoluchowski-drift identification: the forward dri
is notproportional to an external force, but to an electroma
netic potential. Nevertheless, the variational informati
drawn from the Onsager-Machlup Lagrangian involves
Lorentz force-driven trajectory. Hence, some principal
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1406 55GARBACZEWSKI, KONDRAT, AND OLKIEWICZ
fects of the electromagnetic forcing are present in the diff
ing system, whose drifts display an ‘‘unphysical’’~gauge
dependent! form.

On the other hand, if we accept this ‘‘unphysical’’ ra
dom motion to yield the representation with the nongradi
drift AW : dXW (t)5AW „XW (t),t…dt1A2ndWW (t), and consider the
corresponding pair~5! and~6! of adjoint diffusion equations
with AW (xW ,t) replacingbW (xW ,t), then Eq.~8! tells us that

~D1
2 XW !~ t !5] tAW 1~AW •¹W !AW 1nDAW

52
B2

4
$x1 ,x2,0%52EW ~xW !, ~27!

whereEW (xW )5(B2/4)$x1 ,x2,0%, if calculated from Eqs.~25!.
We thus arrive at the purely electric forcing with revers

sign @if compared with that coming from the Onsage
Machlup argument~25!# and, somewhat surprisingly, there
no impact of the previously discussed magnetic motion
the level of dynamical constraints@Eqs. ~8! and ~13!#. The
adopted recipe is thus incapable of producing the magn
cally forced diffusion process that conforms with argume
of Sec. I. Our toy model is inappropriate and a more sop
ticated route must be adopted.

Below, we shall invoke the Feynman-Kac kernel idea~22!
@31#. This approach has the clear advantage of elucida
the generic issues that hamper attempts to describe the
fussion processes governed by nonconservative~and electro-
magnetic in particular! force fields. The Burgers equatio
and the problem of its nongradient solutions will appear
sidually as a byproduct of the more general discussion.

Usually, the self-adjoint semigroup generators attract
attention of physicists in connection with the Feynman-K
formula. Since electromagnetic fields provide the most c
ventional examples of nonconservative forces, we shall c
centrate on their impact on random dynamics.

A typical route towards incorporating electromagnetis
comes from quantal motivations via the minimal electrom
netic coupling recipe which preserves the self-adjointnes
the generator~Hamiltonian of the system!. As such, it con-
stitutes a part of the general theory of Schro¨dinger operators.
A rigorous study of operators of the form2n1V has be-
come a well developed mathematical discipline@50#. The
study of Schro¨dinger operators with magnetic fields, typ
cally of the form2(¹2 iAW )21V, is less advanced, althoug
specialized chapters on the magnetic field issue can be fo
in monographs devoted to functional integration metho
@50,56#, mostly in reference to seminal papers@57,58#.

From the mathematical point of view, it is desirable
deal with magnetic fields that go to zero at infinity, which
certainly acceptable on physical grounds as well. The c
stant magnetic field~see, e.g., our previous consideration!
does not meet this requirement, and its notorious usage in
literature makes us~at the moment! decline the asymptotic
assumption and inevitably fall into a number of serious co
plications.

One obvious obstacle can be seen immediately by tak
advantage of the existing results@57#. Namely, an explicit
expression for the Feynman-Kac kernel in a constant m
netic field, introduced through the minimal electromagne
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coupling assumptionH(AW )52 1
2(¹W 2 iAW )2, is available~up

to irrelevant dimensional constants!:

exp@2tH~AW !#~xW ,yW !5
B

4p sinh~ 1
2Bt!

S 1

2pt D
1/2

3expH 2
1

2t
~x32y3!

22
B

4
cothSB2 t D

3@~x22y2!
21~x12y1!

2#

2 i
B

2
~x1y22x2y1!J . ~28!

Clearly, it isnot real ~hencenonpositiveand directly at vari-
ance with the major demand in the Schro¨dinger interpolation
problem, as outlined in Sec. I!, except for directionsyW that
are parallel to a chosenxW .

Consequently, a bulk of the well developed mathemati
theory is of no use for our purposes and new techniques m
be developed for a consistent description of the electrom
netically forced diffusion processes along the lines of Sec
i.e., within the framework of Schro¨dinger’s interpolation
problem. Also, another approach is necessary to generat
lutions of the Burgers equation that are not in the gradi
form.

III. FORCING VIA FEYNMAN-KAC SEMIGROUPS

The conditional Wiener measuredm (xW ,t)
(yW ,s)(vW ) appearing in

the Feynman-Kac kernel definition~17!, if unweighted@set
c„vW (t),t…50#, gives rise to the familiar heat kernel. This,
turn, induces the Wiener measurePW of the set of all sample
paths, which originate fromyW at times and terminate~can be
located! in the Borel set APR3 after time t2s:

PW@A#5*Ad
3x*dm (xW ,t)

(yW ,s)(vW )5*Adm, where, for simplicity

of notation, the (yW ,t2s) labels are omitted andm (xW ,t)
(yW ,s) stands

for the heat kernel.
Having defined an Itoˆ diffusion XW (t)5*0

t bW (xW ,u)du

1A2nWW (t), we are interested in the analogous path m

sure:PXW @A#5*Adx*dm (xW ,t)
(yW ,s)(vW XW )5*Adm(XW ).

Under suitable~stochastic@32#! integrability conditions
imposed on the forward drift, we have granted the abso
continuityPX!PW of measures, which implies the existen
of a strictly positive Radon-Nikodym density. Its canonic
Cameron-Martin-Girsanov form@32,50#, reads:

dm~XW !

dm
~yW ,s,xW ,t !5exp

1

2n F E
s

t

bW „XW ~u!,u…dXW ~u!

2
1

2Es
t

@bW „XW ~u!,u…#2duG . ~29!

If we assume that drifts are gradient fields, curlbW 50, then
the Ito formula allows one to reduce otherwise troubleso
stochastic integration in the exponent of Eq.~29! @50,56# to
ordinary Lebesgue integrals:
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1

2nEs
t

bW „XW ~u!,u…dXW ~u!5F„XW ~ t !,t…2F„XW ~s!,s…

2E
s

t

duS ] tF1
1

2
¹W •bW D „XW ~u!,u….

~30!

After inserting Eq.~30! into Eq. ~29! and next integrating
with respect to the conditional Wiener measure, on acco
of Eq. ~9! we arrive at the standard form of the Feynman-K
kernel ~17!. Notice that Eq.~30! establishes a probabilisti
basis for logarithmic transformations~19! of forward and
backward drifts: b52n¹W lnv52n¹W F, b*522n¹W lnu
522n¹W F* . The forward version is commonly used in co
nection with the transformation of the Fokker-Planck eq
tion into the generalized heat equation,@32,59#. The back-
ward version is the Hopf-Cole transformation, mentioned
Sec. I, used to map the Burgers equation into the very s
generalized heat equation as in the previous case@2,42#.

However, presently we are interested in nonconserva
drift fields, curlbW Þ0, and in that case the stochastic integ
in Eq. ~29! is the major source of computational difficultie
@35,50,56#, for nontrivial vector potential field configura
tions. It explains the virtual absence of magnetically forc
diffusion problems in the nonequilibrium statistical physi
literature.

At this point, some steps of the analysis performed in R
@60# in the context of the ‘‘Euclidean quantum mechanic
~cf. also@37#! are extremely useful. Let us emphasize that
electromagnetic fields we utilize are always meant to be
dinary Maxwell fields withno Euclidean connotations~see,
e.g., Chap. 9 of Ref.@56# for the Euclidean version of Max
well theory!.
nt
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Let us consider a gradient drift-field diffusion proble
according to Sec. I, with Eqs.~17! and ~30! involved and
thus an adjoint pair~18! of parabolic equations completel
defining the Markovian diffusion process. Furthermore,
AW (xW ) be the time-independent vector potential for the Ma
wellian magnetic fieldBW 5curlAW . We pass from the gradien
realization of drifts to the new one, generalizing Eq.~19!, for
which the following decomposition into the gradient an
nonconservative part is valid:

bW ~xW ,t !52n¹W F~xW ,t !2AW ~xW !. ~31!

We denoteu(xW ,t)5̇exp@F(xW,t)# and admit that Eq.~31! is a
forward drift of an Itô diffusion process with a stochasti
differential dXW (t)5@2n(¹u/u)2AW #dt1A2ndWW (t). On
purely formal grounds, we deal here with an example of
Cameron-Martin-Girsanov transformation of the forwa
drift of a given Markovian diffusion process and we are e
titled to ask for a corresponding measure transformat
~29!.

To this end, let us furthermoreassumethat u(xW ,t)5u
solves a partial differential equation

] tu52nS ¹2
1

2n
AW ~xW ! D 2u1c~xW ,t !u ~32!

with the notationc(xW ,t)5(1/2n)V(xW ,t) patterned after Eq.
~9!. Then, by using the Ito calculus and Eqs.~31! and~32! on
the way ~see, e.g., Ref.@60#!, we can rewrite Eq.~29! as
follows:
er
d
.

dm~XW !

dm
~yW ,s,xW ,t !5exp

1

2n F E
s

tS 2n
¹W u

u
2AW D „XW ~u!,u…dXW ~u!2

1

2Es
tS 2n

¹W u

u
2AW D 2„XW ~u!,u…duG

5
u„XW ~ t !,t…

u„XW ~s!,s…
expF2

1

2nEs
t

@AW ~u!dXW ~u!1n~¹W •AW !„XW ~u!…du1V„XW ~u!,u…du#G , ~33!

whereXW (s)5yW ,XW (t)5xW .
More significant observation is that the Radon-Nikodym density~33!, if integrated with respect to the conditional Wien

measure, gives rise to the Feynman-Kac kernel~22! of thenon-self-adjointsemigroup~suitable integrability conditions nee
to be respected here as well@60#!, with the generatorHAW 52n@¹2(1/2n)AW (xW )#21c(xW ,t) defined by the right-hand side of Eq
~32!:

] tu~xW ,t !5HAW u~xW ,t !5F2nD1AW ~xW !•¹W 1
1

2
„¹W •AW ~xW !…2

1

4n
@AW ~xW !#21c~xW ,t !Gu~xW ,t !

52nDu~xW ,t !1AW ~xW !•¹W u~xW ,t !1cAW ~xW ,t !u~xW ,t !. ~34!
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Here

cA~xW ,t !5c~xW ,t !1
1

2
~¹AW !~xW !2

1

4n
@AW ~xW !#2. ~35!

An adjoint parabolic partner of Eq.~34! reads

] tu*52HAW
* u*5nDu*1¹W •@AW ~xW !u* #2cA~xW ,t !u*

5nF¹W 1
1

2n
AW ~xW !G2u*2c~xW ,t !u* . ~36!

Consequently, our assumptions@Eqs. ~31! and ~32!# in-
volve a generalization of the adjoint parabolic system~18! to
a new adjoint one comprising Eqs.~32! and~36!. Obviously,
the original form of Eq.~18! is immediately restored by se
ting AW 50W , and executing obvious replacementsu*→u,
u→v.

Let us emphasize again that, in contrast to Ref.@62#,
where the non-Hermitian generator 2nHAW , Eq. ~32!, has
been introduced as ‘‘the Euclidean version of the Ham
tonian’’ H522n2@¹2( i /2n)AW #21V, our electromagnetic
fields stand for solutions of the usual Maxwell equations a
are notEuclidean at all.

As long as the coefficient functions~both additive and
multiplicative! of the adjoint parabolic system~34! and ~36!
are not specified, we remain within a general theory of po
tive solutions for parabolic equations with unbounded co
ficients ~of particular importance, if we do not impose an
asymptotic falloff restrictions! @30,61–63#. The fundamental
solutions, if their existence can be granted, usually exist
space-time strips, and generally do not admit unboun
time intervals. We shall disregard these issues at the
ment, and assume the existence of fundamental solut
without any reservations.

By exploiting the rules of functional~Malliavin, varia-
tional! calculus, under an assumption that we deal with
diffusion ~in fact, Bernstein! process associated with an a
joint pair ~34! and~35!, it has been shown in Ref.@60# that if
the forward conditonal derivatives of the process exist, th
(D1XW )(t)52n(¹u/u)2AW 5bW (xW ,t), Eq. ~32!, and

~D1
2 XW !~ t !5~D1XW !~ t !3curlAW ~xW !1¹V~xW ,t !

1n curl@curlAW ~xW !#, ~37!

whereXW (0)50, XW (t)5xW , 3 denotes the vector product i
R3, and 2nc5V.

SinceBW 5curlAW 5m0HW , we identify in the above the stan
dard Maxwell equation for curlHW comprising magnetic ef-

fects of electric currents in the system: curlBW 5m0@DẆ

1s0EW 1JWext#, whereDW 5e0EW while JWext represents externa
electric currents. In case ofEW 50W , the external currents only
would be relevant. A demand curl curlAW 5¹W (¹W AW )2DAW 50
corresponds to a total absence of such currents, and the
lomb gauge choice¹W •AW 50 would leave us with harmonic
functionsAW (xW ).
-

d

i-
f-

n
d
o-
ns

a

n

ou-

Consequently, a correct expression for the magnetic
implemented Lorentz force has appeared on the right-h
side of the forward acceleration formula~37!, with the for-

ward drift ~31! replacing the classical particle velocityqẆ of
the classical formula~24!.

The above discussion implicitly involves quite sophis
cated mathematics; hence it is instructive to see that we
bypass the apparent complications by directly invoking
universal definitions~7! and ~11! of conditional expectation
values, which are based on exploitation of the Itoˆ formula
only. Obviously, we assume that the Markovian diffusi
process with well defined transition probability densiti
p(yW ,s,xW ,t) andp* (y

W ,s,xW ,t), does exist.
We shall utilize an obvious generalization of canonic

definitions ~19! of both forward and backward drifts of th
diffusion process defined by the adjoint parabolic pair~18!,
as suggested by Eq.~31! with AW 5AW (xW ):

bW 52n
¹W u

u
2AW , bW *522n

¹W u*
u*

2AW . ~38!

We also demand that the corresponding adjoint equat
~34! and ~36! are solved byu andu* , respectively.

Taking for granted that identities (D1XW )(t)
5bW (xW ,t),XW (t)5xW , and (D2XW )(t)5bW * (x

W ,t) hold true, we
can easily evaluate the forward and backward accelerat
@substitute Eq.~38!, and exploit Eqs.~34! and ~36!#:

~D1bW !„XW ~ t !,t…5] tbW 1~bW •¹W !bW 1nDbW

5bW 3BW 1n curlBW 1¹W V ~39!

and

~D2bW * !„XW ~ t !,t…5] tbW *1~bW * •¹
W !bW *2nDbW *

5bW *3BW 2ncurlBW 1¹W V. ~40!

Let us notice that the forward and backward accelerat
formulasdo notcoincide as was the case before@cf. Eqs.~8!
and ~12!#. There is a definite time asymmetry in the loc
description of the diffusion process in the presence of g
eral magnetic fields, unless curlBW 50. The quantity which is
explicitly time-reversal invariant can be easily introduced

vW ~xW ,t !5 1
2 ~bW 1bW * !~xW ,t ! ~41!

⇒ 1
2 ~D1

2 1D2
2 !„XW ~ t !…5vW 3BW 1¹W V.

As yet there is no trace of Lorentzian electric forces, unl
extracted from the term¹W V(xW ,t). We shall accomplish this
step in Sec. IV.

For a probability densityu* u5r of the related Markov-
ian diffusion process@31,36#, we would have fulfilled both
the Fokker-Planck and the continuity equation
] tr5nDr2¹W (bW r)52¹W (vW r)52nDr2¹W (bW * r), as before
~cf. Sec. I!.
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In the above, Eq.~40! can be regarded as the Burge
equation with a general external magnetic~plus other exter-
nal force contributions if necessary! forcing, and its defini-
tion is an outcome of the underlying mathematical struct
related to the adjoint pair~32! and ~36! of parabolic equa-
tions.

Our construction shows that solutions of the magnetica
forced Burgers equation~40! are given in the form~38!. In
reverse, the mere assumption about the decompositio
drifts ~38! into the gradient and nongradient part implies th
the corresponding evolution equation~40! is the Burgers
equation with the nonconservative forcing. The force te
has a specific Lorentz form. Although we invoke electroma
netism, the decomposition~38! can be regarded to refer to a
abstract nongradient component. In analogy to the prev
Onsager-Machlup example, Eqs.~24!–~28!, the fictituous
Lorentz force term would arise anyway.

IV. SCHRÖDINGER’S INTERPOLATION
IN A CONSTANT MAGNETIC FIELD

AND QUANTALLY INSPIRED GENERALIZATIONS

Presently, we shall confine our attention to the simpl
case of a constant magnetic field, defined by the vector
tential AW 5$2(B/2)x2 ,1(B/2)x1 ,0%. Here, BW 5$0,0,B%,
¹W •AW 50, and curlBW 50W , which significantly simplifies for-
mulas~31!–~41!.

As emphasized before, most of our discussion was ba
on the existence assumption for fundamental solutions of
~adjoint! parabolic equations~32! and ~36!. For magnetic
fields, which do not vanish at spatial infinities~hence for our
t

cle
e

y

of
t

-

us

t
o-

ed
e

‘‘simplest’’ choice!, the situation becomes rather comp
cated. Namely, an expression for

cAW ~xW ,t !5c~xW ,t !2
B2

16n
~x1

21x2
2! ~42!

includes arepulsiveharmonic oscillator contribution.
For the existence of a well defined Markovian diffusio

process it appears necessary that a nonvanishing contrib
from an unbounded from abovec(xW ,t) would counterbalance
the harmonic repulsion. To see that thismust bethe case, let
us formally constrainu(xW ,t)5exp@F(xW,t)# to yield @in accor-
dance with Eq.~9!# the identity:

c~xW ,t !5] tF1n@¹W F#21nnF50. ~43!

Then, we deal with the simplest version of the adjoint syst
~34! and ~36! where, in view of¹W •AW 505c, there holds:

] tu52nF¹W 2
1

2n
AW G2u52nDu1AW •¹W u2

1

4n
@AW #2u,

~44!

] tu*5nF¹W 1
1

2n
AW G2u*5nDu*1AW •¹W u*1

1

4n
@AW #2u* .

With our choice, curlAW 5$0,0,B%, Eqs.~44! do notpossess
a fundamental solution, which would be well defined forall

(xW ,t)PR33R1: everything because of the harmonic repu
sion term in the forward parabolic equation. We can pro
~this purely mathematical argument is not reproduced in
present paper! that the function
k~yW ,s,xW ,t !5
B

4p sin@ 1
2B~ t2s!#

S 1

2p~ t2s! D
1/2

3expH 2
1

2~ t2s!
~x32y3!

22
B

4
cotSB2 ~ t2s! D @~x22y2!

21~x12y1!
2#2

B

2
~x1y22x2y1!J ~45!
d,
at
e,

-
the

n-
em
only when restricted to timest2s<p/B is an acceptable
example of auniquepositive ~actually, positivity extends to
timest2s<2p/B) fundamental solution of the system~43!,

~rescaled to yieldn→ 1
2 ). Here, formally, Eq.~45! can be

obtained from the expression~28! by the replacemen
AW→2 iAW .

An immediate insight into a harmonic repulsion obsta
can be achieved after anx-y plane rotation of Cartesian
coordinates: x185x1cos(vt)2x2sin(vt),x285x1sin(vt)
1x2cos(vt),x385x3,t85t, with v5B/4An. Then, Eqs.~44! get
transformed into an adjoint pair:

] t8u52nD8u2v2~x18
21x28

2!u, ~46!

] t8u*5nD8u*1v2~x18
21x28

2!u* .
Notice that the transformationv→ iv would replace repul-
sion in Eqs.~46! by harmonic attraction. On the other han
we can get rid of the repulsive term by assuming th
c(xW ,t) @Eq. ~42!# does not identically vanish. For exampl
we can formally demand that, instead of Eq.~43!,
c(xW ,t)51(B2/8n)(x1

21x2
2) plays the role of an electric po

tential. Then, harmonic attraction replaces repulsion in
final form of Eqs.~34! and ~36!.

As a byproduct, we are given a transition probability de
sity of the diffusion process governed by the adjoint syst
@cf. Eq. ~27!#:

] tu52nDu1AW •¹W u, ~47!

] tu*5nDu*1AW •¹W u* .
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with AW 5(B/2)$2x2 ,x1 ,0%. Namely, by means of the prev
ousx-y plane rotation, Eqs.~47! are transformed into a pai
of time adjoint heat equations:

] t8u52nD8u, ] t8u*5nn8u* , ~48!

whose fundamental solution is the standard heat kernel.
Finding explicit analytic solutions of rather involve

equations~34! and ~36! is a formidable task on its own, in
contrast to much simpler unforced or conservatively forc
dynamics issue.

Interestingly, we can produce a number of examples
invoking the quantum Schro¨dinger dynamics. This quantum
inspiration has been proved to be very useful in the p
@36,37#. At this point, we shall follow the idea of Ref.@31#,
where the strategy developed for solving the Schro¨dinger
boundary data problem has been applied to quantally
duced stochastic processes~e.g., Nelson’s diffusions
@35,38#!. They were considered as a particular case of
general theory appropriate for nonequilibrium statisti
physics processes as governed by the adjoint pair~18!, and
exclusively in conjunction with Born’s statistical postulate
quantum theory.

The Schro¨dinger picture quantum evolution is then co
sistently representable as a Markovian diffusion process.
that follows from the previously outlined Feynman-Kac ke
nel route@31,32,35,36,38,40,41#, based on exploiting the ad
joint pairs of parabolic equations. However, the respec
semigroup theory has been developed for pure gradient
fields, hence without reference to any impact of electrom
netism on the pertinent diffusion process, and electromag
tism is definitely ubiquitous in the world of quantum ph
nomena.

Let us start from an ordinary Schro¨dinger equation for a
charged particle in an arbitrary external electromagn
field, in its standard dimensional form. To conform with t
previous notation let us absorb the chargee and massm
parameters in the definition ofAW (xW ) and the potential
f(xW ), e.g., we considerB instead of (e/m)B andf instead
f/m. Additionally, we setn instead of (\/2m). Then, we
have

i ] tc~xW ,t !52nS ¹W 2
i

2n
AW D 2c~xW ,t !1

1

2n
f~xW !c~xW ,t !. ~49!

The standard Madelung substitutionc5exp(R1iS) al-
lows one to introduce the real functionsu5exp(R1S) and
u*5exp(R2S) instead of complex onesc,c̄. They are solu-
tions of an adjoint parabolic system~34! and~36!, where the
impact of Eq.~49! is encoded in a specific functional form o
the otherwise arbitrary potentialc(xW ,t):

c~xW ,t !5
1

2n
V~xW ,t !5

1

2n
@2Q~xW ,t !2f~xW !#, ~50!

Q~xW ,t !52n2
Dr1/2~xW ,t !

r1/2~xW ,t !
52n2$DR~xW ,t !1@¹W R~xW ,t !#2%.

The quantum probability densityr(xW ,t)5c(xW ,t)c̄(xW ,t)
5u(xW ,t)u* (x

W ,t) displays a factorizationr5uu* in terms of
d

y

st

n-

e
l

ll

e
ift
-
e-

ic

solutions of adjoint parabolic equations, which we recogn
to be characteristic for probabilistic solutions~Markov diffu-
sion processes! of the Schro¨dinger boundary data problem
~cf. Sec. I! @31,32,36,40#. It is easy to verify the validity of
the Fokker-Planck equation whose forward drift has the fo
~38!. Also, Eqs.~39! and ~40! do follow with V52Q2f.

By defining EW 52¹W f @with f utilized instead of
(e/m)f#, we immediately arrive at the complete Loren
force contribution in all acceleration formulas~before, we
have used curlBW 50):

] tbW 1~bW •¹W !bW 1nDbW 5bW 3BW 1EW 1n curlBW 12¹W Q,
~51!

] tbW *1~bW * •¹
W !bW *2nDbW *5bW *3BW 1EW 2n curlBW 12¹W Q.

Moreover, the velocity field named the current velocity

the flow, vW 5 1
2 (bW 1bW * ), enters the familiar local conserva

tion laws ~see also@32# for a discussion of how the ‘‘quan
tum potential’’Q affects such laws in case of the standa
Brownian motion and Smoluchowski-type diffusion pr
cesses!

]r52¹W ~vW r!, ~52!

] tvW 1~vW •¹W !vW 5vW 3BW 1EW 1¹W Q.

A comparison with Eqs.~33!–~43! shows that Eqs.~50!–
~53! can be regarded as the specialized version of the gen
external forcing problem with an explicit electromagne
~Lorentz force-inducing! contribution and an arbitrary term
of nonelectromagnetic origin, which we denote byc(xW ,t)
again. Obviously, c is represented in Eq.~50!, by
(1/n)Q(xW ,t).

We have therefore arrived at the following ultimate ge
eralization of the adjoint parabolic system~18!, that encom-
passes the nonequilibrium statistical physics and essent
quantum evolutions on an equal footing~with no clear-cut
discrimination between these options, as in Ref.@31#! and
gives rise to an external~Lorentz! electromagnetic forcing:

] tu~xW ,t !5F2nS ¹W 2
1

2n
AW D 22 1

2n
f~xW !1c~xW ,t !Gu~xW ,t !,

~53!

] tu* ~xW ,t !5FnS ¹W 1
1

2n
AW D 21 1

2n
f~xW !2c~xW ,t !Gu* ~xW ,t !.

A subsequent generalization encompassing time-depen
electromagnetic fields is immediate.

The adjoint parabolic pair of equations~53! can thus be
regarded to determine a Markovian diffusion process in
actly the same way as Eq.~18! did. If only a suitable choice
of vector and scalar potentials in Eqs.~53! guarrantees a
continuity and positivity of the involved semigroup kern
@take the Radon-Nikodym density of the form~33!, with
V→2f1V , and integrate with respect to the condition
Wiener measure#, then the mere knowledge of such integr
kernel suffices for the implementation of steps~18!–~22!,
with u→u* , v→u. To this end it is not at all necessary th
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55 1411BURGERS’ FLOWS AS MARKOVIAN DIFFUSION PROCESSES
k(xW ,s,yW ,t) be a fundamental solution of Eqs.~53!. A suffi-
cient condition is that the semigroup kernel is a continuo
~and positive! function. The kernel may not even be diffe
entiable; see, e.g., Ref.@31# for a discussion of that issu
which is typical for quantal situations.

After adopting Eqs.~53! as the principal dynamical ingre
dient of the electromagnetically forced Schro¨dinger interpo-
lation, we must slightly adjust the emerging acceleration f
mulas. Namely, they have the form~51!, but we need to
replace 2Q(xW ,t) by, from now an arbitrary, potentia
V(xW ,t)52nc(xW ,t). The second equation in Eqs.~53! also
takes a new form:

] tvW 1~vW •¹W !vW 5vW 3BW 1EW 1¹W ~V2Q!; ~54!

see, e.g., Ref.@32# for more detailed explanation of this ste
The presence in Eqs.~53! of the density-dependent2¹W Q
term finds its origin in the identitybW 2bW *52n¹r(xW ,t) and
is a necessary consequence of the involved~forced in the
present case! Brownian motion; see, e.g.,@39,64,65#.

Finally, the second of equations~51! with V replacing
2Q is the most general form of the Burgers equation with
external forcing, where the electromagnetic~Lorentz force!
contribution has been extracted for convenience. Solution
this equation must be sought for in the form~38!, which
generalizes the logarithmic Hopf-Cole transformation
nongradient drift fields. Equations~53! are the associate
parabolic partial differential~generalized heat! equations,
which completely determine probabilistic solutions~Markov-
ian diffusion processes! of the Schro¨dinger boundary data
~interpolation! problem. In turn, for this particular random
transport, the forced Burgers velocity fields play the role
backward drifts of the process.

V. OUTLOOK

Our discussion, albeit motivated by the issue of diffus
matter transport that is consistently driven by Burgers vel
ity fields ~this extends both to the compressible and inco
pressible cases!, has little to do with classical fluids. Th
emergence of shock pressure fronts is more natural in
compressible situation. This shock profile possibility~inher-
ry

-

in
s

-

n

of

f

-
-

e

ent to the Burgers equation! has been imported to the non
equilibrium statistical physics of random phenomena by
ploring the idea of Schro¨dinger’s interpolation problem and
revealing its connection with the Burgers dynamics. That
been the subject of Sec. I.

The next important result~a preliminary discussion of ro
tational Burgers fields can be found in Ref.@23#! amounts to
relaxing the gradient-field assumption~that is crucial for the
validity of the Hopf-Cole transformation!. In Secs. II and III
we have analyzed the ways to generalize the Feynman-
kernel strategy so that the involved~drifts! velocity fields
admit the nongradient form. Our analysis was perfomed w
rather explicit electromagnetic connotations. Equations~34!
and ~36! generalize the adjoint pair~18! to diffusion pro-
cesses with nongradient drifts~38!.

As follows from Eq.~40!, the very presence of the non
gradient term in the decomposition~38! implies that the cor-
responding evolution equation for the velocity field~back-
ward drift of the process! is the Burgers equation with th
specific Lorentz-type forcing.

Section IV extends the discussion to quantally imp
mented diffusion processes, where the minimal electrom
netic coupling is a celebrated recipe. This quantal motivat
allows to arrive at the adjoint system~53!, that incorporates
an electric contribution and allows one to define and so
the Burgers equation with the combined conservative
nonconservative~electromagnetic, in particular! forcing. Let
us emphasize again that a transformation of the Burg
equation~whatever the force term is! into a generalized dif-
fusion equation is not merely a formal linearization tric
This @1# ‘‘nonlinear diffusion equation’’ does indeed refer t
a well defined stochastic diffusion process, but a comp
information about its features is encoded in the involv
parabolic equations.
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Abstract--We discuss a connection (and a proper place in this framework) of the unforced and 
deterministically forced Burgers equation for local velocity fields of certain flows, with probabilistic 
solutions of the so-called Schrtidinger interpolation problem. The latter allows us to reconstruct the 
microscopic dynamics of the system from the available probability density data, or the input-output 
statistics in the phenomenological situations. An issue of deducing the most likely dynamics (and 
matter transport) scenario from the given initial and terminal probability density data, appropriate e.g. 
for studying chaos in terms of density, is here exemplified in conjunction with Born's statistical 
interpretation postulate in quantum theory, that yields stochastic processes which are compatible with 
the Schr6dinger picture of free quantum evolution. © 1998 Elsevier Science Ltd. All rights reserved 

1. THE SCHRI~DINGER RECONSTRUCTION PROBLEM: MOST LIKELY MICROSCOPIC 
DYNAMICS FROM THE I N P U T - O U T P U T  STATISTICS D A T A  

Probabil i ty measures ,  bo th  invariant  and non-trivially t ime-dependent ,  of ten on different 
levels of  abstract ion,  are ubiqui tous in diverse areas of  physics. Accord ing  to pedes t r ian  
intuit ion [1], one  normal ly  expects that  any kind of  time deve lopmen t  (dynamics,  be they 
determinist ic  or  r andom)  analysable in terms of  probabil i ty under  suitable mathemat ica l  
restrictions may  give rise to a well-defined stochastic process. Non-Markov ian  implementa-  
t ions are r ega rded  as close to reality, but  the cor responding  Markov ian  approximat ions  
(when appropr ia te )  are easier to handle  analytically. 

Given  a dynamical  law of  mot ion  (for a particle as an example) ,  in m a n y  cases one  can 
associate with it ( compute  or  approximate  the observed f requency data)  a probabi l i ty  
distr ibution and various mean  values. In fact, it is well known that inequivalent  finite 
difference r a n d o m  mot ion  problems m a y  give rise to the same cont inuous  approx imant  (like, 
for  example,  in the case of  the diffusion equat ion  representa t ion  of  discrete processes).  Also,  
in the s tudy of  nonl inear  dynamical  systems, specifically those exhibiting the so-called 
determinist ic  chaos [2-4] ,  given almost  any (basically one-d imens ional  in the cited 
references)  probabi l i ty  density, it is possible to construct  an infinite n u m b e r  of  determinist ic  
finite difference equations,  whose iterates are chaot ic  and which give rise to this a pr ior i  

prescr ibed density. 
Studying dynamics  in terms of  densities of  probabi l i ty  measures  instead of  individual paths 

(trajectories) of  a physical system is a respectable  tool  [3], even if we know exactly the 
per t inent  microscopic  dynamics.  

U n d e r  general  circumstances,  the main  task of  a physicist is to fit a concre te  dynamical  
model  ( th rough  a clever guess or  otherwise)  to available phenomenolog ica l  data.  Then ,  the 

t Presented by P. Garbaczewski at the International Conference on Applied Chaotic Systems, Inowlodz, Poland, 
September 26-30, 1996. 
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distinction between the chaotic (nonlinear, deterministic) and purely stochastic implementa- 
tions may not be sharp enough to allow for a clean discrimination between those options: the 
intrinsic interplay between the stochastic and deterministic modelling of physical phenomena 
[4] blurs access to reality and certainly precludes a definitive choice of one type of modelling 
against another. 

An inverse operation of deducing the detailed (possibly individual, microscopic) dynamics, 
which are either compatible with a given probability measure (we shall mostly be interested 
in those admitting densities) or induce their own time evolution, cannot have a unique 
solution. However, the level of ambiguity can be substantially reduced, if we invoke the 
so-called Schr6dinger problem of reconstructing the microscopic dynamics from the given 
input-output  statistics data and/or  from the a priori known time development of a given 
probability density. The problem is known to give rise to a particular class of solution (most 
likely interpolations), in terms of Markov diffusion processes [5-8]. 

In its original formulation, due to Schr6dinger [5-9], one seeks the answer to the following 
question: given two strictly positive (usually on an open space-interval) boundary probability 
densities po(2+), p7(.7) for a process with duration T-> 0, can we uniquely identify the 
stochastic process interpolating between them'? 

Another version of the same problem [5] departs from a given (Fokker-Planck-type) 
probability density evolution and investigates the circumstances allowing us to deduce a 
unique random process from these dynamics. We shall pay some attention to this issue in 
Section 3. 

The answer to the above SchrOdinger's question is known to be affirmative, if we assume 
the interpolating process to be Markovian. In particular, we can get here a unique 
Markovian diffusion process which is specified by the joint probability distribution 

m, (A ,B)=fAd ' x~d3ym~( -~ , f i )  

f, d3ym7-(:g,f) = 0o(27) (1) 

f d3xm, (~f,Y) = Pr(_V) 

where 

rn7,(27,37) - uo(.~)k(<f,O,fi, T)VT,(~) ( 2 )  

and the two unknown functions u0(£), vT.(fi) come out as solutions of the same sign (if the 
integral identities (1). Provided we have at our disposal a continuous bounded strictly 
positive (ways to relax this assumption were discussed in Ref. [10]) integral kernel k(2,s,fi, t), 
0-<s -< T. 

We shall confine further attention to cases governed by the familiar Feynman-Kac 
kernels. Then, the solution of the Schr()dinger boundary-data problem in terms of the 
interpolating Markovian diffusion process is found to be completely specified by the adjoint 
pair of parabolic equations. In case of gradient forward drift fields, the pertinent process can 
be determined by checking (this imposes limitations on the admissible potential) whether the 
Feynman-Kac  kernel 

k(Y,s,Y,t)= f exp[- ' c(~(r),r)dr]d/xl:~i;¢(o5 ) (3) 

is positive and continuous in the ()pen space-time area of interest (then, additional 
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limitations on the path measure need to be introduced [11]), and whether it gives rise to 
positive solutions of the adjoint pair of generalised heat equations: 

O,u(Y,t) = vAu(E,t)  - c(£,t)u(E,t) (4) 

O,v(Y,t) = - v A v ( Y , t )  + c(£,t)v(E,t). 

Here, a function c(£,t) is restricted only by the positivity and continuity demand for the 
kernel (3), see e.g. Ref. [12]. In the above, dt~5~ is the conditional Wiener measure over 
sample paths of the standard Brownian motion. 

Solutions of (4), upon suitable normalisation, give rise to the Markovian diffusion process 
with the factorised probability density p(Y, t )= u(£,t)v(£,t)  which, while evolving in time, 
interpolates between the boundary density data p(£,0) and p(Y,T). The interpolation admits 
a realisation in terms of Markovian diffusion processes with the respective forward and 
backward drifts defined as follows: 

6(~,t) = 2 v  Vv(:?,t) 
v(Z,t) 

f~, (£,t) = - 2 v  - -  
Vu(Y,t)  

u ( Z , t )  

(5) 

in the prescribed time interval [0,T]. 
The related transport equations for the densities follow 

interpolation, the familiar Fokker-Planck equation holds true: 

o,o( . z , t )  = v a o ( . ~ , t )  - v [ g ( ~ , t ) p ( ~ , t ) ]  

easily. For the forward 

(6) 

while for the backward interpolation we have: 

3,p(£,t) = - vAp(Y,t)  - V[/~, (£,t)p(Y,t)]. (7) 

We have assumed that drifts are gradient fields, curl/~ = 0. As a consequence, those that 
are allowed by the prescribed choice of c(£,t) must  fulfil the compatibility condition: 

1 6 2 V/~\ ) 
c(£,t) = OflP + ~ (2v  + (8) 

which establishes the Girsanov-type connection of the forward drift/~(£,t) = 2vV~(£ , t )  with 
the Feynman-Kac,  cf. Refs [11,12], potential c(£,t). In the considered Schr6dinger's 
interpolation framework, the forward and backward drift fields are connected by the identity 
b ,  = b - 2vVlnp.  

One of the distinctive features of Markovian diffusion processes with positive density 
p(Y,t) is that, given the transition probability density of the (forward) process, the notion of 
the backward transition probability density p, ( ; , s ,Y , t )  can be consistently introduced on 
each finite time interval, say 0 -< s < t - T: 

p(~,t)p ,(y,s,~,t) -- p ( f  ,s,£,t)p(~,s) (9) 

so that 

f p(fi, s )p( f ,s ,2 , t )  d3y = p(~,t) 
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and 

p(f,s) f p,(f,s,.Lt)p(.'?,t) d~x. 

The transport (density evolution) eqns (6) and (7) refer to processes running in opposite 
directions in a lixed, common to both, time duration. The forward one (eqn (6)) executes an 
interpolation from the Borel set A to B, while the backward one (eqn (7)) executes an 
interpolation from B to A, compare e.g. the delining identities (I). 

The knowledge of the Fevnman-Kac  kernel (3) implies that the transition probability 
density of the forward process reads: 

p(g,s ,x ' , t )  - k( f , s , . i  ~ t) . . . .  ~ ' (< ' )  (10) 
,,(yLs) 

while the corresponding (derNable from eqn (10) since p(x',t) is given) transition probability 
density of the backward process has the form: 

p,.~ (y" s,.f t) : k ( f  s ,£.  t) - . ( < s ) .  (11) 
. ( . < t )  

Obviously [7, 12], in the time interval 0 ~<s < t  <-- 7" there holds: 

tt(£',t)-- f t6,(f')k( f,s,_f,t) d:~y 

f . dx .  v (3;,s) = k ( ~;,s,£, T)v I (.i') ~ 

(12) 

Consequently, the system (4) fully determines the underlying random motions, forward 
and backward, respectively. 

2. T H E  B U R G E R S  E Q U A T I O N  IN S C H R { ) D I N G E R ' S  I N T E R P O L A T I O N  

The prototype nonlinear tield equation named the Burgers or "nonlinear diffusion" 
equation (typically without [13.14] the forcing term /~(£,1)): 

4 i5 .  + ( i ~ . v ) o .  v,,.xo,, + /~ (£ , t )  (13) 

has recently acquired considerable popularity in a variety of physical contexts [ 151. 
By dropping the force term in eqn (13), wc are left with a commonly used form of 

the "nonlinear diffusion equation" whose solutions are known exactly, m view of the t t o p f -  
Cole linearising transformation mapping (13) into the heat equation. Here, /~,ti~; ~, 
(vnV)fiz~ = vAfiu is mapped into 3,0 = vAO by means of the substitution 0j~ -= 2vV In 0. 
This linearisation of the Burgers equation is normally regarded as devoid of any deeper 
physical meaning, and specilically the link with stochastic processes determined by the heat 
equation has not received proper attention. Our previous analysis shows that the 
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intrinsic interplay between the deterministic and random evolution, appropriate for a large 
class of classically chaotic systems, extends to a much wider framework. 

Burgers velocity fields can be analysed on their own with different (including random) 
choices of the initial data and/or force fields. However, we are interested in the possible 
diffusive matter transport that is locally governed by Burgers flows, cf. Ref. [15]. In this 
particular connection, let us point out a conspicuous hesitation that could have been 
observed in attempts to establish the most appropriate matter transport rule, if any 
diffusion-type microscopic dynamics assumption is adopted to underlie the 'nonlinear 
diffusion' eqn (13). 

Depending on the particular phenomenological departure point, one either adopts the 
standard continuity equation [16, 17], that is certainly valid to a high degree of accuracy in 
the so-called low viscosity limit v ~ 0, but incorrect on mathematical grounds i f  there is a 
genuine Markovian diffusion process involved and simultaneously a solution of eqn (13) 
stands for the respective current velocity of the flow: O,p(£,t) = -V[~(£, t)p(£, t )] .  

Alternatively, following the white noise calculus tradition telling us that the stochastic 
integral X ( t ) =  f'o Oe(X(s) , s )ds  + f~ ~(s )ds  necessarily implies the Fokker-Planck equation, 
one is tempted to adopt cgtp(2,t) = vAp(.f,t)  - V[f~(.f,t)p(Y,t)], which is clearly problematic 
in view of the classic McKean's discussion of the propagation of chaos for the Burgers 
equation [18-20], and the derivation of the stochastic 'Burgers process' in this context: "the 
fun begins in trying to describe this Burgers motion as the path of a tagged molecule in an 
infinite bath of like molecules" [18]. 

To put things on solid ground, let us consider a Markovian diffusion process, which is 
characterised by the transition probability density (generally inhomogeneous in space and 
time law of random displacements) p(37,s,~,t), O<-s <-t <_ T, and the probability density 
O(~f,t) of its random variable )((t), 0 -< t -< T. The process is completely determined by these 
data. For clarity of discussion, we do not impose any spatial boundary restrictions, nor fix 
any concrete limiting value of T, which, in principle, can be moved to infinity. 

Let us confine our attention to processes defined by the standard backward diffusion 
equation. Under suitable restrictions (boundedness of involved functions, their continuous 
differentiability) the function: 

g(Y,s) = f p (~,s,37, T)g(37, T) d3y (14) 

satisfies the equation 

- O,g(~,s) = vzXg(X,s) + [6(~,s)Vlg(~,s). (15) 

Let us point out that the validity of eqn (14) is known to be a necessary condition for the 
existence of a Markov diffusion process, whose probability density p(.f,t) is to obey the 
Fokker-Planck equation (the forward drift b(.f,t) replaces the previously utilized Burgers 
velocity ~B(Z,t). 

The case of particular interest, in the traditional non-equilibrium statistical physics 
literature, appears when p(ff, s,Z,t) is a fundamental  solution of eqn (15) with respect to 
variables 37, s [21-23], see, however, Ref. [12] for an analysis of alternative situations. 
Then, the transition probability density satisfies also the second Kolmogorov (e.g. the 
Fokker-Planck) equation in the remaining £, t pair of variables. Let us emphasize that these 
two equations form an adjoint pair of partial differential equations, referring to the 
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slightly counter-intuitive for physicists, though transparent for mathematicians [7, 24-27[, 
issue of time reversal of diffusions. 

We can consistently introduce the random variable of the process in the form 
f ( ( t ) = f ~ , b ( X ( s ) , s ) d s + V ~ v l ~ ( t ) .  Then, in view of the standard rules of the It6 
stochastic calculus [7, 27, 28], we realise that for any smooth function f(X',t) of the random 
variable X(t) the conditional expectation value: 

'm'lf ] Ado At p(-~,t,fi, t + At)f(fi,  t + At) d:~y -f(.~,,t) = (D~ f ) ( f ( ( t ) , t )  = (a, +/~V + vA)f( . f , t)  (16) 

where A'(t) = £ determines the forward drift b(£,t) of the process (if we set components of )( 
instead of f )  and, moreover, allows us to introduce the local field of (forward) accelerations 
associated with the diffusion process, which we constrain by demanding (see e.g. Refs [7], 
[27] and [28] for prototypes of such dynamical constraints): 

( D ~ X ) ( t )  = (D+b)(X( t ) , t )  = ( d r  + (/~V)/~ + vA/~)(.~,t) 

- { ' ( .~ , t )  ( 1 7 )  

where X ( t ) =  £ and the, at the moment arbitrary, function fi(£,t) may be interpreted as an 
external force applied to the diffusing system [11]. 

By invoking eqn (9), we can also define the backward derivative of the process in the 
conditional mean (cf. Refs [11], [29] and [30] for a discussion of these concepts in the case of 
the most traditional Brownian motion and Smoluchowski-type diffusion processes): 

Ad~l At 

(D .f)(f((t),t) = (8,  + / ~ .  V - v A ) f ( . ~ ( t ) , t )  
(18) 

Accordingly, the backward version of the acceleration field reads 

(D2 )()(t) = (D~ X)(t) = .~()(( t ) . t )  (19) 

where, in view of/~,  =/~ - 2vV In p, we have explicitly fulfilled the/brced Burgers equation: 

a f ,  + (/~, V)/~, - vA/~, = F (20) 

and [7, 11, 27] under the gradient-drift field assumption curl/~, = 0, we deal with F(Y,t)= 
2vVc(£,t)  where the Feynman-Kac  potential (3) is explicitly involved. 

Let us notice that the familiar (linearisation of the nonlinear problem) Hopf-Cole 
transformation [14,31] of the Burgers equation into the generalised diffusion equation 
(yielding explicit solutions in the unforced case) has been explicitly used before (the second 
formula in eqn (4)) in the framework of the Schr(3dinger interpolation problem. In fact, by 
defining q~, = l o g u ,  we immediately recover the traditional form of the Hopf-Cole 
transformation for Burgers velocity fields 6 ,  = -2vVcb , .  With the standard considerations 
that allow us to map a nonlinear (unforced Burgers) equation into a linear, heat equation. 
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In the special case of the standard free Brownian motion, there holds /~(Z,t)--0 while 
6, (~,t) = - 2vV log p(~,t). 

Let us point out that eqn (7) is, in fact, the only transport equation where the Burgers 
velocity field is allowed to be indisputably present, under the diffusive scenario assumption 
[15]. The standard continuity equation is certainly inappropriate for non-zero values of the 
diffusion constant v. 

3. RECONSTRUCTION OF THE MICROSCOPIC DYNAMICS FROM THE PROBABILITY 
DENSITY DATA:  OBSTACLES EXEMPLIFIED 

We have mentioned before that another version of the Schr6dinger boundary data 
problem [5] departs directly from a given (Fokker-Planck-type) probability density 
evolution and investigates the circumstances allowing us to deduce a unique random process 
from these dynamics. Surely solutions of the Fokker-Planck equation itself do not yet 
determine the underlying stochastic process. Additional assumptions are always necessary 
and a number of traps must be avoided. 

As a particular guide to these obstacles, we shall refer to the familiar flee quantum 
evolution that is regarded as the time adjoint parabolic problem, exactly in the spirit of our 
previous discussion. 

In our previous paper [30], the major conclusion was that in order to give a definitive 
probabilistic description of the quantum dynamics as a unique diffusion process solving 
Schr6dinger's interpolation problem, a suitable Feynman-Kac semigroup must be singled 
out. Let us point out that the measure preserving dynamics, permitted in the presence of 
conservative force fields, was investigated in Ref. [11]. 

The present analysis was performed quite generally and extends to the dynamics affected 
by time dependent external potentials, with no clear-cut discrimination between the 
non-equilibrium statistical physics and essentially quantum evolutions. The formalism of 
Section 1 encompasses both groups of problems. Nevertheless, it is quite illuminating to see 
directly how sensitive, even in the simplest cases, the formalism is with respect to any 
attempt to relax our previous assumptions and the Schr6dinger interpolation problem 
rules-of-the-game. Specifically in the quantum domain, where the seemingly trivial case of 
the free evolution, which is non-stationary, needs the general parabolic system (4) to be 
considered. Even worse, then the system (4) displays a non-trivial nonlinearity: the parabolic 
equations are coupled by the effective, solution dependent potential. At first glance, this 
feature might seem to exclude the existence of any conceivable Feynman-Kac (dynamical 
semigroup) kernel, and in consequence any common-sense law of random displacements (i.e. 
the transition probability density) governing the pertinent stochastic evolution. Certainly, the 
existence of fundamental solutions in this case is far from obvious. 

At this point, let us emphasize that our principal goal is to take seriously the Schr/Sdinger 
picture of quantum dynamics under the premises of the Born statistical postulate. Hence, 
once we select as appropriate a concrete quantal interpolation between the prescribed 
(phenomenologically supported in particular) input-output statistics data po(x) and pr(x) in 
terms of p(x,t) = ~(x,t)~(x,t) ,  t @ [0,T], where ~b(x,t) solves the Schr6dinger equation then, 
on exactly the same footing, we are entitled to look for an alternative probabilistic 
explanation (or appropriate description) of the very same interpolation, in terms of a 
well-defined Markov stochastic (eventually diffusion) process. 

We shall proceed in the spirit of Section 1, while restricting our discussion to the free 
Schr/3dinger dynamics. Following Ref. [30] we shall discuss the rescaled problem so as to 
eliminate all dimensional constants, 
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The free Schr0dinger evolution ic'4g, = --At~ implies the following propagation of a specific 
Gaussian wave packet: 

2 1/4 X 2 

g,(x,0)=(2rc) ' / 4 e x p ( - ~ ) - - ~ # J ( x , t ) = ( ~ r ) ( 2 + 2 i t ) ' " 2 e x p l  4(1-+it)J' (21) 

So that 

po(x) = 10(x,0)I ~ = (2Jr) .2 exp - ~- --~ o(x, t )  = I~,(x,t)l ~ 

= [2Jr(1 + t2)l '": exp - 2(1 + t:) (22) 

and the Fokker-Planck equation (easily derivable from the standard continuity equation 
Gp = -V(vo),  v(x , t )  = xt /(1 + t2)) holds true: 

1 - I  
0,p = Ap - V(bp), b(x , t )  -- xx. (23) 

l + t -  

The Madelung factorization 4, = exp(R + iS) implies (notice that v = 2VS and b = 2V(R + 
S)) that the related real functions O ( x , t )  - exp(R + S) and O , ( x , t )  - exp (R - S) read: 

( x 2 1 - /  1 ) 
O(x , t )=[2zr ( l+t2 ) ]  ,/aexp 4 l + t  e 2 a r c t a n t  

(24) 
( x 2 l + t  1 ) 

- + - a r c t a n t .  O.(x , t )=[2rc( l  +t2 ) ]  J/4exp 4 1 q t 2 2 

They solve a suitable version of the general parabolic eqn (4), namely: 

1 
;~,0 = - AO + ~ ~ 0  

2 

1 
;;,0, = AO, - ~ £~0, 

(25) 

with 

1 x 2 1 AP~"2= Q(x,t) .  (26) 
~2(x , t )=2( l+t2)  2 l + t  2 - 2  p~,'2 

By setting t = T we associate with the above dynamics the terminal density p~(x), and 
then the concrete Schr0dinger boundary data problem for the stochastic interpolation 
po(x)-+ pr (x ) ,  eqn (1). 

To capture the spirit of our previous discussion, we shall replace eqn (25) by the more 
general eqn (4), where only the potential c(x,t)  will be identified with the above ~f2(x,t). 
Then, we shall look for solutions u(x, t ) ,  o(x, t)  of these parabolic equations, and in particular 
we shall identify the quantally implemented functions O.(x,t) ,  O(x,t), eqn (24), among  them. 
Effectively, this amounts to the previously mentioned linearisation of the nonlinear parabolic 
system. 

In view of the relatively simple form of the probability density p(x, t ) ,  eqn (22), one might 
be tempted to guess (more or less fortunately) the transition probability density, consistent 
with the propagation eqn (22). However, it is well known that there are many stochastic 
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processes implying eqn (22) for all t E [0,T], which will not necessarily have much in 
common with the original wavefunction dynamics, eqn (21). In general they are incompatible 
with the corresponding parabolic system (cf. eqns (4) and (25)). If it happens otherwise, the 
reason for this proliferation of would-be consistent stochastic processes is rooted in 
exploiting the particular functional form of solutions, instead of relying on the form- 
independent arguments, e.g. eqn (4). 

Let us consider some simple examples which, albeit coming under very special circum- 
stances (free dynamics with a specific initial wave packet choice, and no zeros admitted in 
the course of the propagation), clearly indicate how important is the proper choice of the 
Feynman-Kac  kernel. The virtue of a parabolic system (4) is that its form is universal for the 
Schrt~dinger dynamics, and thus does not depend on a particular functional form of solutions 
nor of external potentials. It appears that the system (4) sets a very rigid framework for the 
probabilistic manifestations (e.g. stochastic processes) of the quantum Schr6dinger dynamics. 

Example 1. We shall demonstrate that an improper (not through eqn (4) or eqn (25)), but 
fortunate, choice of the kernel might lead to an alternative stochastic representation of the 
quantum dynamics of eqn (22). 

Let us begin by directly introducing the transition probability density: 

p(y,s ,x , t )  = [2~(t 2 - s2)] -1/2 exp [ (x - y)2 ] (27) @--7)J 
which for all intermediate times 0 - s  < t -  < T executes a desired propagation p(x , t )=  
f p ( y , s , x , t ) p ( y , s )  dy, eqn (22). Clearly, the Chapman-Kolmogorov  identity 
f p ( y , s , z , r ) p ( z , r , x , t ) d z  =p(y , s ,x , t )  holds true, and the properties (the first one for all 
E > 0):  

lim 1__ f p(y, t ,x , t  + At) dx = 0  
a, ~ 0 At 31x_yI>, 

1 f+* lira (x - y)p(y, t ,x , t  + At) dx = 0 (28) 
At 1.0 ~ --~ 

1 +~ 
lim - -  f (x - y)Zp(y,t,x,t  + At) dx = 2t 
At ~ o At 3_. 

tell us that the law of random displacements p ( y ,s ,x ,t ), eqn (27), can be attributed to a 
Markov diffusion process associated with the parabolic (Fokker-Planck)  equation: 

3,p = tAxp. (29) 

In fact, our p(y ,s ,x , t )  is a fundamental solution of this equation with respect to x, t 
variables, while obeying the time adjoint parabolic equation in the remaining (e.g. y, s) pair 
of variables: 

Osp(y,s,x,t) = -sAyp(y ,s ,x , t ) .  (30) 

This diffusion has a vanishing forward drift and the quadratic in time variance (the 
diffusion coefficient equals t), hence its local characteristics are completely divorced from 
those of the Nelson process [30] derivable from the solution eqn (21) of the Schrtidinger 
equation. 

Interestingly, since p(y , s , x , t )  itself is a perfect, strictly positive and continuous in all 
variables (Markov) semigroup kernel, nothing prevents us from performing the Schr6dinger 
problem analysis eqn (1) with the boundary densities po(x) and pr(x)  defined by the above 
free evolution problem. However,  we shall proceed otherwise and, having given explicit 
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solutions of the parabolic system (25), introduce another strictly positive and continuous in 
all variables function: 

kl(y,s,x,t %_ 2 I/4 [- =p(v,s.,x,t) O(Y, s)= [2~(t 2 ,2,, 1/2{ ] t ~ [ ( x - y )  2 ] 

×exp[ y 2 1 - s  x 2 1 - t ]  I-1 ] 
+ - -  +25 | exp ]g  (arctan t - arctan s) 

41 + s  2 41 t A LZ 
(31) 

and observe that the Schr6dinger system (1) in the present situation is involved as well, since 
trivially there holds: 

Oil(x) = O.(x,O) f k,(x,O,y, T)O(y, T) dy 

p~(x) = O(x,T) f k,(y O,x,T)O.(y,O) dy. 

(32) 

Disregarding the derivation which has led us to eqn (22), we can simply consider eqn (22) 
as the Schri3dinger system of equations with a fixed kernel and boundary density data. Then, 
we immediately infer that by Jamison's theorem [6], its unique (up to a coefficient) solution 
is constituted by the pair O.(x,O), O(x,t) of functions, already determined by eqn (24). 
Moreover,  k~(y,s~r,t) obeys the Chapman-Kolmogorov  composition rule: 

f kl(v,s,z,r)k~(z,r,x t) dz = [p(y,s ,z ,v)  
( O(y,s) O(z r )  

. 7 P  (Z, r ,x,  t)  -2@,"'@ dz 
3 vtz,r) u(x,t) 

O(y,s,) 
= p(y,s,x,t) k~ (y,s,x,t). (33) 

O(x,t) 

In view of fp(y,s ,x, t)  dx = 1 for all s < t, we have: 

f k,(x,s,y,t)O(y,t) dy = O(x,s) (34) 

and, since 00.  = p, we get: 

f k,(y,s,x,t)O.(y,s)dv= f O(y,s) 1 f p(y,s)p(y,s,x,t)dv " O*(y's')p(y's'x't)O~x,t)dY - O(x,t) 

_ p(x,t) 
O(x,O O,(x,t). (35) 

Thus, undoubtedly, we have in hand a complete solution of the Schr6dinger boundary 
data problem (1): for the once-chosen kernel k~, this solution is unique, and compatible with 
the dynamics of the corresponding SchrOdinger wavefunction. But, the constructed stochastic 
process is completely incongruent with the standard wisdom about Nelson's diffusion 
processes [7,27, 28,30]. The reason is clear: our analysis was performed for a particular 
solution, whose functional form allows for an alternative stochastic representation. But, let 
us stress the point, if we look for the functional-form-independent construction, it is the 
parabolic system (4) from which one should depart. 

Anyway, even the inappropriate choice of the integral kernel k~ does allow us to derive 
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the quantum mechanically implemented dynamics of eqn (22) from, respectively, O(x,T) and 
O,(x,O) by means of the propagation formulas (4). The probability density evolves in time 
correctly, but the vanishing drift and the linear-in-time diffusion coefficient situate this 
stochastic process outside the scope set by eqns (25) and (4). 

Example 2. We shall demonstrate that another choice of the kernel, still with no reference 
to the system (4), will allow us to reproduce the stochastic propagation with the probability 
density, drifts and diffusion coefficient of Nelson's stochastic mechanics, which however is 
not Nelson's process for the quantum evolution (22). We are inspired by our previous paper 
[30], where an interesting stochastic propagation, compatible with eqn (22), was introduced 
by means of the transition probability density: 

py.s(x,t) = [47r(t- s)] -j/2 exp[ 
(X--Ct.., y) 2 ] 

4 ( / -  s) J 

py.,(x,s) = 6 (x -y ) ,  O<--s <t <- T (36) 

c,., = [ (1 -  t)2 + 2s] ' / 2 i + s 2  

Here, the density p(y,s), eqn (22), is propagated into the corresponding p(x,t) according 
to the rule p(x,t) = fps.,(x,t)p(y,s)dy, for all intermediate times 0 ~ s < t-< T. As noticed in 
Ref. [30], this propagation is somewhat pathological since it does not obey the Chapman-  
Kolmogorov composition rule: fpy.,(z,r)pz.r(X,t)dzv~py.,(x,t) and thus p cannot be 
interpreted as a transition density of the Markov process. 

However, if we were to naively proceed like in Example 1 and define the strictly positive 
continuous function: 

O(y,s) (37) k2(y,s,x,t) = py.~(x,t) O(x,t) 

where 0 -< s < t - T and O(x,t) is given by eqn (24), then the Schri3dinger system (32), with k2 
replacing kl, trivially appears. Indeed, because fpy.,~(x,t) dx = 1 for s < t, there holds: 

f k2(x,O,y,T)O(y,T) dy = O,(x,O) fpx,,(y,r)O(x,O) dy = O,(x,O)O(x,O) = Oo(X) O,(x,O) 

O(x, T) f k2(y,O,x, T)O,(y,O) dy = f Py.o(X, T)O(y,O)O,(y,O) dy (38)  

= f Py.o(X, T)p(y,O) dy = pr(X). 

As a consequence, if we analyse the above SchriSdinger system with the boundary data 
po(X) and pr(x) fixed by eqn (22) (as before) but with the new kernel k2, then somewhat 
unexpectedly the same pair as before, O(x,O), O,(x,T), necessarily comes out as a solution. 
Let us emphasize that the solution is unique for the chosen kernel k2, albeit it coincides with 
the unique (as well) solution previously associated with the kernel k~ (cf. Example 1). 

The meaning of the uniqueness of solution of the Schrtidinger system [6] becomes clear: if 
we have prescribed the boundary density data the solution is unique for a chosen kernel, but 
there are many kernels which may give rise to the very same solution. 

The pathology (non-Markovian density) of py.s(X,t) extends to k2(y,s,x,t) and the 
semigroup composition rule is invalid in this case. Nevertheless, we can blindly repeat the 
step (32), with k2 instead of k~, so reproducing the evolution (22). Moreover, in the present 
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case [30], we can exploit the standard recipe to evaluate the forward drift of a conventional 
diffusion: 

l i m l [ f  y p , . , ( y , t + A t )  d y _ x l = b ( x , t )  - l - - t  (39) 
..xt .L o At I + t 2 X. 

Clearly, it is the forward drift of the Nelson diffusion [27, 30] associated with eqn (24), and 
it consistently appears in the corresponding Fokker-Planck eqn (6). 

Let us observe that p: . , (x , t )  solves the fir,st Kolmogorov equation with respect to x,t: 

a,p~.,(x,t) = A~p, . , (x , t )  - -b, . ,Ct)V, .p, . , (x , t )  

c';c,,,, (40) 
t,, ,U) 

As such, it can be exploited to construct a genuine Markov process, albeit disconnected 
from the quantal dynamics (22). Namely, we can define anolher solution of eqn (40), in 
variables x~,t~: 

p,..,(xl ,t, ,x?,t2)_ = [4;¢(t2 - tl )] 1.'2 e x p [ -  (x277_._ - 7 - x ,  .... cv) 2] 
4(/2-J/,)" J (4l) L 

c = c , : , , ~ - - c  n ..... ( } ~ < s < t  t < l  2 ~  7' 

with c,.~ given by eqn (36). It is easy to verify that the transition density (41) actually is a 
fundamental solution, and as such satisfies the second Kolmogorov equation with respect to 
x2, t2 for each fixed y,  s label, 0 ~ s  <t~ < t 2 ~  T. Consequently, we have in hand the (y.s) 
family of well-defined Markovian transition probability densities p,., for random propagation 
scenarios. Indeed, to this end one needs to check the (apparent) compatibility conditions: (a) 
p , : ( X I , I , x 2 , I )  = ~ ( X 2 - - X l ) ;  ( b )  J ' p , . , ( . r l , t l . . r > t e ) p , . , ( . ~ , , , t , ) d x !  = l ) , . , ( x > t ? ) :  and in addition (c) 
fp,.:(xl,t~,.r2,t~)p,.,(x2,t2,x~,t3) d-r2 - p,. ,(xl,ll .x~,t~), where 0 % s < t~ < t, < t~ % T and p,..,(x.t) 
plays the role of the density of the Markov process. The identity (c) in the above is the 
Chapman-Kolmogorov  formula. 

To avoid the above obstacles, the only how-to-proceed procedure is provided by the route 
outlined before, e.g. that leading from the Feynman-Kac  kernel to the associated Markov 
diffusion process via Schr6dinger's boundary-data problem. A complele solution to this 
particular issue, in the quantum dynamics contcxt, has been given elsewhere [8.12, 29, 30 I. 
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Abstract. We give a necessary and sufficient condition for a Gibbs measureµ on the product space

� = (S1)Z
d

to satisfy the spectral gap or the logarithmic Sobolev inequality with the following
quadratic form:

µK(f ) ≡
∫ ∑
k∈Zd

( ∑
j∈k+Y

aj−k∇j f
)2

dµ f ∈ C∞
0 (�)

where Y is a finite set and al are integers. As a consequence we prove that the generalized Kawasaki
dynamics decays exponentially to equilibrium in the supremum norm in a strong mixing region.

1. Introduction

It is well known that the Kawasaki dynamics for discrete spin systems exhibits a different
behaviour from the Glauber dynamics and even at high temperatures the decay to equilibrium
is very slow (cf [De, BZ1, BZ2, JLQY, LY, CM]). Naturally one can ask what happens in the
case of generalized Kawasaki dynamics [ZZ] with a continuous single spin space, where the
generator L is formally given as follows:

µ(f (−Lf )) =
∑

|i−j |=1

µ|∇if − ∇j f |2 (1.1)

with µ being an equilibrium measure and the summation on the right-hand side is extending
over the nearest-neighbour sites of an integer lattice. As indicated in [ZZ] such a model is of
interest for describing a ferroelectric gas.

We show that, in contrast to the discrete case, if the single spin space is given by a unit
circle, due to an additional ‘gauge’ symmetry, at high temperatures the generalized Kawasaki
dynamics is hypercontractive. We also show that such a dynamics has the property of a
finite speed of propagation of information, that is it can be strongly approximated by finite-
dimensional dynamics. This together with the hypercontractivity property implies a strong
exponential decay to equilibrium in the supremum norm.

It is now well known that the above-mentioned features are present in the models of
dynamics with a generator defined by the following standard Dirichlet form:

µD(f ) ≡
∫ ∑

k∈Zd

|∇kf |2 dµ f ∈ C∞
0 (�) (1.2)

† On leave from: Institute of Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw, Poland.
‡ On leave from: Institute of Mathematics, Polish Academy of Sciences, Św. Tomasza 30/7, 31-027 Kraków, Poland.
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in the mixing region (see, e.g., [HS2, GZ1, GZ2]) for some earlier study of the models with
continuous symmetry see [F, HS1] (for existence, uniqueness and some regularity properties
of the corresponding processes) and [W] (including ergodicity in the uniform norm but at very
high temperatures). Despite this similarity, even in our simple setting with a single spin space
given by a circle, these two dynamics can by no means be considered to be equivalent. To
indicate an example we mention that (by a simple choice of trial functions), one can easily see
that the corresponding quadratic forms (1.1) and (1.2) are not equivalent. (Although naturally
the latter one multiplied by a positive constant dominates the former.) One could also have a
different critical behaviour of both dynamics.

In the special case of a rotator system with spins taking values in a circle, we show that
there is a transformation of a potential which allows one to transform some ‘gauge’-invariant
dynamics corresponding to a non-diagonal quadratic form (such as the generalized Kawasaki
dynamics) to one given in (1.2), but with a properly transformed measure. In this restricted
sense one can talk about a correspondence between two dynamics related to quadratic forms
having an a priori different form.

The organization of the paper is as follows. After a preliminary section 2, we consider
in section 3 the spin systems with a single spin space given by the unit circle and a smooth
finite-range potential. For such systems we formulate a necessary and sufficient condition for a
spectral gap and logarithmic Sobolev inequality to be true with some general class of Dirichlet
forms, which we will call ‘the square of the field forms’. The proof of this result based on an
appropriate change of integration variables and a mixing property for a transformed potential
is given in section 4. Section 5 contains a general example of a system with a small potential
for which the required conditions are satisfied. In section 6 we discuss the construction of a
Markov semigroup with generator corresponding to a general square of the field form. Finally,
in section 7 we explain how to apply our general results to prove the exponential decay to
equilibrium in the uniform norm for the generalized Kawasaki dynamics.

2. Preliminaries

Let Z
d be the d-dimensional integer lattice with the norm |k| = max1�i�d |ki |. We write

k ∼ j iff |k−j | = 1. We use F to denote the set of all non-empty� ⊂ Z
d with the cardinality

|�| <∞.
As a single spin space we consider the unit circle S1, and our configuration space is the

space � = (S1)Z
d

endowed with the product topology.
Given a non-empty � ⊆ Z

d we denote by B�(�), C�(�) and C∞
� (�) the spaces

of bounded measurable, continuous and infinitely differentiable real-valued functions on �
depending only on the variables ωk , k ∈ �. We say that a function is local iff it belongs
to B�(�) for some � ∈ F . We use B0(�), C0(�) and C∞

0 (�) to denote the classes of
bounded measurable, continuous and infinitely differentiable local functions on �. For a
bounded function f on �, we denote by ‖f ‖u the supremum norm of f . Let� ⊆ Z

d , and let
η, ω ∈ �. We denote by η •� ω the element of � determined by (η •� ω)k = ηk , k ∈ � and
(η •� ω)k = ωk , k 
∈ �. Given � ⊆ Z

d , f : � → R, and ω ∈ � we denote by f�(·|ω) the
function f�(η|ω) = f (η •� ω), η ∈ �. For a (Borel) probability measure µ on � we use the
following notation for the corresponding expectation:

µf =
∫
�

f (ω)µ(dω).

Let C∞
0 (�)

2 � (f, g) �→ K(f, g) ∈ C∞
0 (�) be a non-negative definite quadratic form which

vanishes if f or g is a constant function. We set K(f ) ≡ K(f, f ).
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Definition 2.1. A probability measureµ on� satisfies the spectral gap inequality with respect
to K, in short µ ∈ SG(K), if there is a constant C <∞ such that

µ(f − µf )2 � CµK(f ) for every f ∈ C∞
0 (�).

We say thatµ satisfies the logarithmic Sobolev inequality with respect to K, in shortµ ∈ LS(K),
if there is a constant C <∞ such that

µf 2 log
f 2

µf 2
� CµK(f ) for every f ∈ C∞

0 (�).

Remark 2.1. It is well known (see, e.g., [S]) that if µ ∈ LS(K), then µ ∈ SG(K).
In the present paper we denote by ν the normalized Lebesgue measure on S1, and by µ0

the corresponding product measure on �. For � ⊆ Z
d , ω ∈ � and f ∈ B(�) we set

〈f 〉�(ω) = µ0f�(·|ω) and ∂�f (ω) = 〈f 〉�(ω)− f (ω).
If� = {k}, then we will write ∂k instead of ∂{k}. Finally, by ∇k we denote the gradient operator
with respect to the kth variable.

A potential is by definition a family � ≡ {�X : X ∈ F} of functions �X ∈ CX(�) such
that

‖�‖ ≡ sup
i∈Zd

∑
X∈F : X�i

‖�X‖u <∞.

The corresponding local energy functional is defined by

U� = −
∑

X∈F : X∩� 
=∅
�X � ∈ F .

By E(�) we denote the local specification corresponding to�, that is the following family of
operators

E�f =
〈
f exp{−U�}〉

�〈
exp{−U�}〉

�

f ∈ B(�) � ∈ F .

If � = {k} for some point k ∈ Z
d , we simplify the notation writing Uk ≡ U{k} and Ek ≡ E{k}.

We say that a probability measure µ on � is a Gibbs measure for E(�) iff

µE�f = µf for all � ∈ F and f ∈ C0(�).

We denote by G(�) the set of all Gibbs measures for E(�).
Remark 2.2. Note that as� is a compact Polish space and the local specification maps the set
of continuous functions into itself, G(�) 
= ∅ for any potential on �.

We say that a potential � has finite range if there is an R ∈ Z+ such that �X ≡ 0 for all
X with diamX � R.

Let us denote by�n the cube [−n, n]d ∩ Z
d . For a potential� and a set � ∈ F such that

0 ∈ �, we introduce a potential �(n) with a cut-off as follows:

�
(n)
X =

{
�X if X + � ⊆ �n
0 otherwise.

Let

U(n) = −
∑
X∈F

�
(n)
X .



5904 G Kondrat et al

Then, as �(n)X ≡ 0 if X 
⊆ �n,

µ(n)(dω) = exp{−U(n)(ω)}〈
exp{−U(n)}〉

�n

µ0(dω)

is the unique Gibbs measure for E(�(n)). The following lemma will be useful in the next
section.

Lemma 2.1. Let� be a finite-range potential, let � ∈ F , 0 ∈ �. Then there is a subsequence
{nj } and a Gibbs measure µ ∈ G(�) such that

lim
j→∞

µ(nj )f = µf for every f ∈ C(�). (2.1)

Under our assumptions, the proof follows from the fact that for any given finite set X ∈ F
there is an N such that for all n > N one has

µ(n)EXf = µ(n)f
and one can choose a convergent subsequence to a Gibbs measure.

We use G�(�) to denote the class of all Gibbs measures µ ∈ G(�) such that (2.1) holds
true for some sequence {nj }. Lemma 2.1 ensures that G�(�) 
= ∅.

3. Spectral gap and logarithmic Sobolev inequality for non-diagonal forms

Let Y ∈ F , Y 
= ∅ and a = (ai)i∈Y ∈ (Z \ {0})Y be such that

0 ∈ Y 0 
∈ convex hull of (Y \ {0}) and a0 ∈ {−1, 1}. (3.1)

Later on we will use θ to denote a pair (Y,a) satisfying (3.1). Let

Kθ (f )(ω) =
∑
k∈Zd

( ∑
j∈k+Y

aj−k∇j f (ω)
)2

f ∈ C∞
0 (�). (3.2)

In our considerations an important role is played by the following transformation of variables
ξθ : �→ �: (

ξθ (ω)
)
j

=
∑
k∈j−Y

aj−kωk j ∈ Z
d ω ∈ �.

For X ∈ F we set

A(X) = {X̃ ∈ F : X̃ − Y = X}.
Given a potential � we introduce a transformed potential �θ ≡ {

�θX : X ∈ F} as follows:

�θX =




0 if A(X) = ∅∑
X̃∈A(X)

�X̃ ◦ ξθ if A(X) 
= ∅. (3.3)

Let us denote by D the following (diagonal) square of the field

D(f )(ω) =
∑
k∈Zd

|∇kf (ω)|2 f ∈ C∞
0 (�).

We will prove the following equivalence theorem

Theorem 3.1. Suppose that � is a finite-range potential such that there is a unique Gibbs
measure µ ∈ G(�). Let�θ be the corresponding transformed potential given by (3.3). Then:

(a) µ ∈ SG(Kθ ) if and only if for any µ̃ ∈ G−Y (�θ) one has µ̃ ∈ SG(D).
(b) µ ∈ LS(Kθ ) if and only if for any µ̃ ∈ G−Y (�θ) one has µ̃ ∈ LS(D).
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4. Proof of theorem 3.1

Let E(�θ) = {
E
θ
� : � ∈ F} be the local specification corresponding to �θ , that is

E
θ
�f =

〈
f exp{−Uθ�}〉

�〈
exp{−Uθ�}〉

�

where Uθ� = −
∑

X∈F :X∩� 
=∅
�θX.

Since ∑
X∈F :X∩� 
=∅

�θX =
∑

X̃∈F :(X̃−Y )∩� 
=∅
�X̃ ◦ ξθ =

∑
X̃∈F :X̃∩(�+Y ) 
=∅

�X̃ ◦ ξθ

we have

Uθ� = U�+Y ◦ ξθ � ∈ F (4.1)

and consequently

E
θ
�f =

〈
f exp{−U�+Y ◦ ξθ

〉
�〈

exp{−U�+Y ◦ ξθ
〉
�

f ∈ C∞
0 (�) � ∈ F .

Note that if � has a finite range, the same is true for �θ .

Lemma 4.1. Assume (3.1). Then for all cubes �n = [−n, n]d ∩ Z
d and �l = [−l, l]d ∩ Z

d

satisfying �l − Y ⊆ �n, and for every f ∈ C�l (�) one has〈
f ◦ ξθ

〉
�n

= 〈f 〉�n = 〈f 〉�l .

Proof. Let�n,�l be such that�l − Y ⊆ �n. The proof will be completed as soon as we can
show that the following transformation of variables:

ηk =
{
ωk if k ∈ �n \ (�l − Y )(
ξθ (ω)

)
k

if k ∈ �l − Y

preserves the measure µ0 on �n = (S1)�n . To this end we introduce a lexicographic order
{ki}, i = 1, . . . , |�n| in �n satisfying{

ki : i = 1, . . . , |�n \ (�l − Y )|
} = �n \ (�l − Y )

and for i > |�n \ (�l − Y )|,
(ki − Y ) ∩ (�l − Y ) = {kr : |�n \ (�l − Y )| < r � i}.

The existence of such an order is guaranteed by (3.1). Now consider the Jacobian matrix

A =
{
∂ηki

∂ωkj

}
i, j = 1, . . . , |�n|.

Clearly, A is an upper-triangular matrix. Since a0 ∈ {−1, 1}, the elements on its diagonal are
from {−1, 1}. Thus | detA| = 1, which completes the proof. �

Lemma 4.2. Assume that the hypothesis of theorem 3.1 is fulfilled. Let µ̃ ∈ G−Y (�θ). Then
µ̃f ◦ ξθ = µf for every f ∈ C0(�).
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Proof. Let µ̃ ∈ G−Y (�θ). Then there is a sequence {nj } such that

µ̃f = lim
j→∞

〈
f exp{−Ũ (nj )}〉

�nj〈
exp{−Ũ (nj )}〉

�nj

f ∈ C0(�)

where

Ũ (n) = −
∑

X∈F : X−Y⊆�n
�θX.

Since µ is a unique Gibbs measure for E(�), lemma 2.1 yields that there is a subsequence
{mj } of {nj } such that

µf = lim
j→∞

〈
f exp{−U(mj )}〉

�mj〈
exp{−U(mj )}〉

�mj

f ∈ C0(�)

where

U(n) = −
∑

X∈F : X−Y−Y⊆�n
�X.

Now note that

Ũ (n) = −
∑

X∈F : X−Y⊆�n
�θX = −

∑
X̃∈F : X̃−Y−Y⊆�n

�X̃ ◦ ξθ = U(n) ◦ ξθ .

Thus, for any f ∈ C0(�), we have

µ̃f ◦ ξθ = lim
j→∞

〈
(f exp{−U(mj )}) ◦ ξθ

〉
�mj〈

exp{−U(mj )} ◦ ξθ
〉
�mj

f ∈ C0(�).

Combining this with (4.1) and lemma 4.1 we obtain the desired conclusion. �

Proof of theorem 3.1. Let us observe that

∇k(f ◦ ξθ ) =
( ∑
j∈k+Y

aj−k∇j f
)

◦ ξθ for f ∈ C∞
0 (�) k ∈ Z

d .

Thus

D(f ◦ ξθ ) = Kθ (f ) ◦ ξθ for f ∈ C∞
0 (�) k ∈ Z

d .

Now assume that µ ∈ G(�) satisfies SG(Kθ ). Let µ̃ ∈ G−Y (�θ). Then, by lemma 4.2 for any
f ∈ C∞

0 (�) we have

µ̃
(
f ◦ ξθ − µ̃f ◦ ξθ

)2 = µ(f − µf )2 � CµKθ (f ) = Cµ̃Kθ (f ) ◦ ξθ
� Cµ̃D(f ◦ ξθ ).

Since f �→ f ◦ξθ is a bijection onC∞
0 (�), µ̃ satisfies SG(D). Assume now that µ̃ ∈ G−Y (�θ)

satisfies SG(D). Then for all f we have

µ
(
f − µf )2 = µ̃(f ◦ ξθ − µ̃f ◦ ξθ

)2 � Cµ̃D(f ◦ ξθ ) � CµKθ (f ).
Thus µ satisfies SG(Kθ ), and the proof of the first part of the theorem is completed. The
same arguments can be applied in a proof of the second part concerning logarithmic Sobolev
inequalities. �
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5. Dobrushin–Shlosman mixing and logarithmic Sobolev inequalities

Definition 5.1. We say that the local specification E(�) satisfies the Dobrushin–Shlosman
mixing condition iff there is an X ∈ F with 0 ∈ X, and a family of non-negative numbers αl,j
for l 
∈ X and j ∈ X such that

β = 1 − 1

|X|
∑

l 
∈X,j∈X
αl,j > 0 (5.1)

and for all l 
∈ X, k ∈ Z
d , f ∈ C∞

0 (�) and Z ⊆ X one has

‖∂l+kEk+Zf − Ek+Z∂l+kf ‖u �
∑
j∈X
αl,j‖∂j+kf ‖u. (5.2)

Remark 5.1. Note that if the potential family is shift-invariant, then it satisfies the Dobrushin–
Shlosman condition iff (5.1) holds and if (5.2) is satisfied for k = 0.

Remark 5.2. The Dobrushin–Shlosman condition ensures the uniqueness of the Gibbs
measure µ for E(�) (see, e.g., [S]).

For further references we recall the following result of Stroock and Zegarlinski (see, e.g.,
[S, SZ1], or [SZ2]).

Theorem 5.1. Assume that� is a C2 potential of finite range, and that the local specification
E(�) satisfies the Dobrushin–Shlosman mixing condition. Then the unique Gibbs measure µ
satisfies LS(D).
As a direct consequence of theorems 3.1 and 5.1 we have;

Corollary 5.1. Let � be a C2 potential of finite range. If E(�) and E(�θ) satisfy the
Dobrushin–Shlosman mixing condition, then the unique Gibbs measure µ ∈ G(�) satisfies
LS(Kθ ).

In the next result we show that there always exists a high-temperature region where our
conditions are satisfied.

Proposition 5.1 (Small potential case). Let � be a C2 potential of a finite range R. Assume
that

sup
k∈Zd

‖U{k+Y }‖u <
1
4 log

(
1 + (R + diam Y )−1

)
sup
k∈Zd

‖Uk‖u <
1
4 log

(
1 + R−1

)
.

(5.3)

Then there is a unique Gibbs measure µ for E(�), and µ satisfies LS(Kθ ).

Proof. Note that the range of�θ is less than or equal toR+diam Y . According to corollary 5.1
it is enough to show that (5.3) implies that E(�θ) and E(�) satisfy the Dobrushin–Shlosman
mixing condition with X = {0}. To do this we have to prove that there are positive constants
α and α̃ satisfying (R + diam Y )α < 1 and Rα̃ < 1 such that

‖∂lEθkf − E
θ
k∂lf ‖u � α‖∂kf ‖u for all k 
= l and f ∈ C∞

0 (�) (5.4)

and

‖∂lEkf − Ek∂lf ‖u � α̃‖∂kf ‖u for all k 
= l and f ∈ C∞
0 (�). (5.5)
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Let k, l ∈ Z
d , k 
= l. Note that for all f and ω we have[

∂l,E
θ
k

]
f (ω) = (

∂lE
θ
kf − E

θ
k∂lf

)
(ω)

=
∫
�

∫
�

(
ρk(x •l (y •k ω))− ρk(y •k ω)

)
f (x •l (y •k ω))µ(dx)µ(dy)

where the density ρk of E
θ
k is given by

ρk(ω) = exp{−Uθk (ω)}〈
exp{−Uθk }(ω)

ω ∈ �.

Using (4.1) we obtain

ρk(ω) = exp{−Uk+Y ◦ ξθ (ω)}〈
exp{−Uk+Y ◦ ξθ }(ω)

ω ∈ �.

Since ∫
�

ρk(x •l (y •k ω))µ0(dy) = 1 =
∫
�

ρk(y •k ω)µ0(dy)

we have[
∂l,E

θ
k

]
f (ω) = −

∫
�

∫
�

(ρk(x •l (y •k ω))− ρk(y •k ω))(∂kf )(x •l (y •k ω))µ0(dx)µ0(dy).

Thus (5.4) holds true with

α = sup
k

sup
x,y,ω∈�

(
ρk(x •l (y •k ω))
ρk(y •k ω) − 1

)
� sup

k

sup
ω,v∈�

ρk(ω)

ρk(v)
− 1

� sup
k

exp{4‖Uk+Y‖u} − 1

having the desired property. In the same way one can show that (5.3) yields (5.5) withRα̃ < 1.
�

6. A class of infinite-volume stochastic dynamics

In this section we briefly describe the construction of an infinite-volume Markov semigroup
corresponding to a general square of the field form K. We consider a configuration space given
by a product space � ≡ MZ

d

, where M is a smooth compact and connected Riemannian
manifold. Let W ≡ {Wi}i∈Zd be a collection of C∞ vector fields defined as a following lift of
the given smooth vector fields wi on M :

Wif (ω) ≡ wif (ωi |ω).
Given a finite set Y we define the following vector fields on �:

WY ≡
∑
j∈Y
Wj .

With this notation we introduce the following square of the field forms:

K(f ) ≡
∑
k∈Zd

(Wk+Y f )
2
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with a domain including smooth cylinder functions f ∈ C∞
0 (�). Given a local specification

E(�) corresponding to a smooth potential of finite range, we can now introduce the following
elementary Markov operators on C2(�):

LY f ≡ W 2
Y f + βY ·WYf

where we have set

βY ≡ divWY +WYUY

with

divWY ≡
∑
j∈Y

divj Wj

and divj Wj is defined by the corresponding lift of divwj on the manifold M . With this
notation one can see that

EY (WYf )
2 = EY (f (−LY f )).

For later purposes we introduce the following free Markov generator:

L0 ≡
∑
k∈Zd

W 2
k+Y f.

We note that L0 is local, that is for any f ∈ C2 dependent only on ωj , j ∈ �f , one has

L0f =
∑
k∈Zd

W 2
(k+Y )∩�f f

and therefore �L0f ⊂ �f . This property allows us to easily define a Markov semigroup
P 0
t ≡ etL

0
on C0(�). For any finite set � ∈ F we introduce a finite-volume generator

L�f ≡ L0f +
∑
k

β(k+Y )∩� ·W(k+Y )∩�f

with a convention that β∅ ≡ 0. We note that L� is again local and therefore it is easy to
construct the corresponding Markov semigroup P (�)t ≡ etL� on C0(�).

With the above assumptions and notation the following result is true.

Theorem 6.1. Suppose that

sup
k∈Zd ,X⊂Y

‖βk+X‖u <∞

and

D ≡ sup
k∈Zd ,Z,�∈F :|Z|�|Y |

‖WZ(β(k+Y )∩�)‖u <∞.

Then for any f ∈ C1
0(�) the following limit exists:

Ptf ≡ lim
�→∞

P
(�)
t f

with the generator L satisfying

µ(f (−Lf )) = K(f ).
Moreover, the following exponential approximation property is true: for anyA ∈ (0,∞) there
is B ∈ (0,∞) such that

‖Ptf − P (�)t f ‖u � e−AtC(f )

with some constant C(f ) ∈ (0,∞) dependent only on f and the field W , provided that

dist(�f ,Z
d \�) � Bt.
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Proof. For �1 ∈ F and �2 ≡ �1 ∪ {i}, we have

P
(�2)
t f − P (�1)

t f =
∫ t

0
ds

d

ds
P
(�1)
t−s P

(�2)
s f =

∫ t

0
ds P (�1)

t−s (L�2 − L�1)P
(�2)
s f. (6.1)

Next we note that

(L�2 − L�1)F =
∑

k:dist(k+Y,i)�R

[
β(k+Y )∩�2W(k+Y )∩�2 − β(k+Y )∩�1W(k+Y )∩�1

]
(6.2)

whereR is the range of the interaction. Hence taking into the account that we consider Markov
semigroups here, we obtain

‖P (�2)
t f − P (�1)

t f ‖u � sup
k∈Zd ,X⊂Y

‖βk+X‖u

∑
Z: ∃k dist(k+Y,i)�R,Z⊂k+Y

∫ t

0
ds ‖WZP (�2)

s f ‖u. (6.3)

Thus to complete the proof it is sufficient to obtain a bound for ‖WZP (�2)
s f ‖u for Z ⊂ k + Y ,

k ∈ Z
d . To this end we note that

WZP
(�2)
s f = P (�2)

s WZf +
∫ s

0
dτP (�2)

s−τ [WZ,L�2 ]P (�2)
τ f. (6.4)

Noting that [WZ,L0] = 0 we have

[WZ,L�2 ] =
[
WZ,

∑
k

β(k+Y )∩�2W(k+Y )∩�2

]

=
∑

k:dist(Z,(k+Y )∩�2)�R
WZ(β(k+Y )∩�2)W(k+Y )∩�2 . (6.5)

From (6.4) and (6.5) we conclude that

‖WZP (�2)
s f ‖u � ‖WZf ‖u +D

∑
k:dist(Z,(k+Y )∩�2)�R

∫ s

0
dτ ‖W(k+Y )∩�2P

(�2)
s f ‖u (6.6)

with

D ≡ sup
k∈Zd ,Z,�∈F :|Z|�|Y |

‖WZ(β(k+Y )∩�)‖u.

Given the inequality (6.6) the rest of the proof goes in a standard way (see, e.g., [GZ1]). �

7. Exponential decay to equilibrium for Kawasaki dynamics

Let the single spin space be given by S1. We choose Y to be a set consisting of the origin
and one of its nearest neighbours i1 and a = {−1,+1}. Then by theorem 3.1 a unique Gibbs
measure µ� related to a finite-range potential � satisfies SG or LS with the corresponding
form

K̄(f ) ≡
∑
k

|(∇k+i1 − ∇k)f |2

provided these inequalities remain true for a unique Gibbs measure µ�θ with the diagonal
form. This naturally implies that SG, respectively, LS, is true for the form

K(f ) ≡
∑

j,k:|j−k|=1

|(∇k − ∇j )f |2
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which is not smaller than K̄. As we have indicated in section 5 such a situation is true for
any potential of finite range, provided the temperature of the system is sufficiently high (cf
proposition 5.1). In particular, if LS(K) is satisfied, then the corresponding semigroup is
hypercontractive. This together with the strong approximation property (theorem 6.1) allows
one to apply the general strategy of Holley and Stroock (see, e.g., [SZ1]) to prove the uniform
exponential decay to equilibrium. Thus we conclude with the following result.

Theorem 7.1. Suppose for a finite-range potential �, the local specification E(�θ) satisfies
the mixing condition. Then the Kawasaki dynamics Pt ≡ etL is strongly exponentially ergodic,
that is for any function f ∈ C1

0(�) we have

‖Ptf − µ�f ‖u � Cαe−αmt∑
k

‖∇kf ‖u

with m ≡ gap
L2(µ)

(−L) and any α ∈ (0, 1) with a constant Cα ≡ Cα(�f ) dependent only on
�f and the choice of α.

We stress that our mixing requirement involves the transformed potential. We note that
the conditions are always satisfied in one dimension (as our transformation ξθ transforms
finite-range potentials into finite-range potentials). Clearly, in higher dimensions the domain
of strong mixing may depend on the potential (but in any case there always exists a non-trivial
high-temperature region where the required mixing is true).
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[F] Faris W G 1979 The stochastic Heisenberg model J. Funct. Anal. 32 342–52
[GZ1] Guionnet A and Zegarlinski B 1996 Decay to equilibrium in random spin systems on a lattice Commun.

Math. Phys. 181 703–32
[GZ2] Guionnet A and Zegarlinski B 1997 Decay to equilibrium in random spin systems on a lattice, II J. Stat.

Phys. 86 899–904
[HS1] Holley R and Stroock D W 1981 Diffusions on an infinite-dimensional torus J. Funct. Anal. 42 29–63
[HS2] Holley R and Stroock D 1987 Logarithmic Sobolev inequalities and stochastic Ising models J. Stat. Phys.

46 1159–94
[JLQY] Janvresse E, Landim C, Quastel J and Yau H T Relaxation to equilibrium of conservative dynamics I: zero

range processes Preprint
[LY] Lu S L and Yau H T 1993 Spectral gap and logarithmic Sobolev inequality for Kawasaki dynamics and

Glauber dynamics Commun. Math. Phys. 156 399–433
[S] Stroock D W 1993 Logarithmic Sobolev inequalities for Gibbs states Dirichlet forms Lectures Given at the

1st Session of the Centro Internazionale Matematico Estivo (CIME) (Varenna, 1992) (Lecture Notes in
Mathematics vol 1563) ed G Dell’Antonio and U Moscom (Berlin: Springer) pp 194–230



5912 G Kondrat et al

[SZ1] Stroock D W and Zegarlinski B 1992 Logarithmic Sobolev inequality for continuous spin system J. Funct.
Anal. 104 299–326

[SZ2] Stroock D W and Zegarlinski B 1992 The equivalence of the logarithmic Sobolev inequality and the
Dobrushin–Shlosman mixing condition Commun. Math. Phys. 149 175–93

[W] Wick W D 1981 Convergence to equilibrium of the stochastic Heisenberg model Commun. Math. Phys. 81
361–77

[ZZ] Zhengping Zhang 1995 Generalized Kawasaki dynamics of the Heisenberg model Phys. Rev. E 51 4155–8



Three types of outflow dynamics on square and triangular lattices and universal scaling

Grzegorz Kondrat and Katarzyna Sznajd-Weron*
Institute of Theoretical Physics, University of Wrocław, pl. Maxa Borna 9, 50-204 Wrocław, Poland

�Received 3 June 2007; revised manuscript received 11 November 2007; published 27 February 2008�

In this paper we propose a generalization of the one-dimensional outflow dynamics �KD�. The rule is
introduced as a simplification of Galam dynamics �GD� proposed in an earlier paper. We simulate three types
of outflow dynamics, GD, Stauffer et al. dynamics, and KD, both on the square and triangular lattices and show
whether the outflow dynamics is sensitive to the lattice structure. Moreover, we took into account several types
of initial configuration—random, “stripes,” and “circle.” We investigate the dependence between the mean
relaxation time and the initial density p of up-spins for each type of initial conditions, as well as dependence
between the mean relaxation time and the size of the system. As a result, we show differences and similarities
between three types of the outflow dynamics.
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I. INTRODUCTION

The outflow dynamics was introduced to describe the
opinion change in society. The idea was based on the funda-
mental social phenomenon called “social validation.”

Under the outflow dynamics a system eventually always
reaches consensus, like in the famous voter model �1–3�.
Several other models describing opinion dynamics were in-
troduced by Deffuant �4�, Hegselmann and Krause �5�,
Krapivsky and Redner �6�, and Galam �7�.

In this paper, however, we do not focus on social appli-
cations of our model �for those interested, reviews can be
found in Refs. �8–11��. On the contrary, we investigate here
the dynamics from the theoretical point of view.

In this paper we pay particular attention to a generaliza-
tion of the one-dimensional outflow dynamics to higher di-
mensions. Several possibilities of such a generalization to the
square lattice were proposed by Stauffer et al. �12� �see Sec.
II� but only some of them were used in the later literature
�8–11�. In Ref. �13� we presented comparative studies of the
two most interesting generalizations out of all proposed in
Ref. �12�. Only slight quantitative differences have been
found between these two generalizations.

The outflow dynamics on the triangular lattice were con-
sidered only in one paper �14�. In this paper the author stud-
ied the generalization of the Sznajd model to the triangular
lattice with spreading of mixed opinion and with the pure
antiferromagnetic opinion—a pair of two neighboring spins
on a triangular lattice influenced its eight neighbors.

Up till now no studies on the influence of the lattice ge-
ometry, in the case of regular lattices, for spins endowed with
the outflow dynamics were provided. However, the influence
of the topology for the relaxation under the outflow dynam-
ics in a case of complex networks has been investigated in
Refs. �15–18�. In Ref. �15� the time evolution of the system
was studied using different network topologies, starting from
different initial opinion densities. A transition from consen-
sus in one opinion to the other was found at the same per-

centage of initial distribution no matter which type of com-
plex network was used. On the other hand, results presented
in Ref. �19� suggest that lattice geometry may influence the
network dynamics.

In a broad sense the notion of consensus in a network is a
particular case of what can be called coherence or full syn-
chronization between sets of coupled elements, subject to
some sort of local dynamics or updating rule �19,20�. In the
paper �19� the influence of lattice geometry in network dy-
namics, using a binary cellular automaton with nearest-
neighbor interactions, has been studied. It was shown that
geometric structures are more cohesive than others, tending
to keep a given initial configuration.

The first general question we pose in this paper is the
following: Is the outflow dynamics sensitive to the lattice
topology �like in the case of binary cellular automaton on
regular networks �19�� or not �as suggested in the case of
complex networks �15��? To answer this question we present
results for several types of the outflow dynamics on the
square and triangular lattices coming from regular studies on
the mean relaxation time.

The second question we pose in this paper is connected to
the differences between particular forms of the outflow dy-
namics. As mentioned above, several generalizations
�12,14–18� from one to higher dimensions were proposed,
but no regular comparative studies were provided. In Ref.
�13� we presented comparative studies of two types of the
outflow dynamics on the square lattice and we found no
qualitative differences. However, we did not check how the
results would change with a lattice topology or with the type
of initial conditions. To complete this approach we decided
here to treat the matter systematically. Moreover, we intro-
duce in this paper one more type of generalization of one-
dimensional outflow dynamics into two dimensions, which is
a simplification of one of the dynamics studied in Ref. �13�.
All three dynamics are simulated both on square and trian-
gular lattices. We start from different initial densities of up-
spins in several types of initial conditions. We measure the
mean relaxation time as a function of initial densities of up-
spins as well as the dependence between the mean relaxation
time and the lattice size. We show that in some cases univer-
sal scaling laws exist, while in others they do not.
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II. MODEL

In this paper we consider the generalizations of the one-
dimensional outflow dynamics to higher dimensions. Let us
begin with recalling the one-dimensional outflow dynamics,
described in detail in Ref. �21�. In the original model �22� the
pair of neighboring spins Si and Si+1 have been chosen and if
SiSi+1=1 the two neighbors of the pair followed its direction,
i.e., Si−1→Si�=Si+1� and Si+2→Si+1�=Si�. Such a rule has
been used also in all later papers dealing with the one-
dimensional case of the model. However, the case in which
SiSi+1=−1 was noted as far less obvious. Several possibilities
has been proposed up till now and in general one-
dimensional outflow dynamics can be written as �21�:

Si�� + 1�

= �1 if Si+1��� + Si+2��� � 0,

− Si��� with prob W0 if Si+1��� + Si+2��� = 0,

− 1 if Si+1��� + Si+2��� � 0.
�
�1�

The most known case is for W0=0 and also this case has
been generalized into two dimensions. Several possibilities
of such a generalization to the square lattice were proposed
by Stauffer et al. �12�. Six different rules were introduced,
but only the following two have been used in later publica-
tions: A 2�2 panel of four neighbors leaves its eight neigh-
bors unchanged, if all four center spins are not parallel �see
Fig. 1�; a neighboring pair persuades its six neighbors to
follow the pair orientation if and only if the two pair spins
are parallel.

With both these rules complete consensus is always
reached as a steady state. Moreover, a phase transition is
observed—initial densities below 1/2 of up-spins lead to all
spins down and densities above 1/2 to all spins up for large
enough systems �12�.

Galam �see Stauffer �12�� showed that the updating rule of
the one-dimensional SM can be transformed exactly into two
dimensions in the following way �see Fig. 2�: The one-
dimensional rule is applied to each of the four chains of four
spins each, centered about two horizontal and two vertical
pairs.

In Ref. �13� we compared two rules in which a panel of
four spins influenced eight nearest neighbors, i.e., Galam
�Galam dynamics �GD�� and the first of Stauffer et al. rules
�Stauffer et al. dynamics �SD�� on the square lattice. This
comparison seems to be quite important, since Stauffer et al.
generalization is more attractive from a social point of view,
while the Galam rule is much easier for generalization to
other systems �in particular, it was used in the so-called TC
model �23,24��. No qualitative difference has been found be-
tween these two dynamics.

Here we propose further simplification of the GD—the
one-dimensional rule is applied not to each but only one
randomly selected chain of four spins �see Fig. 3�. The one
invented by one of us �G.K.� and introduced here is the dy-
namics we call KD.

FIG. 1. Stauffer et al. dynamical rules of SM on the square
�upper panel� and triangular �bottom� lattice. On the square lattice a
2�2 panel of four neighbors �elementary cell� leaves its eight
neighbors unchanged, if all four center spins are not parallel. On the
triangular lattice a panel of three spins �elementary cell� influences
six neighbors along three chains of four spins each, centered about
the panel.

FIG. 2. Galam’s dynamical rules of SM on the square �upper
panel� and triangular �bottom� lattice. The one-dimensional rule is
applied to each of the four �on the square lattice� or three �on the
triangular lattice� chains of four spins each, centered about the el-
ementary cell.

FIG. 3. K dynamics of SM on the square and triangular lattice.
The one-dimensional rule is applied to only one, randomly selected
chain of four spins, centered about elementary cell.
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We compare all three dynamics �SD, GD, and KD� on the
square and triangular lattices. As in the previous paper �13�
we measure the mean relaxation time from an initial state
consisting of p up-spins. However, in this paper we consider
not only random initial configuration but also two types of
ordered initial conditions.

III. RELAXATION TIME FROM RANDOM INITIAL
CONDITIONS

We have measured the mean relaxation time from a ran-
dom initial state consisting of p up-spins for all three types
of the outflow dynamics on the square and triangular lattices
L�L using Monte Carlo simulations �we adopted here peri-
odic boundary conditions�. We have averaged the relaxation
time over 103 samples. It should be noticed that in SD �Fig.
1� and GD �Fig. 2� fmax=8 spins �on the square lattice� and
fmax=6 spins �on the triangular lattice� can be changed at
maximum in elementary time step, while only two spins can
be changed within KD �on both lattices�, i.e., fmax=2 �see
Fig. 3�. To compare relaxation times properly we have di-
vided them by fmax.

We have found the phase transition for all dynamics—for
p�0.5 the “all spins up” state is never reached, while for
p�0.5 this state is obtained with probability 1 �the same
result was obtained previously in Ref. �12,13� on the square
lattice�. Moreover, critical slowing down is observed at p
=0.5 �see Fig. 4�. For L→� we expect the ��0.5� function.

It is seen �Fig. 4� that for p=0.5, i.e., in the critical point,
GD is the fastest dynamics on both lattices, while KD is
definitely the slowest one:

�GD�0.5� � �SD�0.5� � �KD�0.5� . �2�

However from Fig. 4 this is not visible if the relation �4� is
valid also outside the critical point. If we look at Fig. 5 we

see that for p�0.5 the situation is completely reversed and,
in general,

�GD�p � 0.5� � �SD�p � 0.5� � �KD�p � 0.5� . �3�

We should now address a very intriguing question—why is
the dynamics which is the slowest in the critical point the
fastest outside this point and vice versa? Is it connected
somehow to a spatial structure which is created for a differ-
ent initial concentration p of up-spins? It can be observed
that for p�0.5 a concentration c�t� of up-spins decreases
very fast and after a short time �50–200 MCS� small compact
clusters of up-spins are created �Fig. 6�. On the contrary, for
p=0.5 initially concentration of up-spins does not change
significantly and only fluctuates around c�0�= p but the sys-
tem orders and after a short time �50–200 MCS� a large
cluster of up-spins is created �Fig. 6�

To check this hypothesis, in the next two sections �i.e., in
Secs. IV and V� we investigate the evolution of the system
under three outflow dynamics from the following two types
of ordered initial conditions. �1� “Stripes:” Initially, the sys-
tem is divided by the straight border into two horizontal
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FIG. 4. Comparison of mean relaxation times under three rules
�SD, GD, and KD� from a random initial state consisting of p up-
spins for two types of two-dimensional lattices—square �upper
panel� and triangular �bottom�. In each plot results for several lat-
tice sizes, from L=50 ��� to L=100 ���, are presented. It is clearly
seen that KD for p=0.5 is the slowest dynamics on both lattices.
Results are averaged over 103 samples.
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FIG. 5. Comparison of mean relaxation times under three rules
�SD, GD, and KD� from a random initial state consisting of p
�0.5 up-spins for a two-dimensional triangular lattice of 104 nodes.
It can be seen that KD for p�0.5 is the fastest dynamics among all
three dynamics. The same result was obtained also for the square
lattice. All results are averaged over 103 samples.

FIG. 6. Configurations of the system under outflow dynamics
�type KD� after 200 MCS from a random initial state consisting of
p=0.45 �left panel, present density of up-spins is 0.2513� and p
=0.5 �right panel, present density of up-spins is 0.5225� up-spins
for a two-dimensional square lattice of 104 nodes. The same results
are observed for all three dynamics.
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stripes—pL-width stripe of up-spins and �1− p�L-width
stripe of down-spins, i.e., p is again the initial density of
up-spins. �2� “Circle:” Initially, a single compact round clus-
ter of up-spins in the middle of the lattice consists of down-
spins; p is again the initial density of up-spins.

IV. RELAXATION TIME FROM “STRIPES”

In this section we investigate the relaxation of the system
under three types of outflow dynamics from the ordered ini-
tial conditions which we call “stripes”—initially the system
is divided by the straight border into two horizontal stripes:
pL-width stripe of up-spins and �1− p�L-width stripe of
down-spins, i.e., p is again the initial density of up-spins. For
“stripes” no phase transition is observed. Moreover, relax-
ation under GD is the fastest, while under KD it is the slow-
est among all three dynamics for all values of initial density
of up-spins p �Fig. 7�. The same result was obtained for
random initial conditions with p=0.5, i.e., in the critical
point �Fig. 4�:

�GD � �SD � �KD. �4�

As we have seen in the previous section for random initial
conditions and p=0.5 after a short time a large cluster of
up-spins is created �Fig. 6� for all three dynamics. Here we
can see that large clusters �stripes� are most unstable under
GD and most stable under KD. These results may explain
why relaxation from random initial conditions for p=0.5 is
fastest under GD and slowest under KD.

The second interesting result connected with the relax-
ation from “stripes” is the lack of the phase transition. How-
ever, this could be understood looking at the evolution of the
system’s configuration. In Fig. 8 snapshots of the sample
relaxation under SD on a two-dimensional square lattice is
presented. It is seen that relaxation from “stripes” is quasi-
one-dimensional in a sense that the structure of the stripes is
conserved, although the border between them is no longer
straight but rough. Evolution consists of movement of the

stripes, roughening the border between them and changing
the width of the stripes. Eventually, one of the stripes breaks
at one point to form a simply connected cluster and from this
moment the evolution leads the system very fast to the final
state with all spins in the same state. The same scenario was
observed for all three dynamics and for all values of p. It
should be mentioned here that “stripes” configuration is the
steady state of zero-temperature Glauber dynamics. Several
years ago the following question was raised by Spirin et al.
�28,29�: “What happens when an Ising ferromagnet, with
spins endowed with Glauber dynamics, is suddenly cooled
from a high temperature to zero temperature?” The first ex-
pectation was that the system should eventually reach the
ground state. However, this is true only for a one-
dimensional system. On the square lattice there exist many
metastable states that consist of alternating vertical �or hori-
zontal� stripes of widths �2. These arise because a straight
boundary between up and down phases is stable in zero-
temperature Glauber dynamics. As we see this is not the case
of the outflow dynamics under which the system eventually
always reaches the ground state. This result is certainly also
a contribution to the discussion about differences between
inflow �zero-temperature Glauber� and outflow dynamics
�see �21� and references therein�.

Thus the lack of the phase transition from “stripes” can
probably be explained by the absence of the phase transition
in one-dimensional outflow dynamics described by the for-
mula �1� �see also �21��. In Fig. 9 the mean relaxation times
from a random initial state consisting of p up-spins for out-
flow dynamics in one dimension with W0=0 is presented for
several lattice sizes. The case of W0 is consistent with defi-
nitions of our two-dimensional dynamics, i.e., under one-
dimensional outflow dynamics the pair of neighboring spins
Si and Si+1 is chosen and if SiSi+1=1 then the two nearest
neighbors of the pair follow its direction. It is seen that no
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FIG. 7. Mean relaxation times under three rules �SD, GD, and
KD� for a two-dimensional L�L square lattice �L=100, i.e., 104

nodes�. Initially the system is divided by the straight border into
two horizontal stripes: pL-width stripe of up-spins and
�1− p�L-width stripe of down-spins. Results are averaged over 103

samples.

FIG. 8. Snapshots of the sample relaxation under SD on a two-
dimensional L�L square lattice �L=100, i.e., 104 nodes�. Initially
the system is divided by the straight border into two equal horizon-
tal stripes. Here p=0.5.
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phase transition is observed. Moreover, the mean relaxation
time � perfectly scales with the size of the system L as �
�L2 for all p. The same scaling law has been obtained al-
ready for other one-dimensional consensus dynamics like
zero-temperature Glauber dynamics or voter model and can
be calculated analytically �1–3�.

The similarity between relaxation under one-dimensional
dynamics and relaxation under outflow dynamics from
“stripes” in two dimensions suggests the existence of a simi-
lar scaling law between the mean relaxation time ��	 and the
size N=L�L of the system also in two dimensions. The
mean relaxation times from “stripes” consisting of p up-spins
for several lattice sizes are presented in Fig. 10. It was ob-
tained that the relaxation time can be scaled with the sys-
tem’s size for all three dynamics with the same scaling ex-
ponent ��La, a
3.5 �see Fig. 10�.

V. RELAXATION TIME FROM “CIRCLE”

In this section we briefly present the results for the relax-
ation of the system under three types of outflow dynamics
from the ordered initial conditions which we call “circle”—
initially there is a single compact round cluster of up-spins in
the middle of the lattice consisting of down-spins. As we
have seen in Fig. 6 starting from random initial conditions
the evolution after short times creates small compact isolated
clusters. On the other hand, it was observed that for random
initial conditions and p�0.5 relaxation under KD is fastest,
while under GD it is slowest among all three dynamics.
Simulations from the “circle” type of initial conditions can
help in understanding this relation �see Eq. �3��.

In Fig. 11 we present the mean relaxation times under
three rules �SD, GD, and KD� for small two-dimensional L
�L triangular lattice �L=25, i.e., 625 nodes� in the case of
“circle” initial conditions consisting of pL2 up-spins �i.e., p
is again density of up-spins�. It can be seen that in this case
we have
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FIG. 9. Mean relaxation times from a random initial state con-
sisting of p up-spins for outflow dynamics in one dimension are
presented for several lattice sizes. Under one-dimensional outflow
dynamics the pair of neighboring spins Si and Si+1 is chosen and if
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rection. It is clearly visible that in this case the mean relaxation time
scales with the lattice size as �L2 analogous to the voter model
�1–3�. The results presented on the plot are averaged over 104
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FIG. 11. Mean relaxation times under three rules �SD, GD, and
KD� for a small two-dimensional L�L triangular lattice �L=25,
i.e., 625 nodes�. Initially there is a single compact round cluster of
up-spins of radius R
L�p /	 �the value of p=0.1 corresponds here
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�KD � �SD 
 �GD. �5�

This behavior is similar to the case of random initial condi-
tions with p�0.5, where KD was also the fastest one.

This result shows that small round clusters are more
stable under GD, contrary to infinite clusters �like stripes�
which are most stable for KD. Summarizing results for ran-
dom, “stripes,” and “circle” initial conditions, we obtain the
following:

�KD � �SD � �GD

“stripes” for all p and random initial conditions for p=0.5,

�KD � �SD � �GD

random initial conditions for p=0.5, and

�KD � �SD 
 �GD

“circle” for p investigated.

VI. IS THE SCALING UNIVERSAL?

It has been found both analytically and numerically that
dependence between the mean relaxation time � and the size
of the system L can be expressed by a simple scaling law
��L2 in the case of a one-dimensional voter model �1–3�.
The same scaling is valid also for relaxation in one dimen-
sion under zero-temperature Glauber �inflow� dynamics as
well as outflow dynamics �see Fig. 9�.

In two dimensions a situation is much more complicated.
It was found that for a two-dimensional voter model from
random initial conditions and p=0.5 the following scaling
law is valid: ��N log N �1–3�. However, this scaling law is
valid neither for two-dimensional inflow nor outflow dynam-
ics. It was observed �27–31� that for the Ising ferromagnet
with spins endowed with zero-temperature Glauber dynam-
ics there exist many metastable states that consist of alternat-
ing vertical �or horizontal� stripes of widths �2. If we start
from random initial conditions and let the system evolve
under inflow dynamics, we eventually reach the final
“stripes” configuration in 1/3 of the simulations �28�. Be-
cause a straight boundary between up and down phases is
stable in zero-temperature Glauber dynamics we will never
leave such a “stripe” state—for this reason the mean relax-
ation time is infinite. As we have seen in previous sections
�Secs. III and IV�, this is not the case for outflow dynamics
under which the system eventually always reaches the
ground state.

The question is whether the scaling law obtained for the
two-dimensional voter model is valid in the case of outflow
dynamics. Up till now we have found the scaling law for
systems endowed with outflow dynamics initially ordered in
“stripes” configuration �see Fig. 7�. In this case the mean
relaxation time � scales with the system size N=L�L as �
�Ł3.5 for all three outflow dynamics both on the square and
triangular lattice. However, this scaling is not valid in a case
of random initial conditions. It occurs that for random initial
conditions with the density p of up-spins we can find
p-dependent scaling laws: ��La�p� �see Fig. 12�.

As we see for consensus dynamics with binary variables,
scaling laws are universal in one dimension. It should be

mentioned here that all these results have been obtained in
the case of random sequential updating. It would be interest-
ing for future work to check whether the same scaling is
obtained for other types of updating such as, e.g., synchro-
nous or c-synchronous updating �21�.

Contrary to one dimension, even within the outflow dy-
namics no single scaling law can be found in two
dimensions—it depends strongly on the initial configuration
of the system. However, a very intriguing result connected
with scaling can be obtained if we look at the distribution of
relaxation times instead of mean relaxation time alone.

VII. DISTRIBUTION OF RELAXATION TIMES

In the mean field approach �25� and in a one-dimensional
system it has been found that the distribution of waiting
times has an exponential tail with a p-independent exponent.
Results for the square lattice for SD and GD were presented
in Ref. �13�. Under both dynamics the distribution of relax-
ation times has an exponential tail, but the exponent is
p-dependent. Interestingly, the dependence between the ex-
ponent and the initial number of up-spins is identical for both
dynamics. It should be mentioned here that in Ref. �12� it
was shown that for p=0.5 the distribution of relaxation times
deviates from the log-normal distribution for SD. However,
they plotted a histogram �i.e., an estimate of the probability
distribution function� instead of the cumulative distribution
function �CDF� and presented it in the log-log scale. In Ref.
�13� to compare our results with the results obtained in Ref.
�12� we calculated both the cumulative distribution function
�in fact, the tail 1−CDF� and the histogram of relaxation
times. It occurs that our results agree with those presented in
Ref. �12�. Already in Ref. �13� the deviation from single
exponential decay has been visible. However, for large relax-
ation times exponential decay for both the histogram and the
cumulative distribution function tail was observed in agree-
ment with the results obtained by Slanina and Lavicka for
the complete graph �25� and with Schulze �26� who got an
exponential decay on the square lattice by introducing both
local and global interactions.

In this paper we will not present the histogram of the
relaxation times. Instead we focus only on the tail of the
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FIG. 12. Scaling of the mean relaxation time with the system
size for the Stauffer et al. rule. Initial state consists of p randomly
distributed up-spins for two types of two-dimensional L�L
lattices—square �left panel� and triangular �right panel�. Similar
scaling is observed also for GD and KD. It is visible that the scaling
exponent for random initial conditions is p-dependent. Results are
averaged over 103 samples and the largest simulated lattice consists
of N=103�103=106 nodes.
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cumulative distribution function 1−CDF. We would like to
explain here our choice and persuade that such a choice gives
much more reliable results in estimating distributions. Usu-
ally, a histogram is used, because such a representation is
much more intuitive. However, such a representation, con-
trary to CDF, is not one-valued because we are free to choose
the number of intervals to which we divide all results. It can
be seen very often that the same results look different just
because of this not one-valued choice. Moreover, a statistics
�i.e., number of results that are represented by one point� in a
case of histogram is worse than in a case of CDF, which is
clearly visible on plots—in a case of CDF the plot is much
smoother. The last reason for which we choose CDF is the
following: The histogram is only an estimation of the prob-
ability distribution function. For all these reasons we decided
to focus on CDF.

In all three dynamics short and long time regimes are
observed. These two time regimes are much more visible if
we divide relaxation times by the lattice size �see Fig. 13�,
i.e., we plot the tail the cumulative distribution function of
relaxation time 1−CDF versus � /L2 instead of �. Interest-
ingly, results for the short time regime scale with the lattice
size with a simple exponent 2. The same exponent is valid
for all three dynamics on both square and triangular lattices.
It should be mentioned here that for one-dimensional outflow
�as well as inflow� dynamics curves for all lattice sizes col-
lapse to a single line if we divide the relaxation time by L2;
this result agrees with the scaling of the mean relaxation time
with lattice size ��L2.

The result obtained from the distribution for the relaxation
time is very intriguing and certainly needs deeper investiga-
tion which we leave for a future work.

VIII. CONCLUSIONS

In this paper we proposed a generalization of the one-
dimensional outflow dynamics �KD�. The rule was intro-
duced as a simplification of Galam dynamics �GD� proposed
in Ref. �12�. In a previous paper �13� we compared the re-
laxation from a random initial state consisting of p up-spins
under two outflow dynamics on the square lattice �Stauffer et
al. �SD� �12� and GD�. Here, similar to the previous paper,
we have investigated the mean relaxation time from an initial
state consisting of p up-spins. However, in this paper we
simulated all three types of outflow dynamics, GD, SD, and
KD, both on the square and triangular lattices. Moreover, we
took into account several types of initial configuration—
random, “stripes,” and “circle.”

Simulation results showed that the relaxations on both
lattices �square and triangular� are identical for all three out-
flow dynamics contrary to results obtained for two-states cel-
lular automaton �19� but in agreement with the results for
outflow dynamics on various complex networks �15�.

We have found the phase transition for all dynamics—for
p�0.5 the “all spins up” state is never reached, while for
p�0.5 this state is obtained with probability 1 �the same
result was obtained previously in Refs. �12,13� on the square
lattice�. Interestingly, in the critical point, GD is the fastest
dynamics and KD is definitely the slowest, while outside of
the critical point the situation is reversed. We have addressed
a very intriguing question—why is the dynamics which is the
slowest one in the critical point the fastest one outside this
point and vice versa? We connected this behavior with a
spatial structure which is created for different initial concen-
trations p of up-spins—for p�0.5 small compact isolated
clusters are created, while for p=0.5 an infinite cluster is
occurring. Starting from two types of ordered states, we have
shown that small round clusters are most stable under GD
contrary to infinite clusters �like stripes� which are most
stable for KD. Summarizing results for random, “stripes,”
and “circle” initial conditions, we have obtained the follow-
ing:

�KD � �SD � �GD

“stripes” for all p and random initial conditions for p=0.5,

�KD � �SD � �GD

random initial conditions for p=0.5, and

�KD � �SD 
 �GD

“circle” for p investigated.
Another interesting result has been obtained while look-

ing at the scaling laws. Both the analytic and numerical ap-
proaches in the case of the one-dimensional voter model
�1–3� lead to the conclusion that dependence between the
mean relaxation time � and the size of the system Ł can be
expressed by a simple scaling law ��L2. The same scaling
is also valid for relaxation in one dimension under zero-
temperature Glauber �inflow� dynamics as well as outflow
dynamics. On the contrary, for two dimensions even within
the outflow dynamics no single scaling law can be found—it
depends strongly on the initial configuration of the system.
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FIG. 13. Tail of the cumulative distribution function of the re-
laxation time 1−F �where F denotes CDF� vs � /L2 from a random
initial state consisting of p=0.5 up-spins for SD �top panels� and
KD �bottom panels� in a semilog scale are presented. The lattice
size runs from L=50 �lowest curve� to L=100 �uppermost curve�.
Two regimes—short and long time—are visible for both dynamics
in the case of square and triangular lattices. For the short time
regime all curves collapse to a single line if we divide the relaxation
time � by the lattice size N=L2. Analogous results are obtained for
GD.

THREE TYPES OF OUTFLOW DYNAMICS ON SQUARE AND… PHYSICAL REVIEW E 77, 021127 �2008�

021127-7



Probably the most intriguing, yet still preliminary, result
presented in this paper is connected with the distribution of
relaxation times. For one-dimensional outflow �as well as
inflow� dynamics curves for all lattice sizes collapse to a
single line if we divide the relaxation time by L2; this result
agrees with the scaling of the mean relaxation time with
lattice size ��L2. In the case of a two-dimensional system in
all three dynamics a short and a long time regime in the
distribution of relaxation times are observed. These two time
regimes are much more visible if we divide relaxation times
by the lattice size, i.e., we plot the tail of the cumulative

distribution function of relaxation time 1−CDF versus � /L2

instead of �. Interestingly, the results for the short time re-
gime scale with the lattice size with the same simple expo-
nent 2 as obtained for one-dimensional systems. These inter-
esting results certainly require further investigation.
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Percolation framework in Ising-spin relaxation
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We introduce a framework based on the percolation idea to investigate the relaxation under zero-temperature
Glauber and outflow dynamics on L�L square and triangular lattices. This helps us to understand the appear-
ance of a double time regime in the survival probability. We show that the first, short-time, regime corresponds
to relaxation through droplets and the second, long-time, regime corresponds to relaxation through stripes. For
both dynamics the probability that the system becomes ordered through droplets �which indicates fast relax-
ation� is about 2 /3.

DOI: 10.1103/PhysRevE.79.011119 PACS number�s�: 05.50.�q

Systems quenched from a disordered into an ordered
phase �such as the Ising model quenched from initial tem-
perature T0=� to final TF=0� in the thermodynamic limit
never reach the final ferromagnetic steady state. This is one
of the reasons why the theory of phase ordering kinetics has
remained a challenge for more than four decades �for a re-
view, read �1��. Moreover, Spirin et al. �2� showed that even
a simple two-dimensional Ising ferromagnet has a large num-
ber of metastable states with respect to zero-temperature
Glauber dynamics �3� and, therefore, at zero temperature the
system could get stuck forever in one of the metastable states
that consists of alternating vertical or horizontal stripes—
from now on we call it the stripe configuration �S�. This is
understood on the basis of the definition of zero-temperature
Glauber dynamics, which involves picking a spin at random
and flipping it according to the direction of a majority of its
nearest neighbors. If there is no majority, the spin is flipped
with probability 1 /2. Thus a straight interface does not
evolve. A slight difference between square and triangular lat-
tices in the probability Pstr��� that the system eventually
reaches a stripe state was found in �4�: Pstr���=0.315 and
0.344 on the square and triangular lattices, respectively.
Moreover, in the case of the square lattice in about 0.04 of all
simulations a diagonal stripe �DS� configuration appears �2�.

Very interesting behavior is exhibited by the survival
probability S�t� that the system has not yet reached its final
state by time t. On a semilogarithmic plot S�t� lies on a
straight line with a large negative slope and then crosses over
to another line with smaller negative slope �2�. Recently,
similar behavior of S�t� was observed for Ising spins under
outflow dynamics �5�, which originally was introduced to
describe opinion change in a society �6�.

A number of social experiments have shown that, when
faced with a strong group consensus, people often conform
even if they believe that the group may be in error. However,
even a single visible dissenter from the group’s position em-
boldens others to resist conformity �7�. This observation was
recently expressed in a simple one-dimensional “united we
stand, divided we fall” model of opinion formation �6�. The
model was later renamed the Sznajd model by Stauffer et al.
�8� and generalized to a two-dimensional square lattice. In its

two-dimensional version the model has found a number of
social applications �for reviews, see �9–13��, but in this paper
we investigate it from the theoretical point of view. The cru-
cial difference between the Sznajd model and zero-
temperature Glauber dynamics �3� is that information flows
outward from the center nodes to the surrounding neighbor-
hood and not the other way around—hence the name outflow
dynamics. It should be mentioned that, although one-
dimensional outflow dynamics obeys detailed balance, no
finite-temperature version of the outflow rule has been pro-
posed up till now. It seems that the temperature cannot be
introduced into our dynamics without breaking the detailed
balance condition, but further studies concerning this issue
are definitely needed. Moreover, in contrast to Glauber dy-
namics, generalization of the one-dimensional rule to higher
dimensions is neither straightforward nor unambiguous. Sev-
eral types of two-dimensional outflow dynamics have been
already introduced �5,8,9�, and recently three of them have
been investigated from the theoretical point of view �5�. For
all three investigated outflow dynamics, a short- and a long-
time regime have been observed. The short-time regime �fast
relaxation� was observed for about 2 /3 of all trials �5�.

In this paper, we introduce a framework based on the
percolation idea to investigate the evolution of the configu-
ration under zero-temperature Glauber and outflow dynamics
on two-dimensional square and triangular lattices �sugges-
tions that percolation phenomena can influence zero-
temperature dynamics have appeared already in �14��. This
helps us to understand the appearance of two time regimes in
the survival probability S�t�. We focus here only on one type
of outflow dynamics defined below, but the same results
could be obtained for other types of two-dimensional outflow
dynamics investigated in �5�. Let us begin with the definition
of the dynamics. The system consists of L�L Ising spins
Si= �1 �i=1, . . . ,L2� placed on a two-dimensional lattice
with periodic boundary conditions. In the case of the square
lattice, in each update a 2�2 panel of four neighbors is
selected randomly. If all four spins in a panel are parallel
then the panel flips its eight nearest neighbors to the unani-
mous direction of the four spins in the panel. In other cases,
these eight neighbors are left unchanged. Similarly we define
the dynamics on a triangular lattice �for details see �5��. Un-
der outflow dynamics the system eventually always reaches a
ferromagnetic steady state, in contrast to zero-temperature
Glauber dynamics. For this reason outflow dynamics is sim-*kweron@ift.uni.wroc.pl; http://www.ift.uni.wroc.pl/�kweron
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pler to analyze and the percolation framework is easier to
understand.

Let us begin with presenting two sample relaxations under
our outflow dynamics on a 100�100 square lattice �see Figs.
1 and 2�. Initially, the system consists of randomly distrib-
uted equal numbers of up �50%� and down �50%� spins.
After a relatively short time in each relaxation only one of
two types of configurations is created—droplets �Fig. 1� or
stripes �Fig. 2�. In the stripe configuration one of the stripes
eventually breaks at one point to form a droplet and from this
moment the evolution of the system leads very quickly to the
ferromagnetic steady state. This observation led us to the
following postulate: A system quenched from a disordered to
an ordered phase evolves through droplets �fast relaxation� or
stripes �slow relaxation�. The first, short-time, regime in the
survival probability S�t� corresponds to relaxation through
droplets, and the second, long-time, regime to relaxation
through stripes. We expect that the above postulate is valid
not only in the case of outflow but also zero-temperature
Glauber dynamics. To confirm this postulate we introduce
now a framework based on the percolation idea.

In the following the quantity of central interest will be the
connectivity of clusters of given spins �up or down� in a
specified direction �top to bottom or left to right�. We say
that the connectivity is nonzero �1� in a given direction �e.g.,
left-right� if two opposite edges of the system �left and right�
can be connected via a continuous path composed of the
given spins �e.g., for spins up we denote the left-right con-
nectivity as PLR�↑�=1 and so on�. For one type of spins there
are four distinct possibilities of overall connectivity: zero in
both directions �00�, nonzero in one direction �01 or 10�, and
nonzero in both �11�. As we deal with two types of spins,

there are �at least in principle� 16 various combinations of
connectivity possible. In the hard wall boundary conditions
some configurations are forbidden, e.g., up spins connected
vertically while down spins are connected horizontally. With
periodic boundary conditions, however, all possibilities are
valid; see Fig. 3 for a short review. Some configurations �the
first four—the chessboard, stripes �horizontal or vertical� on
chessboard, and odd configurations� are so exceptional that
we have never observed them in real simulations. The main
idea of the percolation framework analysis of system dynam-
ics consists in counting how much time the system spends in
each configuration in its history from the random initial state
toward the steady final state. In order to obtain information
in as clear and compact way as possible, for each simulation
sample, we provide four cumulative times spent by the sys-
tem in the following configurations: droplet �D�, stripes �S�,
diagonal stripes �DS�, and transient �T�. The diagonal stripes
configuration is generally defined as having full connectivity
in both directions �horizontal and vertical� for both spin ori-
entations �up and down�: �11-11�—see Fig. 3. Its name
comes from the simplest example of this configuration in the

FIG. 1. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100�100 square lattice from a ran-
dom initial state consisting of 50% up spins after �a� 100, �b� 300,
�c� 400, �d� 1000, �e� 1500, and �f� 2300 Monte Carlo steps �MCS�.
In this trial, after a relatively short time �about 300 MCS� a simply
connected cluster �droplet� is formed.

FIG. 2. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100�100 square lattice from a ran-
dom initial state consisting of 50% up spins after �a� 100, �b� 300,
�c� 500, �d� 5000, �e� 14 000, �f� 15 000, �g� 15 100, and �h� 16 000
Monte Carlo steps �MCS�. In this trial after a relatively short time
�about 1000 MCS� the stripe configuration is formed. Eventually,
one of the stripes breaks at one point to form a simply connected
cluster, and from this moment the evolution of the system leads
very quickly to the final state with all spins in the same state.
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shape of alternating stripes angled at 45° to the horizontal.
Here the periodicity of the boundary conditions is crucial,
otherwise there is no possibility of connectivity in both di-
rections for both spin components. The last configuration’s
name �T� comes from the fact that these states do not last
long and are possibly a by-product of a transition between
more stable configurations. In order to speed up the simula-
tions, we decided to make a check of the configuration type
not continuously, but at certain times. We verified that our
choice of checking time interval �=1 MCS� did not affect the
quality of the results.

Application of the percolation framework analysis to our
outflow dynamics helps in understanding the shape of the
survival probability obtained in previous work �5�. The data
confirm our postulate of either fast evolution through drop-
lets or slow evolution through stripes. The times spent by the
system in various configurations are presented in Fig. 4 for
our outflow dynamics on a periodic square lattice of size L
=100. There are shown data collected from N=1000 simula-
tions. For each simulation the relaxation time is the abscissa
of the symbols. For each configuration type appearing �D, S,
DS, T� its cumulative time is the ordinate. Thus for each
simulation there are four points at the same abscissa value,

representing the contributions of particular configuration
types to the total relaxation time. For example, let us con-
sider a simulation having relaxation time 10 000 MCS. Let
us assume that during the evolution toward its final state the
system spent 2000 MCS in D configurations, 7950 MCS in S
configurations, 45 MCS in T configurations, and 5 MCS in
DS configurations. Thus resulting from this particular simu-
lation there appear four points on the plot having the follow-
ing coordinates: �10 000, 2000�, �10 000, 7950�, �10 000,
45�, and �10 000, 5�. The proximity of a symbol to the line
y=x indicates that the system dwells in the corresponding
configuration most of the time until relaxation. The log-log
setting of the plot makes it possible to bring out more details
interesting for further analysis. Let us assume that a particu-
lar configuration type �say X� dominated the system history
until the final state in all simulations with relaxation times
from some interval. Thus one would see that symbols corre-
sponding to this configuration type X would group high in
the plot along the line y=x �or very close to this line� on the
mentioned interval. The other, much rarer configuration
types would be found as symbols at the bottom of the same
plot. On the other hand if there was a case of equally long-
lasting configuration types �say, each types D, S, T, and DS
took 25% of the relaxation time�, the points would all lie
well below the line y=x �this is not the case in the considered
set of data, however�. There is yet another possibility—in
different simulations of given relaxation times various con-
figuration types dominate. In such a case it could be seen on
the plot that the different symbols approach the line y=x �in
our case we have there a transition region; see further in the
text�.

All simulations considered in Fig. 4 naturally split into

TYPE [P
TB

(↑) P
LR

(↑) − P
TB

(↓) P
LR

(↓)] SAMPLE

chessboard [0 0 − 0 0]

stripes on
chessboard
(horizontal)

[0 1 − 0 0]
[0 0 − 0 1]

stripes on
chessboard
(vertical)

[1 0 − 0 0]
[0 0 − 1 0]

odd [0 1 − 1 0]
[1 0 − 0 1]

droplet (D)droplet (D) [1 1 − 0 0]
[0 0 − 1 1]
[1 1 − 0 0]
[0 0 − 1 1]

stripes (S)
(horizontal)
stripes (S)
(horizontal)

[0 1 − 0 1][0 1 − 0 1]

stripes (S)
(vertical)
stripes (S)
(vertical)

[1 0 − 1 0][1 0 − 1 0]

transient
state (T)
transient
state (T)

[0 1 − 1 1]
[1 1 − 0 1]
[0 1 − 1 1]
[1 1 − 0 1]

transient
state (T)
transient
state (T)

[1 0 − 1 1]
[1 1 − 1 0]
[1 0 − 1 1]
[1 1 − 1 0]

diagonal
stripes (DS)
diagonal
stripes (DS)

[1 1 − 1 1][1 1 − 1 1]

(b)

(a)

FIG. 3. All possible configurations with respect to connectivity
of up and down spins on a lattice with periodic boundary condi-
tions. In the middle column a digit 1 appearing at a given position
indicates the connectivity of spins up or down in the vertical �TB�
or horizontal �LR� direction. The first four types, although theoreti-
cally possible, do not appear in real simulations.
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FIG. 4. �Color online� Relaxation under outflow dynamics on
two-dimensional 100�100 square lattice from random initial state
consisting of 50% up spins; the data from N=103 simulation are
presented. Symbols show how much time the system spends in
given configuration type before reaching the final state. For short
relaxation times ���4�103 MCS� the evolution goes mostly
through the droplet state �D�, while for longer relaxation times
nearly 100% of the time is spent in the stripe configuration �S�
�occasionally in the diagonal stripe �DS� configuration�. The cross-
over time �here approximately 4�103 MCS� coincides with the
time where the change of slope appears in the survival probability
�5�.
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two sets—one �A�, for which the droplet configuration domi-
nates �this is the case for all simulations with relaxation time
smaller than 4�103 MCS� and the second �B�, where the
system spends most of the time in the stripe configuration
�here belong all simulations with relaxation times greater
than 6�103 MCS�. To the latter also belong the rare simu-
lations for which long-lived diagonal stripes are observed.
There is also a third, transition region �relaxation times be-
tween 4�103 and 6�103 MCS� consisting of simulations
for which the dominant configuration type is not unique.
Then there is a considerable probability of finding simula-
tions with various dominant configuration types.

In the set A �short relaxation times� we attribute different
values of the droplet dwelling time to different sizes of the
droplet arising from the random initial state �for bigger drop-
lets the relaxation time is longer �5��. The dynamics of the
samples from the set B is different: most of the time the
system spends in the stripe configuration, after which the
stripe breaks and the resulting droplet evolves according to
the previous scenario �pertaining to the set A�. In this case
the droplet part of the total time remains at the same level
�about 1.5�103 MCS on Fig. 4�; this is because the droplet
arising from breaking the stripe has more or less the same
size �of order of half the size of the system�. In the case of
the stripes their dwelling time has a much broader distribu-
tion, resulting not only from the differences in width of the
stripes that arise from the random initial state, but mainly
from behavior similar to a Brownian random walk. For the
stripe configuration the rather straight interface between
clusters of spins with different orientations has equal chance
to move in either direction �for the droplet the direction of
the interface movement is always toward its center�. The
characteristic time limiting from above the set A �here about
4�103 MCS� coincides exactly with the time of change in
the slope of the survival probability �5�. These two regimes
of exponential dependence correspond to evolution through
either the droplet or stripe configuration �the former are in-
terestingly always about 2 /3 of all cases�.

From the above analysis there appears the following sce-
nario for the dynamics of the system. At the first stage, when
the system starts its evolution from a totally random state
with 50% spins up and 50% spins down �i.e., quenched from
infinite temperature� small clusters tend to either grow or
disappear and the characteristic length in the system �the
mean width of the clusters� approaches the system size. The
interface between clusters of opposite spins gets smoother
and smoother. At a certain �rather short� time the state of the
system belongs to either the droplet, stripe, or diagonal stripe
configuration. In the first case �D� it is known �5� that the
droplet relaxes to the final steady state relatively fast via
shrinking �it has been proved already that every smooth
closed curve in the plane asymptotically approaches a
shrinking circular shape �15,16��. In the case when the sys-
tem in the first stage is in the stripe configuration, the evo-
lution is much slower �stripes at some points get thicker, at
others get thinner�. One of the stripes eventually narrows to
make a break, the cluster becomes simply connected, and the
configuration switches to a droplet. The only configuration
not discussed yet—the transient one �T�—appears for short
periods and only either at the beginning of the simulations

�when the system “decides” whether to go through the stripe
configuration or directly through the droplet configuration�
or at switching times, when the system changes its configu-
ration �e.g., DS→D�. Our extensive simulations proved that
all above statements remain valid for outflow dynamics on a
triangular lattice as well.

In the case of Glauber dynamics the overall dynamics
characteristic is somewhat similar, but a bit more compli-
cated. This is because in this dynamics the regular stripe
configuration �with straight line interfaces� is the final one
�in contrast to the outflow dynamics, where it always decays
to the ferromagnetic state with all spins parallel�. In Fig. 5
there are presented data for Glauber dynamics simulations,
but here the relaxation time is measured until the system
reaches any of its final states �including regular stripes�.
There is a natural partition into three sets of simulations: set
C with evolution mostly through droplets �it corresponds to
the set A of the previous dynamics�, set D with the evolution
leading mostly through diagonal stripes �somewhat similar to
the set B�, and set E of samples leading to the final regular
stripe configuration, characterized by the absolute majority
of stripe configurations.

Cases from the set C correspond exactly to the previously
described set A of outflow dynamics. The only difference
between the set D and the previously considered set B is that
in the set for Glauber dynamics there is evolution only
through diagonal stripes, since the horizontal and vertical
stripes no longer decay to the ferromagnetic state and they
form the new set E. Depending whether the system decides at
an early stage to evolve through the droplet configuration,
stripes, or diagonal stripes, we got the shortest, moderate,
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FIG. 5. �Color online� Relaxation under Glauber �inflow� dy-
namics on two-dimensional 100�100 square lattice from a random
initial state consisting of 50% up spins; the data from N=103 simu-
lation are presented. Symbols show how much time the system
spends in a given configuration type before reaching the final state.
For short relaxation times ���2�104 MCS� the evolution goes
mostly through the droplet state �D�. For much longer relaxation
times ��8�104 MCS� nearly 100% of the time is spent in the
diagonal stripe configuration �DS�. For intermediate relaxation
times the stripe configuration �S� dominates. The crossover time
�here approximately 2�104 MCS� coincides with the time where
the change of slope appears in the survival probability �5�.

GRZEGORZ KONDRAT AND KATARZYNA SZNAJD-WERON PHYSICAL REVIEW E 79, 011119 �2009�

011119-4



and longest relaxation times, respectively. In the plot of sur-
vival probability of Ref. �2� the change of the slope coincides
with the largest time in the set C �here 2�104 MCS�. The
relative size of the set C �the probability that the system
chooses the droplet configuration� is here also 2 /3, as it was
in the case of outflow dynamics. This universal constant for
outflow dynamics �5� and for Glauber dynamics on a square
lattice as well as on a triangular one �we checked that
Glauber dynamics on a triangular lattice also conforms with
the previous conclusions for a square lattice� must have some
simple explanation, but unfortunately it needs further inves-
tigations. One can suppose that this property is of a funda-
mental nature for the broader class of zero-temperature dy-
namics considered in the literature �17,18�.

We believe that the percolation framework we proposed
in this paper could be used to study relaxation not only in the
case of zero-temperature Ising-spin dynamics, but also in a
much broader class of coarsening systems. Our method gives
deeper insight into the relaxing system than the survival
probability. It cannot describe configurations in detail, as was
done, for example, in �19�. On the other hand, it gives gen-
eral information on the system structure during relaxation,
which may help to find some universal features of the dy-
namics investigated.
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1. Introduction

In quantum statistical mechanics there are very few rigorous results. Bose and Fermi ideal
gases are the only models for which there exists a full theory. These models are far from
being realistic however. For more physical potentials the only strict results come from
Ginibre [1]. In his paper it is shown that there is no phase transition in very low density
gases. In our work we prove that the domain free from phase transitions for a wide class
of physical potentials is much broader and the possibility of phase transitions is limited
to much higher gas densities.

Equilibrium statistical mechanics is usually [2] described via the equilibrium Gibbs
state in the grand canonical ensemble:

ωβ,μ(A) =
Tr[e−βKA]

Tr[e−βK ]
, (1)

where K = H − μN , β, μ ∈ R, and e−βK is a trace class operator. Researching phase
transitions requires introduction of the finite volume Gibbs state:

ωβ,μ
σ,Λ(A) =

Tr[e−β(Hσ,Λ−μNΛ)A]

Tr[e−β(Hσ,Λ−μNΛ)]
(2)

and the analysis of properties of the thermodynamic limit of the Gibbs state:

ωβ,μ
σ (A) = lim

Λ→∞
ωβ,μ

σ,Λ(A). (3)

The latter consists of detailed investigation of its existence, uniqueness, temperature
(β = 1/kT ) and activity (z = exp(βμ)) dependence, and self-adjoint extensions of the
Hamiltonian with boundary conditions σ.

In our work we follow methods developed by Ginibre [1]. Having used the Feynman–
Kac formula we see a resemblance between the Gibbs state’s integral representation
on Wiener measures and correlation functions of quantum mechanics. Analogously we
construct Kirkwood–Salsburg type integral equations (KS), that are very convenient
in investigating the Gibbs state’s thermodynamical limit. Here we write the integral
equations in operator form and analyze their spectral properties.

In the second section we use positive operators on cones in real Banach space, as
in [3], where classical KS operators were successfully investigated. This approach allows
us to conclude that the activity z = −r(KΛ) belongs to the spectrum of the KS integral
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operator. Since only positive values of the activity z have definite physical meaning, we
have to deal with spectral properties of the KS operator also for z > r(KΛ).

In the third section we analyze the spectrum of the shifted KS operator (KΛ + C1I).
By the use of positive operators we improve on known estimates of the spectral radius of
the KS operator. One of the more important points relies on getting rid of the unphysical
weight ξ that appears in norm estimates. As a result of our investigations of the shifted
operator KΛ + C1I, we find a new domain free from phase transitions in the Maxwell–
Boltzmann statistics.

2. Basic notions

Let Λ be a bounded, connected open set in Rν with piecewise C1 boundary ∂Λ. Let
Ω(Λ, β, n) be the set of families of n continuous functions ωn = (ω1, . . . , ωn), each from
the interval [0, β] to Λ, such that for all i < j and all t ∈ [0, β] we have ωi(t) − ωj(t) �= 0.
The set Ω0 of single, continuous functions (trajectories) ω(t): [0, β] → Rν is a Banach
space with the norm ‖ω‖ = supt |ω(t)|.

Let Bξ(Λ) be the set of real, continuous functions Φ on
⋃∞

n=0 Ω(Λ, β, n) such that
Φ = {ϕ(ωn)}∞n=0 is bounded for each n and on each sector Ω(Λ, β, n) the function is
symmetric with respect to permutations of their arguments. The space Bξ(Λ) with the
norm

‖Φ‖ = sup
n

[

ξ−n sup
ωn∈Ω(Λ,β,n)

|ϕ(ωn)|
]

(4)

is the Banach space for ξ > 0.
According to the theorem 6.3.9 of [2]:

∫

B

χΛ(ω) dμσ,Λ,β
x,y (ω) =

∫

B

χΛ(ω) dμβ
x,y(ω), (5)

where the characteristic function

χΛ(ω) =

{
1 if ω(t) ∈ Λ for all t ∈ [0, β]

0 otherwise,
(6)

and B ⊂ Ω(Λ, β, 1), the trajectories that do not hit the boundary ∂Λ will not feel the
effect of the boundary condition σ.

In our discussion we restrict ourselves to continuous functions, since all non-continuous
functions form a set of Wiener measure dμ zero [1].

In the space Bξ ≡ Bξ(R
ν) we introduce an integral operator:

(kΦ)(ωm) =

∞∑

n=0

1

n!

∫

dω̃n k(ω1, ω̃
n) ϕ(ω′m, ω̃n) (7)

for m > 1, and

(kΦ)(ω1) =
∞∑

n=1

1

n!

∫

dω̃n k(ω1, ω̃
n) ϕ(ω̃n), (8)
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where ω′m = (ω2, ω3, . . . , ωm) and

k(ω1, ω̃
n) =

n∏

j=1

{

exp

[

−
∫ β

0

V (ω1(t) − ω̃j(t)) dt

]

− 1

}

. (9)

In the above equations we integrate over the Wiener measure:

dω̃k = dω̃1 · · ·dω̃k, (10)

where

dω̃k =

∫

Λ

dμσ,Λ,β
u,u (ω̃k) du, (11)

and the variable u denotes starting and ending points of a trajectory ω̃k [2].
Here we assume that the potential V is non-negative, bounded and regular, so

k(ω, ω̃) ≤ 0, (12)

and

C = sup
ω

∫

|k(ω, ω̃)| dω̃ < ∞. (13)

The KS operator K = Ek, where

(EΦ)(ωn) = exp[−βW (ω1, ω
′n)] ϕ(ωn), (14)

and W (ω1, ω
′n) =

∑n
j=2 V (ω1 − ωj) for n > 1 and W (ω1, ω

′1) = 0.
Now we introduce the projector ΠΛ:

(ΠΛΦ)(ωn) =

n∏

j=1

χΛ(ωj) ϕ(ωn), (15)

where the characteristic function χΛ(ωj) = 1 if ωj(t) ∈ Λ for all t ∈ [0, β] and 0 otherwise.
The KS operator in finite volume reads

KΛ = ΠΛEkΠΛ. (16)

Let us here recall some definitions from the theory of cones [4].

Definition 1. A cone in a linear space F is a convex subset K ⊂ F such that x ∈ F ⇒
tx ∈ K for all t ≥ 0, and −x /∈ K.

Definition 2. A cone is generating if ∀x∈F∃x1,x2∈K x = x1 − x2.

Definition 3. Let K be a cone in the Banach space F . We say that two elements x1, x2 ∈ F
are in the relation x1 � x2 if x2 − x1 ∈ K.

Definition 4. A cone K in a Banach space F is normal if from the inequality 0 � x � y
there follows the condition ‖x‖ ≤ M‖y‖ for some constant M .

Definition 5. Let us consider the Banach space F with the cone K ⊂ F . A linear operator
A : F → F is positive if AK ⊂ K.
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Let Dξ(Λ) denote the following cone contained in the space Bξ(Λ):

(−1)mϕ(ωm) ≥ 0. (17)

Analogously Dξ = Dξ(R
ν) is a cone contained in the space Bξ.

Proposition 1. Operators −k and −KΛ are positive with respect to cones Dξ and Dξ(Λ),
respectively.

Proof. The positivity results from the following inequality for kernels:

(−1)nk(ω1, ω̃
n) ≥ 0. (18)

��

Proposition 2. The cones Dξ and Dξ(Λ) are normal and generating.

Proof. The thesis follows directly from the definitions of the cones; the arguments are
similar to those for the simple case of the cone made up from non-negative functions. ��

Let us consider the spectral radius r(−KΛ).

Proposition 3. The point r(−KΛ) belongs to the spectrum of the operator −KΛ.

Proof. First let us note that r(−KΛ) > 0. Then the assumptions of theorem 8.1 from
chapter 2 of [4] are satisfied owing to the propositions 1 and 2, and the thesis of the
proposition 3 results from the cited theorem. ��

As we are interested in finding an upper bound on the positive part of the spectrum
of the operator KΛ, we have to consider the shifted operator KΛ + C1I.

3. Main results

For λ in the resolvent set of the operator KΛ we have

ρΛ = (λ1I − KΛ)−1α̂. (19)

Here α̂(ωn) = 0 for n > 1 and α̂(ω1) ≡ 1.
Expanding the above around C we can write

ρΛ =
1

λ + C

∞∑

n=0

(
KΛ + C1I

λ + C

)n

α̂. (20)

We get the following:

Proposition 4.

‖(KΛ + C1I)nα̂‖ ≤ ‖Dn‖ · ‖α̂‖, (21)

where we introduce an auxiliary operator D on the Banach space Bξ with matrix elements

Di j =
Cj−i+1

(j − i + 1)!
for j − i + 1 ≥ 0 and 0 otherwise. (22)
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Proof. Let us write the operator KΛ as a sum of separate terms acting on different sectors
of the Fock space each:

(KΛΦ)(ωk) =
∑

l

Jk l ϕ(ωl). (23)

Let us introduce one more symbol:

Jk l = Jk l + δk l C 1I. (24)

In the above the symbol δk l stands for the standard Kronecker delta. Now we go to the
LHS of proposition 4:

‖(KΛ + C1I)nα̂‖ ≤ sup
k

[

ξ−k
∑

sup
ωk∈Ω(Λ,β,k)

|(Jk l1 Jl1 l2 · · ·Jln−11 α̂)(ωk)|
]

, (25)

where the sum is taken over all sequences (l1, l2, . . . , ln−1) such that li+1 − li + 1 ≥ 0 for
each i = 0, 1, . . . , n − 1 (we assume that l0 = k and ln = 1).

Now let us notice that for any i and j we have the estimate

sup
ωi∈Ω(Λ,β,i)

|(Ji j ϕ)(ωi)| ≤ Cj−i+1

(j − i + 1)!
· sup

ωj∈Ω(Λ,β,j)

|ϕ(ωj)|, (26)

which is valid for all ϕ(ωi) either non-negative or non-positive in each sector of the Fock
space independently (that is ϕ(ωi)·ci ≥ 0 for each ωi; here ci is a function N → {−1, +1}).

For i �= j the estimate (26) comes directly from the definition of the operator KΛ and
the formula (7). In the case of i = j the above estimate reduces to

sup
ωi∈Ω(Λ,β,i)

|Ji i ϕ(ωi) + Cϕ(ωi)| ≤ C · sup
ωi∈Ω(Λ,β,i)

|ϕ(ωi)|. (27)

Let us see that two terms in the absolute value have different signs. This derives from the
fact that in Jj j there appears to be only one term of the sum (7) for n = 1, and from the
inequality (12). Since

sup
ωi∈Ω(Λ,β,i)

|Ji i ϕ(ωi)| ≤ sup
ωi∈Ω(Λ,β,i)

|Cϕ(ωi)|, (28)

the formula (27) is straightforward.
Having proven the estimate (26) we now continue with the formula (25). First let us

note that in subsequent applications of the operator Jli li+1
on the vector α̂ for varying i

we stay within the domain of the functionals of definite sign.
Applying the estimate (26) recursively to the RHS of (25) we arrive at

‖ (KΛ + C1I)n α̂‖ ≤ sup
k

[

ξ−k
∑

Dk l1 Dl1 l2 . . . Dln−11 sup
ω∈Ω(Λ,β,1)

|α̂(ω)|
]

≤ ‖Dn+1‖ · ‖α̂‖
and the proposition 4 is proved. ��

Taking the nth root of the equation (21), going to the limit n → ∞ and applying the
Cauchy criterion for the convergence to the series (20) we obtain its convergence for

|λ + C| > r(D), (29)
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where the spectral radius r(D) ≤ eC . Thus the series (20) is certainly convergent on the
set

D = {λ : |λ + C| > exp(C)} . (30)

Let us define

ρ =
1

λ + C

∞∑

n=0

(
K + C1I

λ + C

)n

α̂. (31)

Let us fix the trajectories set ωn. Then we have the following:

Proposition 5. The functions from the family {ρΛ(ωn)(λ)} are analytic and are jointly
bounded on the set D.

Proof. Analyticity of the functions is clear; joint boundedness comes from the
expansion (20) and the definition of the set D. ��

Then we have:

Proposition 6. The family {ρΛ(ωn)(λ)} is convergent to {ρ(ωn)(λ)} almost uniformly on
the set D.

Proof. In view of proposition 5 and the fact that the family considered, ρΛ(λ), is
convergent to ρ(λ) for big λ (the case treated by Ginibre in [1]), use of Vitali’s theorem
gives the result. ��

The existence and analyticity of all correlation functions ρ(λ) implies the existence
of the unique Gibbs measure in the thermodynamic limit.

Thus we obtain the following:

Theorem. There exists a unique limit of the equilibrium Gibbs state that is analytical with
respect to the thermodynamic parameter z, which physically means no phase transitions
for

z <
1

exp(C) − C
. (32)
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In this paper we investigate a model (based on the idea of the outflow dynamics), in
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1. Introduction

In the past decade many models of opinion dynamics has been studied by physicists

(for the recent review see Ref. 1). Among them several simple discrete models

based on the famous Ising model, such as Voter model,2 majority models3,4 or

Sznajd model,5 have been proposed to describe consensus formation. The force

which leads to consensus is conformity — one of the most observed response to the

social influence. In all three models mentioned above a kind of conformity has been

introduced. In the Voter model a single person is able to convince others, within

the majority rule, individuals follow majority opinion and in the Sznajd model

unanimity is needed to convince others. Although the conformity is the major

paradigm of the social influence, it is known that other types of social response

are also possible.

People feel uncomfortable when they appear too different from others, but they

also feel uncomfortable when they appear like everyone else.6 There is an experimen-

tal evidence for asserting uniqueness — sometimes people to assert their uniqueness

can change their own opinion, when they realize that this opinion is shared by oth-

ers.6 Therefore asserting uniqueness can lead to so-called anticonformity. In 1963

Willis (reviewed recently in Ref. 7) has proposed a two-dimensional model of possi-

ble responses to social influence, in which both conformers and anticonformers are
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similar in the sense that both acknowledge the group norm (the conformers agree

with the norm, the anticonformers disagree).

Obviously the anticonformity is quite rare in comparison to the conformity. The

natural question is whether the existence of the very small probability of anticonfor-

mity can influence the opinion dynamics. Will the consensus be still possible in the

society with anticonformists? In this paper we decided to introduce the probability

of anticonformal behavior to one of the consensus models. Recently a generalized

one-dimensional model based on the original Sznajd model has been proposed to

incorporate some diversity or randomness in human activity.9 In this paper we

investigate a special case of this extended model, in which both conformity and

anticonformity are possible. We check how the small probability of anticonformal

behavior in the presence of the strong conformity can influence the opinion dynam-

ics. It has been known for long that conformity/anticonformity is to some extent a

product of cultural conditions.8 There are some experimental motivations for such

statement. For example, Frager in 1970 conducted experiments among Japanese

students and found a lower level of conformity compared with the US results and

some evidence for anticonformity.10 From this point of view a ratio between the

probability of conformity and anticonformity could be related to the cultural or

political conditions.

It should be mentioned here that for the first time, the effects of contrarian

choices on the opinion dynamics has been investigated by Galam.11 In his paper he

has defined a contrarian as an agent who adopts the choice opposite to the prevailing

choice of others whatever this choice is. Contrarians in the Galam’s majority model

play the similar role as anticonformists in our model. However, contrarians adopt

the choice opposite to the majority instead of unanimous majority, which is the

case of anticonformity.

2. The Model

We consider a chain of L Ising spins Si = ±1, i = 1, . . . , L with periodic bound-

ary conditions. At each step two consecutive spins are chosen at random, and they

influence their outer neighbors. In the most popular version of the Sznajd model,

inspired by the observation that an individual who breaks the unanimity principle

reduces the social pressure of the group dramatically,6 only the unanimous major-

ity influences the neighborhood. In the paper,9 all possible configurations of four

consecutive spins has been considered. Two randomly selected middle spins decide

the outcome of the update step (following in Ref. 9, we write them in brackets).

The action of a selected pair has been considered independently on each direc-

tion. Thus all different possible elementary cases make up a following list: ([AA]A,

[AA]B, [AB]A, and [AB]B), where the symbols A and B stand for different opin-

ions, i.e. A = −B = ±1. To determine the dynamics, the vector of probabilities

p = (p1, p2, p3, p4) of change for the third spin (one that is outside brackets) has

been introduced9:
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p1 : [AA]A → [AA]B , (1)

p2 : [AA]B → [AA]A , (2)

p3 : [AB]A → [AB]B , (3)

p4 : [AB]B → [AB]A . (4)

The first parameter, p1, describes the chance of spontaneous appearame of an an-

ticonformist opinion and the complementary probability p′

1 = 1 − p1 describes the

situation, where in the same conditions the opinion is not changed. Second param-

eter, p2, is a chance of convincing an individual to the other opinion, shared by his

two consecutive neighbors — i.e. conformity. Again p′

2 = 1 − p2 is a probability of

one’s opinion remaining unaltered with the presence of conformity among his two

consecutive neighbors. In this paper we investigate the special case, in which only

conformity and anticonformity can lead to the opinion change, thus p3 = p4 = 0.

The case in which p2 = 1 and p1 = p3 = p4 = 0 corresponds to the Sznajd model. In

this paper we have decided to investigate the case in which p2 = 1 and p1 ∈ (0, 1) is

the only parameter of the model. To investigate the model, we provide Monte Carlo

simulations with the random sequential updating mode and thus the time t is mea-

sured in the Monte Carlo Sweeps (MCS) which consists of L elementary updatings.

3. Results

The quantity, which is usually measured in such models, is the public opinion m as

a function of time t. In this kind of models the public opinion is equivalent to the

magnetization:

m =
1

L

N∑

i=1

Si . (5)

In the case of p1 = 0, which corresponds to the deterministic rule of the Sznajd

model, the system reaches the ferromagnetic steady state (consensus from the social

point of view). Once p1 > 0 the system never reaches any absorbing state and the

opinion dynamics depends on anticonformity probability p1. The time evolution

of public opinion m(t) is presented in Figs. 1–3. It can be seen that consensus

(m = ±1) is reached only for small values of p1 (Fig. 1), while for larger values

of anticonformity consensus is not reached and public opinion fluctuates around

its mean value m = 0 (Figs. 2–3). One can also notice that the amplitude of

the fluctuations decrease with p1, on the other hand the frequency of fluctuations

increase with p1. This tendency is valid for all values of p1 and thus the time of

consensus state (“all up” or “all down”) decreases with p1. For very small values of

p1 the system spends most of the time in one of the extreme consensus state and

in the limiting case p1 = 0 the consensus becomes the absorbing steady state.

To analyze more precisely the dependence between the consensus time and the

level of anticonformity p1 let us introduce the mean relative time of consensus
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Fig. 1. The time evolution of the public opinion m in the system of L = 100 individuals as
a function of time for the probability of anticonformity p1 = 0.003. It can be seen that society
for most of the time is in a consensus state (m = ±1), but from time to time spontaneous
reorientations occur. From the social point of view this means that, on the one hand society
polarizes to given opinion due to the conformity, but on the other hand spontaneous (and rather
rapid) changes of polarization are possible, due to the weak anticonformity.
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Fig. 2. The time evolution of the public opinion m in the system of L = 100 individuals as a
function of time for the probability of anticonformity p1 = 0.1. It can be seen that already for
this level of anticonformity, consensus is not reached and the public opinion oscillates around its
mean value m = 0.

〈τc〉 as a mean number of MCS for which |m| = 1 divided by the total number

of sweeps in the simulation. The dependence between the mean relative time of

consensus 〈τc〉 and p1 is presented in Fig. 4. For small values of p1 this dependence

is exponential, i.e. 〈τc〉 ∼ exp(−αp1), with α = α(L) ∼ (3/2)L. This means that

although the relative time of consensus decrease with p1, consensus is still possible

for larger values of p1. No qualitative change of behavior is seen while looking at

〈τc〉 as a function of anticonformity. On the other hand, if we look at Figs. 1–3 it

seems that there is some qualitative difference between opinion dynamics presented
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Fig. 3. The time evolution of the public opinion m in the system of L = 100 individuals as a
function of time for the probability of anticonformity p1 = 0.9. It can be seen that for this level of
anticonformity consensus is not reached, similarly to the Fig. 2. The difference between the case
p1 = 0.1 and p = 0.9 is visible in the fluctuations around the mean value m = 0 — the amplitude
of the fluctuations decreases with p1, on the other hand the frequency of fluctuations increases
with p1.
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Fig. 4. (Color online) The dependence between the mean relative time of consensus 〈τc〉 and the
level of anticonformity p1 for several lattice sizes (from L = 10 to L = 200). For small values of
p1 this dependence is exponential, i.e. 〈τc〉 ∼ exp(−αp1), with α = α(L) ∼ (3/2)L.

in Figs. 1–3. In Fig. 1 the system is ferromagnetically ordered for most of the

time and spontaneous transitions between two opposite ferromagnetic states are

observed.

Therefore, let us now check the dependence between control parameter p1 and

the mean reorganization time 〈tr〉, defined as a mean time between arriving at two

consecutive opposite consensus states. More precisely we monitor the events of time,

at which the system attains the given consensus (m = ±1) for the first time since

it was in the last opposite state m = ∓1. It occurs that there is an optimal value

of p1 for which the mean reorganization time 〈tr〉 is the shortest (see Fig. 5). From

the social point of view this means that there is a special level of anticonformity for
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Fig. 5. The dependence between the mean reorganization time 〈tr〉 and the level of anticonformity
p1 for the lattice size L = 100.
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Fig. 6. (Color online) The cumulative distribution function CDF of the public opinion m for
several values of anticonformity level p1 and the lattice size L = 100. It can be seen that for
p1 ≤ 0.04 the curve is ∼-shaped and for certain value p = p∗ ∈ (0.03, 0.04) there is the qualitative
change in convexity to the ∼-shape.

which reorganizations (“revolutions”) are the most frequent. The optimal value of

p1 is roughly inversely proportional to the system size L. Thus their product p1L,

describing the mean number of acts of anticonformity per one Monte Carlo sweep,

remains constant independently on the system size.

Now we can show that, indeed, there is a qualitative change in the opinion

dynamics for a certain value of p1 and this value corresponds to the optimal value

of p1, i.e. value for which the mean reorganization time 〈tr〉 is the shortest. To do

this let us present the cumulative distribution function CDF of the public opinion

m. In Fig. 6 it can be seen that for p1 ≤ 0.04, the curve is ∼-shaped and for certain

value p1 = p∗ ∈ (0.03, 0.04), the shape of CDF changes qualitatively to the '-shape

(the change in convexity). While for p1 ≤ 0.03 the system for most of the time is

in the consensus state, for p1 ≥ 0.04 the consensus state is probably extremely low.
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One should notice (see Fig. 5) that the optimal value of p1 also lies in the interval

(0.03, 0.04) and thus corresponds to p∗.

4. Summary

We have proposed a new model of opinion dynamics with anticonformists based

on the general model proposed by Kondrat.9 In our model only conformity (with

probability 1) and anticonformity (with probability p1) can lead to the opinion

change. According to Willis, both conformers and anticonformers are similar in the

sense that both acknowledge the group norm (the conformers agree with the norm,

the anticonformers disagree). In our model a pair of neighboring individuals sharing

the same opinion will influence its neighborhood (so-called outflow dynamics — the

idea taken from the Sznajd model). To investigate the model, we have provided

Monte Carlo simulations with the random sequential updating mode. It occurs

that for small values of anticonformity level consensus is still reached, but it is

not the absorbing steady state as in the case of p1 = 0. For small values of p1

spontaneous reorientations occur, which can be understood from the social point

of view, as complete repolarizations (e.g. spontaneous transition from dictatorship

to democracy). We have shown that there is a special value of anticonformity level

p1 = p∗ below which the system stays for most of the time in the consensus state

and spontaneous reorientations occur. Above this value the consensus is almost

impossible and qualitative change is visible in the cumulative distribution function

of the public opinion m.

Spontaneous reorientations in an Ising spin system has already been observed

more than 25 years ago by Binder and Landau.12 They have shown that in the

Glauber kinetic Ising model transitions from +m to −m are quite often on small

lattices below critical temperature. Indeed in our model, p1 plays the role of the

temperature.9 Such spontaneous transitions are usually reported as finite size ef-

fects,12,13 which is also the case in this paper. However, it should be stressed that

social systems have always finite size and thus such finite size phenomena are im-

portant. Review on finite size effects in several models of the opinion dynamics can

be found in Ref. 13.

The main criticism connected with such simple social models concerns usually

oversimplifications of the assumptions. We do not want to convince anybody that

there is no free will or no external factors influencing individual choices. We have

only shown that even in the conformistic societies with very low (but nonzero) level

of anticonformity, spontaneous reorientations of the public opinion are possible.

There is no need to introduce any external field nor strong leader to explain these

social repolarizations. This seems to be quite an important result in the social

perspective.
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Percolation and jamming in random sequential adsorption of linear segments on a square lattice
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We present the results of a study of random sequential adsorption of linear segments~needles! on sites of a
square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed
needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a
constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only
in a restricted range of the needles length. We determine the values of the correlation length exponent for
percolation, jamming, and their ratio.
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I. INTRODUCTION

The problem of percolation is an old one@1# but still new
results appear and some unsolved questions remain@2#. In
general site percolation is defined on ad-dimensional lattice
where each site can be either occupied with the probabilic
or empty with the probability 12c. Neighboring occupied
sites form a cluster. If it is so large that it reaches the t
opposite edges of the lattice, e.g., top and bottom, the clu
is said to be percolating. The lowest concentration of oc
pied sites for which there is a percolating~or spanning! clus-
ter for an infinite lattice is called the percolation thresholdcp
@2#.

Another realization of the percolation problem is rando
sequential adsorption~RSA!, in which objects~point par-
ticles, segments, rectangles, etc.! are put on randomly chose
sites and the objects do not move@3#. It is also possible to
consider RSA in a continuum@4#.

Jamming is a problem related to RSA percolation@3#.
Again objects are placed randomly on the lattice sites un
concentrationcj is reached, where there is no room on t
lattice for the next object. For pointlike particlescj51, but
for spatially extended entitiescj,1. Continuum models of
jamming also exist@3#.

The RSA models irreversible dissociation@5# and binding
of large ligands to polymer chains@6#. Another area of ap-
plicability is the deposition of large molecules on solid su
faces, like proteins@7# or macromolecules on biologica
membranes@8#. The isotropic-nematic transition in the ha
rods such as polymers, has been studied first by Flory@9# and
later, e.g., in Ref.@10#. Spatial organization of needles into
well-organized nematic phase is however a different pr
lem, not considered here. General forms of percolation m
els have a wide range of applications—from chemisorpti
spatially disordered systems, porous materials, car park
and ecology@3#, to separating the good and bad people at
entrance to Hades@11#. For overview of percolation, jam
ming, and related problems see Ref.@3#.

In a recently published paper@12# Vanderwalle et al.
studied the relation between the two transitions—percola
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and jamming. They used two kinds of objects—linear se
ments of length 2 to 10 and square blocks. They have fo
that the ratio of the two threshold concentrationscp andcj is
constantcp /cj'0.62, regardless of the length of the need

In the present paper we extend the study of Vanderw
et al. to larger lattices and longer objects~we consider only
linear segments!. In particular we shall check the claim tha
thecp /cj ratio does not depend on the length of the need

II. MODEL

We consider a square lattice of sizeL3L. On the sites of
the lattice we put randomly linear segments~needles! of a
given lengtha, with the constraint that the needles cann
cross each other, although they may touch themselves.
used hard boundary conditions, i.e., the needles may to
the edge of the lattice but they cannot stick out of it—ea
needle must lay totally inside the lattice. Adopting op
boundary conditions does not affect the results.

To achieve simulation efficiency, our algorithm of dep
sition needles consists of two parts designed for two differ
regimes. First when the current concentration of the nee
is small, we chose randomly, from a uniform distribution, t
orientation~vertical or horizontal! and position of the uppe
left end of the needle to be inserted. If there is enough sp
on the lattice, the needle is deposited, if not, we pass to
next try. After a certain number of adsorption trials w
switch to the other regime where the dense routine is appl
A list of all empty sites and orientations still available
made. From that list a site is randomly chosen. We determ
the direction of the needle and check whether the needle
be put there. In any case the site is removed from the
The process is continued untill the last item on the list. Su
organization saves time, since we avoid inserting need
into densely packed regions.

A cluster is defined as a group of sites linked by t
needles. If there is an uninterrupted path between the top
the bottom of the lattice, the cluster is said to be percolat
or spanning, and the concentration of occupied sites defi
the percolation thresholdcp . The concentration at which no
more needles could be put on the lattice without violating
constraint determines the jamming thresholdcj .

We have considered lattices of sizesL530, 100, 300,
1000, 2500 and needles of lengtha51, . . .,2000. On the
©2001 The American Physical Society08-1



ag-
ked

ig.
l as
(

er-

GRZEGORZ KONDRAT AND ANDRZEJ PE¸KALSKI PHYSICAL REVIEW E 63 051108
FIG. 1. Thresholds for percolationcp , jamming cj , and their
ratio cp /cj vs needles’ lengtha. Lattice sizeL52500. Averaged
over 100 samples. Thex axis is in arb. units in all figures.

FIG. 2. Percolation thresholdcp vs needles’ lengtha. L
52500, 100 runs.~a! Short needlesa51, . . .,45; ~b! long needles
a51, . . .,2000.
05110
smallest lattices only smaller needles were located. Aver
ing was done over 100 independent runs. We have chec
that averaging over 1000 runs did not reduce the error~mean
standard deviation -s) in a marked way.

III. RESULTS

Our main results of the simulations are presented in F
1, where the percolation and jamming thresholds, as wel
their ratio, are plotted against the length of the needlesa

FIG. 3. Snapshot of a spatial distribution of needles at the p
colation threshold forL5100. ~a! a55, ~b! a520. They axes are
in arb. units.
8-2
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51, . . .,45). These data are obtained for lattice sizeL
52500. As convergence and error analysis shows~see be-
low! we can safely accept them as the asymptotic (L→`)
values.

The percolation threshold fora51, . . . ,13 diminishes,
then it begins to grow linearly with the slope 0.000 71. T
minimum valuecpmin50.463 is reached fora513. As seen
in Fig. 2, thes increases with the size of the needles start
from 0.001(a51) up to 0.008(a545). The increase of the
percolation threshold for longera is however quite clear. The
appearance of this unexpected feature is connected with
condition that the needles may touch themselves but t
cannot cross. In the simulations where the restriction
been lifted we observed no minimum but a monotonic
crease. In the model considered here the needles hav
tendency to align in parallel not only with respect to t
edges of the lattice but also to themselves~see Fig. 3!; hence
the needles form compact clusters. In the case of horizon
oriented needles, in order to move, e.g., two steps down,

FIG. 4. Jamming thresholdcj vs needles’ lengtha on a log–log
plot. L52500, 100 runs.a55, . . .,45.

FIG. 5. Percolation to jamming thresholds ratiocp /cj vs
needles’ lengtha. L52500, 100 runs. Logaritmic fit fora
515, . . .,45.
05110
g

he
y
s
-
the

lly
o

FIG. 6. Percolation to jamming thresholds ratiocp /cj vs
needles’ lengtha. L52500, 100 runs.a51, . . .,2000.

FIG. 7. Convergence analysis of percolationcp , jamming
thresholdscj , and their ratiocp /cj , vs lattice sizeL. 100 runs.~a!
a55, ~b! a545.
8-3
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needles of lengtha are needed. The longer are the need
the higher is the percentage of occupied sites necessar
passing these two steps. The increase ofcp(a) is to a certain
degree compensated by vertically oriented needles, w
however also form clusters, thus offering many equival
ways for percolation. Further simulations for much long
needles indicate continuous increase incp , although at a
slower rate—see Fig. 2~b!. The jamming thresholds obtaine
from the simulations have much smaller error than that
percolation and even fora545 it is below 0.002. Values o
cj , as a function ofa, decrease according to a power la
~very good fit for alla>5) approaching the asymptotic valu
cj* 50.6660.01 ~see Fig. 4!:

FIG. 8. Deviation analysis.s vs lattice sizeL for several values
of the needles’ length.~a! Percolation,~b! jamming, and~c! perco-
lation to jamming ratio.
05110
s
for

ch
t

r

r

cj5cj* 10.44a20.77. ~1!

The uncertainty of the exponent derived from the gra
analysis equals 0.02. Clearly this behavior differs essenti
from bare power law postulated in Ref.@4#:

cj;a20.2, ~2!

for the continuum~off-lattice! case of RSA of randomly ori-
ented and highly anisotropic~length to wide! rectangles.
Their a coincides with our length of needlesa. In the discrete
case we did not observe the maximum ofcj at a52 reported
in Ref. @4#. The reason is that on the lattice the number
possible orientations of the needles is restricted toz/2 ~where
z is the coordination number of the lattice! in contrast to the
continuum case. It is interesting that the asymptotic conc
tration for jamming~for a→`) is 0 off lattice and it remains
finite in the discrete case.

FIG. 9. Snapshot of a spatial distribution of needles at the ja
ming threshold forL5100. ~a! a55, ~b! a520. They axes are in
arb. units.
8-4
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Another interesting quantity in our model is the rat
cp /cj as a function ofa ~see Fig. 5!. It grows for a
51, . . . ,3, then it stabilizes untilla57 and then it grows
again. The plateau value ofcp /cj'0.62, the constant found
in Ref. @12#. The growth for longer needles (15<a<45)
could be fitted by a logarithmic dependence

cp /cj;0.5010.13 loga. ~3!

Further simulations for longer needles~see Fig. 6! support
our claim of monotonic increase incp /cj over a wide range
of a ~even up toa52000). We may conclude therefore th
the universality claimed in Ref.@12# holds only in a rather
restricted range ofaP @3,7#. As a matter of fact, the value o
cp /cj for a.7 shown in Table I of Ref.@12# is greater than
those fora<7 but the authors attribute it to the finite-siz
effects. This is however most probably just the beginning
the growth ofcp /cj .

We analyzed the dependence of the obtained thresh
on the lattice sizeL and needles’ lengtha focusing on con-
vergence. It appeared that for the ratioa/L,1/3 the values
of cp andcj do not vary much with increasingL ~keepinga
constant!—see Figs. 7~a! and 7~b!. The error bars~heres)
however decrease rapidly withL, while the difference of the
thresholds for different lattice sizes is much smaller than
appropriate error. Thus it is safe to take the values of
thresholds from the simulations withL52500 as the
asymptotic~exact! ones.

The finite-size effects can clearly be seen in Fig. 2~b!,
wherecp is drawn againsta51, . . . ,2000 forL52500. At
a5L/2 we can notice a sharp change in the slope of
function cp(a).

Consider now the dependence ofs of cp ,cj ,cp /cj on the
lattice size.s is analogous to the quantityD defined in Ref.
@12# as the sharpness of the transition~nonpercolating to per-
colating or nonjammed to jammed!. Here however the
power-law approach to the asymptotic valuep(`)2p(L)
;L21/n @cf. formula~3! in Ref. @12## does not hold. We have
found ~see Fig. 8! that thes for percolation (Dp), jamming
(D j ), and thecp /cj ratio (D r) decrease with the lattice siz
according to the power laws

Dp;L21/np, 1/np50.7560.05,
o

05110
f

lds

e
e

e

D j;L21/n j , 1/n j51.0060.05,

D r;L21/nr, 1/n r50.7760.05. ~4!

Heren corresponds to the correlation length exponent@2#

j;uc2cpu2n. ~5!

These values are, within the error bars, the same for aa
51, . . . ,45 andagree with those found by Vanderwal
et al. @12# Also Nakamura@13# found n j51.060.1 for RSA
of square blocks. It seems therefore that the exponentsn are
good candidates for universal quantities.

Examples of spatial arrangements of shorter (a55) and
longer (a520) needles on a lattice 1003100 are shown in
Figs. 3 ~percolation! and 9 ~jamming!. Analysis based on
examination of different runs shows some regularity in t
needles distribution—we have found that the needles n
the edges have the tendency to stick along the bord
Longer needles, for obvious reasons, form clusters of para
alignment, as was already observed in Ref.@12#.

IV. CONCLUSIONS

We have performed extensive simulations of RSA us
linear segments of sizea51, . . . ,45 onsquare lattice sites
We have found that the percolation threshold is a nonmo
tonic function ofa, having a minimum due to parallel orien
tation of the needles, ata513, while the jamming threshold
decreases to a nonzero constant witha as a power law. The
ratio of the two thresholds is nonmonotonic too—after init
growth it stabilizes for some values ofa, and then it grows
logarithmically. Whether the asymptotic value is equal
one or less is an interesting question. To answer it unequ
cally is unfortunately beyond our computing power. The v
ues of the correlation length exponentn, for percolation,
jamming thresholds, and the ratio of the two, do not depe
on the length of the needles and they are, within the e
bars, equal to those found elsewhere@12,13# for deposition
of needles, rectangles, or squares.
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Percolation and jamming in random bond deposition
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A model is presented in which on the bonds of a square lattice linear segments~‘‘needles’’! of a constant
lengtha are randomly placed. We investigate the dependence of the percolation and jamming thresholds on the
length of the needles. The difference from the standard site deposition problem is demonstrated. We show that
the system undergoes a transition ata56. When shorter needles are used, the system first becomes percolating
before becoming jammed. For longer needles the lattice becomes jammed but there is no percolation. We
present evidence that the transition is due to different clustering of the short and long needles. We also
determine the Fisher exponent, obtaining the same value as for standard two-dimensional percolation .
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I. INTRODUCTION

Recently there has been much theoretical and experim
tal interest in random sequential adsorption~RSA! models.
In this approach finite objects are randomly deposited,
by one, onto an initially empty substrate~e.g., a lattice or a
continuous surface!, and are adsorbed if there is no overla
ping with previously adsorbed objects. These kinds of m
els have a wide range of applications in physics, chemis
biology, etc. for describing processes in which microscop
steps are irreversible.

A large group of RSA problems was motivated by t
study of kinetics of some chemical reactions, e.g., sim
cyclization reactions~see Ref.@1#, in which the RSA ap-
proach itself originates!, irreversible dissociation from poly
mer chains@2#, and the binding of large ligands to polyme
chains@3#. Another area of applicability is the desorption
large molecules like proteins on solid surfaces@4# or macro-
molecules on biological membranes@5#. Many properties of
growth processes in three-dimensional solid state physics@6#
are well described by the RSA approach as well. Also so
ecological @7# and sociological problems@8# were succes-
fully solved using RSA. For an extensive overview of t
field, see Ref.@9#.

In the context of RSA the notion of jamming is very im
portant. A system reaches a jamming point if no more
jects can be adsorbed due to the lack of available space.
jamming thresholdcj is then defined as a fraction of occu
pied surface at that moment.

The problem of percolation is an old one@10#, but there
are still new results and new questions being posed@11,12#.
In a standard formulaton on ad-dimensional lattice each sit
can be occupied with a probabilityc ~or empty with a prob-
ability 12c). Neighboring occupied sites form a cluster. T
cluster is said to be percolating if it reaches two oppos
edges of the lattice~e.g., the top and bottom!. The lowest
concentration of occupied sites for which there is a perco
ing cluster for an infinite lattice limit is called the percolatio
thresholdcp @11#.

There are many applications of percolation theory, es
cially in spatially disordered systems, porous media and c
cal phenomena. For an overview see, e.g., Ref@13#.

Apart from the relatively well known case of the RSA
1063-651X/2001/64~5!/056118~4!/$20.00 64 0561
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spheres~modelling, e.g., adsorption of spherical molecul
@4#! there is an interesting domain of the study of RSA
rectangles or line segments. These models can be use
describing the characteristics of composites or mater
made in the process of adsorption of rodlike polymers
conducting needles@14#. In these models~both continuous
and discrete! the central point of interest is often the kinetic
of the process. However, here we concentrate on the de
dence of thresholds on the length ratioa of adsorbed objects
~rectangles!. As the continuous approach differs in some p
dictions from the lattice site one@e.g., the jamming threshold
cj (a)→0 asa→` for the continuous case@15# and cj (a)
→cj* Þ0 for the discrete case@16##, there are also feature
that distinguish between the site and bond formulation of
discrete~lattice! problem. To the best of our knowledge
needles’ adsorption on bonds has never been considere
the literature.

II. MODEL

Here we investigate a system in which linear segme
~‘‘needles’’! of lengtha are randomly placed on the bonds
the square lattice. The needles may touch but they can
cross each other or have a common bond. At each step o
simulation we randomly generate~from uniform distribution!
the position and orientation of the needle to be inserted
there is no possibility of depositing the needle, we discar
and go on to the next step. The essential difference betw
the site deposition investigated, e.g., in Refs.@16,17# and the
present study is that now the two closest parallel need
themselves do not touch— a connecting path is realized o
by vertical and horizontal needles touching somewhere
their length. As before@16#, we use hard boundary cond
tions, meaning that no part of any needle may stick out fr
the lattice. We have verified that allowing for open bounda
conditions does not alter the results.

We investigate two phenomena, percolation and jamm
The percolation threshold is defined as a concentrationcp of
needles at which there is an uninterrupted path, following
bonds occupied by the needles, from the top to the bottom
the lattice@11#. The smallest possible length of the needl
a51, corresponds to the standard bond percolation,
which we recover the well-known resultcp50.5 @11#. The
©2001 The American Physical Society18-1
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GRZEGORZ KONDRAT AND ANDRZEJ PE¸KALSKI PHYSICAL REVIEW E 64 056118
jamming threshold is defined as a concentrationcj of
needles, above which it is impossible to add another ne
of a given length to the lattice@9#.

We shall study, using Monte Carlo simulations, the d
pendence of the two thresholds and their ratio on the len
a of the needles. We shall also compare the results with th
obtained for site percolation and jamming@16#. Most of the
results were found for aL51000 square lattice~although
smaller and larger lattices,L530, 100, 300, and 3000, wer
also considered! and averaged over 100 independent ru
We have checked that the statistics is not much improved
averaging over 1000 runs.

III. RESULTS

We have found that percolation in the system sets in o
for short needles witha<a* 56. In the case of longe
needles no percolating cluster exists for large enough latt
~e.g., out of 1000 samples fora57, only two percolate on a
3003300 lattice, but none on a 100031000 lattice!. The
longer the needles, the higher the chance of absence of
colation~jamming sets in in the system first!. This probabil-
ity is drawn in Fig. 1 against the needle length. The transit
from a percolating to a nonpercolating system occurs a
rather narrow range of the needle length. Asymptotica
(L→`) we expect a step function. A possible explanati
for the existence of a nonpercolating regime is discus
further. This behavior distinguishes between the bond pr
lem and the site one, since in the latter we can always re
percolation threshold for all needle lengths@16#. The absence
of percolation was reported earlier in a different context a
for the site problem; see, e.g., Ref.@18# in the case of the
RSA of squares, or a more general model@19# of RSA of
rectangles, both on site square lattices.

The variation of the percolation thresholdcp with increas-
ing needle lengtha is shown in Fig. 2~we consider onlya
<6, since above this point there is no percolation!. The un-
certainties of thecp are below 0.004; therefore, we are co
vinced that there is a minimum fora5amin54. As there was

FIG. 1. ProbabilityNp for the absence of percolation in th
system vs needle lengtha51 . . . 6 forlattice sizesL530, 100, and
1000, averaged over 1000 samples.
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a similar minimum for the site problem~see Ref.@15#!, for
longer needles (amin513), we expect the same mechanis
to be responsible for both phenomena. For longer nee
there is a competition between enlarging the range of c
nection and the increasing difficulty in restoring connecti
~for details, see Ref.@16#!. For a>6, however, it is so diffi-
cult for one needle to become connected to others that
colation does not appear. The difference between sites
bonds here is crucial. In the site problem two close para
needles can be connected via other parallel needles lyin
between them. In a bond problem, however, even the
closest parallel needles remain disconnected unless they
touch the same perpendicular needle. Thus we suppose
for long needles small clusters work as shields, preven
the formation of a connected network of bonds in the syste
Another argument supporting our conjecture is found by
direct inspection of snapshots of the needle arrangemen
example of which can be seen in Fig. 3. The state of a sys
of needles witha58 at the jamming point is shown there.

In order to obtain some more insight into the problem,
have also examined the cluster structure of the system
jamming, when no more needles can be added. As we
see in Fig. 4, there is a clear change in the shape fora56.
For smalla most of the mass carried by the needles con
tutes a large percolating cluster. For long needles more
more mass is accumulated in very small clusters, espec
in single isolated needles. That is, 2.5% of the total mas
concentrated in such needles fora54, and 16.5% fora57.

To establish a connection between our model and o
percolation critical phenomena we have verified the so ca
Fisher law@11#. It is generally observed that, for percolatio
models the cluster size distribution function measured at
percolation point follows a power law

ns~cp!}s2t,

where the Fisher exponent is equal@13# to

FIG. 2. Thresholds for percolationcp , jamming cj , and their
ratio cp /cj for a51 . . . 6. Thelattice size isL51000, averaged
over 100 samples.
8-2
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t5
187

91
'2.055,

and is a universal quantity throughout many two-dimensio
~2D! models. The results of our investigations are presen
in Fig. 5, where size distribution functions for clusters
percolation are ploted on a log-log graph for various nee
lengths. Averaged over 100 samples on a 100031000 lattice,
‘‘experimental’’ points follow straight lines with the sam
slope for all a51 . . . 6, determined to be2t522.02
60.04. Thus our model (a.1) manifests the same chara
teristic as in standard 2D percolation (a51).

FIG. 4. Plot ofM (s), the number of unit bonds in clusters n
larger thans vs s, measured at the jamming point. The lattice size
L5100, averaged over 10 000 samples. The needle lengths aa
52, 4, 5, 6, 7, and 10.

FIG. 3. Snapshot of a spatial distribution of needles at the ja
ming threshold forL5100. The needle length isa58; therefore, no
percolation appears.
05611
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Let us now analyze the jamming thresholdcj as a func-
tion of the needle lengtha. It appears that points conform t
the following formula with very high accuracy~see Fig. 6!:

cj~a!2cj* }aD,

where cj* 50.335060.0025 andD521.0560.10 ~uncer-
tainties are obtained from graph analysis for various t
values ofcj* and D). The same kind of dependence w
found for the site RSA of needles@16#, but with cj* (sites)
50.6660.01. Let us compare the jammed state for both
tices ~bonds and sites!, especially for very long needles. I
both cases needles tend to form domains of parallel alig
ment, the interdomain space being relatively empty. In
mains for sites almost all sites are occupied, but for bo
about 50% of bonds are perpendicular to the needles and
empty. This explains the relationcj* (sites)52cj* (bonds).

FIG. 5. Cluster size distribution functionsns for a51 . . . 6 at
the percolation point, averaged over 100 samples;L51000. Data
sets for eacha are separated by a factor of 2 for clarity.

-

FIG. 6. Power law approach of thea5` limit for the jamming
threshold. Lattice L51000, averaged over 100 samples,a
510 . . . 40. A meanstandard deviations ~dotted lines! is also
shown.
8-3
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It should be noted that there were estimates forcj* (sites)
only ~also see Ref.@17#!. The dependence ofcj on a is quite
different for continuous models of RSA of rectangles~see,
e.g., Ref.@15# or @20#!: cj (a)}aD with D520.2 @20# or D
520.26 @15#, the threshold tending to zero asa→`.

FIG. 7. Convergence analysis. The values of the thresholdscp ,
cj , andcp /cj are plotted with error bars against the lattice sizeL.
Herea55, and averaging is over 100 samples.
to

n

Ph

05611
Having determinedcp and cj we can look at their ratio
cp /cj carrying some information about the structure of t
system~see Fig. 2!. One can easily see thatcp /cj is almost
linear with a. Finally, we analyzed the convergence of t
thresholds asL tends to infinity. It appears that forL/a
.15 the values ofcp andcj do not vary much with increas
ing L ~keepinga constant! while the mean standard deviatio
s drops significantly. Thus it is safe to cosider the values
the thresholds obtained forL51000 as the asymptotic~ex-
act! ones—see Fig. 7.

IV. CONCLUSIONS

We have investigated the random deposition of linear s
ments on the bonds of a square lattice. As in the case in
tigated earlier@16#, we have found a minimum in the perco
lation threshold dependence on the length of the depos
objects. We believe that the same mechanism is respon
for both results. Unlike the site case, here, for needles lon
thana56, the system cannot reach the percolation thresh
since it becomes jammed first. The ratio of the two thre
olds shows~till a56) a linear behavior. For the Fisher ex
ponent we obtained the same value as for the standarda
51) 2D percolation problem, which suggests the same u
versality class.
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Influence of temperature on percolation in a simple model
of flexible chains adsorption
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We study random sequential adsorption of flexible chains onto a two-dimensional lattice by
computer Monte Carlo simulations. The flexibility of chains is controlled by the temperature of the
solution via the Boltzmann factor. We investigate the percolation threshold in the system as a
function of chain length and temperature. Several temperature regimes are identified, and respective
characteristic types of behavior of the system are discussed. Especially, nonmonotonicity of
percolation threshold is observed—there appears a characteristic temperature unique for all chain
lengths for which the percolation threshold attains its minimum. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1505866#
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I. INTRODUCTION

Recently, there has been still much theoretical and
perimental interest in random sequential adsorption~RSA!
models. This approach originates from the work of Flor1

who studied a cyclization reaction in the polymer chain
which adjacent pendant groups randomly link. In general
RSA-type models2–7 we consider objects~e.g., atoms, mol-
ecules, or circles, rectangles, ellipsoids, lattice sites, lat
animals! that attach to some substrate~e.g., polymer chain,
solid surface, biological membrane or lattice, continuu
plane! one by one~sequentially! at a random position pro
vided that there is no overlapping with previously adsorb
objects. Once an object is attached, it will neither move
desorb back to the solution.

The RSA model finds many application in various fiel
of physics and chemistry, especially where one deals w
irreversible processes. Among important applications
reactions on one-dimensional~1D! polymer chains,8 chem-
isorption,9 adsorption of proteins on solid surfaces,10 or
growth processes in 3D solid-state physics.11,12 Also, there
are models in which objects after being adsorbed are allo
to diffuse on the surface.13,14 For an extensive overview o
the field, see Refs. 15 and 16.

The problem of percolation is an old one,17 but there are
still many questions to be answered.18 In the simplest formu-
lation on a lattice each site is occupied with probabilityp ~or
empty with probability 12p). As p increases from 0, occu
pied sites form clusters~a cluster is a set of occupied site
that are connected via a nearest-neighbor relation!. At some
threshold concentrationcp of occupied sites there appears
percolating cluster that spans the whole system. There
many applications of percolation theory in physics a
chemistry, especially in disordered systems, porous me
and critical phenomena. As percolation is the simpl
nontrivial model of phase transitions, it is widely used
describing transition phenomena~e.g., gelation!: see, e.g.,
Ref. 19.

Adsorption and percolation of extended objects belo
to standard tools extensively used these days in physics
6660021-9606/2002/117(14)/6662/5/$19.00
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pecially in the quickly evolving area of polymer scienc
There are many models dealing with conformational chan
of polymers due to the presence of an adsorbing surface.20–24

The behavior of the system is highly influenced by the ch
flexibility ~or stiffness!.23,25 Also, connectivity plays an im-
portant role in the analysis of phase transitions in polym
models.26,27

Studying systems of extended flexible objects like po
mers from the percolation point of view seems interesting
several reasons. In polymer phase transitions b
~temperature-dependent! flexibility of the chains28 and the
percolative character of transitions29 are important factors
being discussed. In physics of colloids30 and especially in
gelation phenomena31 the basic concept is the emergence
percolation in the system. When adsorbed onto surfa
polymers create some interesting structures23,32 that can be
also analyzed from the percolation point of view. Percolat
of perfectly stiff chains~rods! is studied33,34 in the context of
conductivity, where it has applications in material scien
The nontrivial effect of relaxing this stiffness condition ma
be important in studying some composites made from, e
semiflexible fibers. This approach may also be useful in
vestigating the conductivity of materials consisting of tin
metallic structures of various shapes or conducting po
mers.35

In our paper we analyze the process of adsorbing flex
chains ~which can model, e.g., polymers! from a solution
onto a solid surface using computer Monte Carlo simu
tions. We concentrate here on the percolative characteris
of the system and their dependence on temperature, w
controls the chain flexibility. Even though our model is rel
tively simple, it presents a rich behavior that is discussed
detail. The model extends our previous approach36 in which
stiff chains~linear sticks! were considered only.

The organization of the paper is following: Section
describes the model in detail. In Sec. III results of simu
tions are presented and discussed. Section IV contains
concluding remarks.
2 © 2002 American Institute of Physics
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II. MODEL

Our model describes the process of adsorbing large c
plex objects~e.g., polymers! onto a solid surface from a so
lution irreversibly. Within the framework of random seque
tial adsorption onto the lattice we investigate the percolat
characteristics of the system. Namely, we find the dep
dence of the percolation threshold on the adsorbed ob
sizes. In this model, which is an extension of the previo
model dealing with hard rod~needles! RSA~see Refs. 36 and
37!, we investigate the role that chain flexibility and tem
perature of the solution play in the behavior of the syste

We will be working on a triangular lattice with a marke
hexagonal of side sizeL on it. In a single simulation we
perform a number of adsorption trials, each consisting
trying to put a single chain of given lengtha onto the ini-
tially empty hexagonal according to the following rules.

As a chain of sizea, we understand a set ofa sites of the
lattice that are connected by a broken line composed of
ments of unit length~i.e., lattice constant!. Two adsorbed
chains cannot overlap at any point~hard core interaction be
tween the chains!, nor can any chain stick out of our hexag
nal ~hard boundary conditions!. We choose a place to start o
putting a chain at random. If it is previously occupied, w
reject the trial: otherwise, we continue in trying to adso
consecutive monomers of a given chain. If overlapping
curs at any stage of the process, we reject the whole t
otherwise, we put the chain onto the lattice and it will rema
there forever. We check concurrently with adsorbing
chains whether percolation sets in. Namely, we look for
moment where there appears for the first time a continu
path ~a path consisting of nearest neighbors! composed of
sites occupied by monomers of adsorbed chains only, wh
connects two opposite edges of our hexagonal~say, the upper
and lower sides!. At that moment we find the filling factor—
i.e., the ratio of the number of adsorbed monomers to
total number of sites in our hexagonal.

For given chain lengtha we performN simulations, each
until percolation appears. An example of a chain configu
tion in the system at the end of a simulation is shown in F
1. We take then the average of the filling factor, approach

FIG. 1. Snapshot of the system at the end of a simulation~an example!.
Lattice sizeL5100, chains lengtha510, and temperatureT525.
-

n
n-
ct
s

.

f

g-

-
l:

e
e
s

h

e

-
.
g

now the percolation thresholdcp for a given lattice sizeL. As
L increases to infinity, the results become closer and close
the exact value of the percolation threshold for an infin
lattice.

In order to introduce flexibility of chains into the mode
~nonflexible straight chains—needles—were studied in de
in Refs. 36 and 37! and let it vary with the temperature of th
solution, we invented the following approach.

We assume that monomers interact between themse
via radial force with potential energyV(r ). The interaction is
restricted only to the monomers that belong to the sa
chain and are close together~nearest neighbors in the cha
or separated at most by one monomer!. Then we can attribute
to each chain shape~or conformation! a unique potential en-
ergy, being the sum of pairwise interaction energies betw
the monomers. Because we consider the process of adso
chains from the solution that is in equilibrium, it is reaso
able to claim that the relative probability of coming across
chain of given shape is proportional to the Boltzmann fac
exp(2E/T), whereE is total conformation energy andT is
the temperature, both measured in the same arbitrary u
As the distance between two consecutive monomers i
chain is always equal to the lattice constant, their contri
tion to the probability distribution of shapes cancels o
Thus that part of the interaction that matters is the one
tween next nearest neighbors in a chain—in other wor
angles between bonds in a broken line making a chain
only important.

For the sake of simplicity we take here the plain Co
lomb potentialV(r )52c/r with some constantc ~in fact,
the absolute value of this constant cancels out as we h
some freedom in rescaling temperature and choosing
lowest-energy level!. In the case of a triangular lattice ther
are only three possible values for bending angles:a0

5180°, a15120°, anda2560°. Adopting the aforemen
tioned choice of potential~Coulomb repulsion! and rescaling
energy-temperature axis to obtain values in the inter
@0,100# we arrive at energies corresponding to the anglesa0 ,
a1 , anda2 equal toE050, E1515, andE25100, respec-
tively ~see Fig. 2!. In the zero-temperature limit one can fin
0-type bonds only—all chains are straight needles.36,37 On
the other extreme (T→`) the model reduces to the sel
avoiding random walk approach.5,24,38As we can see further
really interesting is some finite-temperature interval, wh
we can observe some kind of phase transition in the syst

Let us now make a comment on our numerical rout
for randomly choosing appropriate chain shapes. At the s
we take randomly the position of the first monomer an
randomly, one direction~out of six possible! pointing to the
next monomer. If any of them is previously occupied, w

FIG. 2. Possible bendings and their energies.
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will discard that choice and try again. Otherwise, we cho
from the set of five possible bending angles~260°, 2120°,
6180°,1120°,160°!, one according to the probability dis
tribution implied by the Boltzmann factor. This gives th
position of the next monomer to be adsorbed. Then we re
the last step until either alla positions for monomers ar
empty~so our trial has succeeded and we put the whole ch
onto the lattice! or any of them proved to be occupied~and
we discard the trial and start again!.

There is also another approach—one chooses the p
tion of the next monomer from the set of empty neighbors
the current monomer, which is definitely cheaper with
spect to simulation time. Within our model, however, w
work with chains that, having one shape, they do not cha
it. A given chain either fits to the local configuration o
empty sites or not, but it does not adjust its shape to a v
This is the case in quick adsorption phenomena, where
time of adsorption of a single chain is much shorter than
time scale of conformational changes.

It could also be possible to use the standard Metrop
algorithm39 for generating equilibrium configurations of
chain instead of our approach, but giving the same equ
rium probability distributions, it would cost only more com
puter time.

One could consider in the interaction pairs of monom
farther along the chain than next nearest neighbor. Ap
from increasing the computing time and complexity of o
program~the need for the Metropolis approach! the only gain
we suspect would be possibly some quantitative correctio
like temperature rescaling. It is due to the fact that there
high correlation between the energy of a chain counted u
next nearest neighbor~as we do here! and one counted ove
all pairs in the chain.

III. RESULTS

We performed an averaging over a numberN5100
simulations for each choice of parameters~i.e., the tempera-
tureT, the chains lengtha, and the lattice sizeL!. The analy-
sis of convergence and mean standard deviation proved
the percolation thresholdcp obtained forL51000 can be
safely considered as the asymptotic one (L→`). Thus we
present our results forL51000, which are collected in Fig
3. We dealt with chain lengths froma53 ~for a51 anda

FIG. 3. Percolation thresholdcp as a function of chain lengtha and tem-
peratureT. Lattice sizeL51000, averaged overN5100 samples.
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52 there is no flexibility—just the known case of monome
and dimers15,18,36! up to a522 ~for longer chains simulation
time grows significantly!. We took simulations mainly for
temperatures of powers of 2~up to a constant! in order to
cover several orders of magnitude. We choose the limits
such a way that below the lowest temperature investiga
Tl50.781 255100/27, and above the highest,Th512 800
5100327, nothing interesting happens in the system app
ently.

There are several kinds of characteristic behavior in
system for different temperatures. For a temperature sm
enough (T<T1) percolation is insensitive to temperatu
changes. AsT approaches temperatureT2 , the function
cp(a) becomes flat. For medium temperatures percolat
drops to a minimum attained at temperatureT3 unique for all
chain lengths. This nonmonotonic behavior ofcp is a novel
feature in percolation models. AboveT3 the thresholdcp

grows monotonically up to an infinite-temperature lim
cp(a,T5`).

For T<T1 ~cold regime! we have the same behavior a
described in Ref. 36 for straight needles on a square lat
In both casescp as a function ofa attains a minimum. Its
existence can be understood in terms of the balance betw
two mechanisms leading into opposing directions: a
crease ofcp due to increasing of connection range for long
chains and an increase ofcp due to blocking induced by
parallel close needles~for details, see Ref. 36!. Here a mini-
mum is obtained ata510 instead ofa513 in Ref. 36—we
attribute this difference to the underlying lattice differen
~in Ref. 36 we worked on a square lattice!. For low tempera-
tures there are very few bendings in a chain~e.g., for T
<T1 we can expect less than 1.5% of bending angles o
than a05180°) and these do not interfere with the proce
of percolating cluster formation. At temperatureT1 things
start changing. In Fig. 4 we demonstratecp(T) for various
chain lengths and from the graph we estimateT152.0
60.2.

Above temperatureT1 the functioncp(a) starts losing its
minimum. For T5T252.6560.05 the threshold become
constant: cp'0.40360.002 for longer chains (a.10)—
see Fig. 4. Increasing the temperature further,cp becomes a
monotonically decreasing function. The reason for this is t

FIG. 4. Behavior ofcp near temperatureT1 .
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the blocking mechanism no longer works in the syste
since chains have more bent shapes and there are mor
more possibilities of making a connection between cha
Finally, cp(a,T), as a function of temperatureT, has a mini-
mum atT'T357.5 for all a, so chains connect most easil
Let us note thatT3 is of order of magnitude ofE1—at these
energies bending angles of the first kind (a15120°) start to
appear widely in the system, while those of the second t
(a2560°) are still exceptional~less frequent than 1022%).
These minimum phenomena can be explained in terms o
increasing variety of shapes~due to the abundance of firs
type bending angles! while still keeping a large extension o
the chain. It is also worth mentioning that the minimal val
of cp lies well below the percolation threshold for the ‘‘pu
system,’’ for which only one type of bending angle is a
lowed: either 0-type or 1-type~not to say about 2-type, fo
which cp is very large!. As chains are longer, the discuss
effects are more pronounced.

When the temperature grows further, second-type be
ing angles will appear more frequently and, since they
less suitable for making connections~they cause more com
pact shapes of the chains!, the percolation threshold grow
with temperature. For high temperature (T@E) the system
saturates since all Boltzmann factors are very close to un
The approach tocp(a,T→`) is roughly a power law:
cp(a,T5`)2cp(a,T)}1/T.

During our simulations for each temperature, we a
record the mean conformation energy per one adsorbed c
~ME! and we compare it to the mean conformation energy
a solitary chain adsorbed onto an empty lattice (MEsolitary).
Those two quantities relate to the true mean energies of
adsorbed surface layer and the solution, respectively. It
pears that generally they coinside for all temperatures
chain lengths except for the low-temperature regime. In
case, however (T,6), we observe that the adsorbed layer
significantly colder~i.e., has lower energy! than the solution
itself. For T51.5625 anda522 we have, for example
ME/MEsolitary50.6. As at these low temperatures chains
mainly linear, so are the holes between closely parallel
sorbed chains. If there appears a chain from the solution
is bent~it sometimes happens for these temperatures!, it will
likely be rejected~returned to the solution! because it will
hardly fit to the linear void. So in our process of adsorpti
we deal with a kind of filtering—accepted are preferab
straight chains which have a lower energy. We found that
phenomenon is again more apparent for longer chains@e.g.,
ME/MEsolitary50.9 for T51.5625~as above!, but for a58].

As we are convinced that all discussed effects are
just manifestation of a given choice of the lattice, but are
a more general nature, so it would be interesting to comp
these results with similar simulations on other lattices.
have performed extensive simulations of a square lattice
sion of our model. It appeared that the whole landscape
the percolation behaviorcp(a,T) is exactly reproduced on
square lattice. Even the ratio of the characteristic temp
tures of the model is the same:T1(tri):T2(tri):T3(tri)
5T1(sqr):T2(sqr):T3(sqr). Thus the character of discuss
phenomena is rather independent of underlying lattice.

Another quantity that is often discussed in RSA-ty
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models is a jamming thresholdcj . It is defined as the fina
concentration of occupied sites~adsorbed monomers! at the
moment when no more objects can be inserted onto the
tice. We have investigated within our model the thresholdcj

as a function of the chain length and temperature. It appe
that cj (a5const,T) is insensitive to the temperature chang
and drops slowly as the chain lengtha increases. Thus from
a final mass of our adsorbate one can only derive the ch
length and not the temperature of the solution.

IV. CONCLUSIONS

In this paper we discussed temperature behavior of
percolation threshold of the system of adsorbed flexi
chains. For the cold regime system characteristics coinc
with those of straight needles.36 At moderate temperaturescp

drops significantly, attains a minimum atT5T3 , and for
high temperaturescp quickly approaches the infinite
temperature limit self avoiding random walk~SARW case!.
In our model we assumed some simplifications; e.g., we
stricted the interaction between the monomers only up to
second nearest neighbor and we neglected interchain inte
tions other than hard core. It might be interesting to stu
more realistic variations of our model, but it seems to us t
the overall types of system behavior would not change
that case. Our model could find applications in the study
the deposition of small conducting objects like conducti
polymers or tiny metallic structures of various shapes as w
as in investigations of the process of gelation.
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The study of percolation with the presence of impurities
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We consider the process of percolation cluster formation for pointlike conductors subjected to
random sequential adsorption onto two-dimensional lattice by computer Monte Carlo simulations.
The initial presence of impurities disturbs this phenomenon significantly and we study here how the
size and density of impurity particles affect the resulting percolation threshold. Some unexpected
features such as the nonmonotonicity of the percolation threshold as a function of impurity
concentration are discussed. ©2005 American Institute of Physics. fDOI: 10.1063/1.1896358g

I. INTRODUCTION

Even though the problem of percolation1 is known for
years2 and many papers have dealt with its aspects, still there
are interesting questions to be answered. In its simplest for-
mulation on a lattice each site is occupied with probabilityp
sor the site is empty with probability 1−pd. As p increases
from 0, occupied sites form clusterssa cluster is a set of
occupied sites that are connected via nearest-neighbor
bondsd. At some threshold concentrationcp of occupied sites,
there appears a percolatingsinfinited cluster that spans the
whole systemsi.e., there is a path composed of occupied
sites that connects opposite edges of the systemd. Particularly
interesting are models in which percolating clusters are
formed from extended objects.3–10 The percolation theory
finds many applications in physics and chemistry, especially
in disordered systems, porous media, and critical phenom-
ena. As the simplest nontrivial model of phase transition,
percolation is widely used in describing transition phenom-
enase.g., gelationd ssee Ref. 11d.

Random sequential adsorptionsRSAd models describe
the systems that are characterized by implicit randomness
and irreversibility. This approach originates from the work of
Flory,12 who studied a cyclization reaction in the polymer
chain in which adjacent pendant groups randomly link. In
general in RSA-type models13–18 we consider objectsse.g.,
atoms, molecules or circles, rectangles, ellipsoids, lattice
sites, lattice animalsd that attach to some substratese.g.,
polymer chain, solid surface, biological membrane, con-
tinuum plane, or latticed one by onessequentiallyd at random
position provided that there is no overlapping with previ-
ously adsorbed objectsssome models allow this constraint to
be relaxedd. Once an object is attached, it will neither move
nor desorb back to the solution.

There are many applications of RSA models in various
fields of physics and chemistry, especially where irreversibil-
ity of the phenomena is to be considered. Among important
applications are the reactions on one-dimensionals1Dd poly-
mer chains,19 chemisorption,20 adsorption of proteins on
solid surfaces,21 or growth processes in three-dimensional
s3Dd solid-state physics.22,23Also there are models in which

objects after being adsorbed are allowed to diffuse on the
surface.24,25 For an extensive overview of the field see Refs.
26 and 27.

In many cases when one investigates the process of per-
colationfe.g., formation of a network of chemical bondssge-
lationd or making a conductive connection between small
grains in compositesg the presence of impurities must be con-
sidered. This is an important factor in studying various char-
acteristics of composites such as conductivity8,28,29 and
structure8 as well as in other fields like the investigation of
random media.30

Here we are interested how the presence of impurities
itself disturbs the behavior of the system. There are some
contributions to this subject,31,32 but the different points of
view se.g., fluid theory approach versus RSAd make them
inadequate for describing phenomena, like the process of se-
quential adsorption on precontaminated substrate. To deal
with this problem we have developed a computer code simu-
lating the behavior of the system using the Monte Carlo
method. We concentrate here on 2D systems with pointlike
conductorsseach conducting particle occupies a single site of
the latticed and more extended impuritiessstick-shaped par-
ticles of given lengthd. The discussion of more complex case
of extended particles of both kindssconductors and insula-
torsd goes beyond this paper. In the following sections the
details of the modelsSec. IId and results with discussion
sSec. IIId are described. Concluding remarks are contained in
Sec. IV.

II. MODEL

We want to investigate here the process of forming a
percolating cluster with the presence of impurities by per-
forming a series of computer simulations. With the absence
of imperfections the process of percolation is relatively well
studied.1,11 In real life, however, there is one additional factor
that often must be taken into account: impurities. When the
surface of interestsin the current paper a 2D latticed is not
ideal initially, but has defects or is covered with obstacles or
contamination, the process of growing clusters and making
connections between conducting particles is disturbed. OneadElectronic mail: gkon@ift.uni.wroc.pl
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can speak here about either “insulators” or “contaminations,”
“obstacles,” “impurities,” etc., depending on the physical
context considered.

The simulation setup is as follows. Our surface of inter-
est is modeled on a triangular lattice as a hexagon with sides
equal toL lattice constants. Each single computer experiment
consists of two steps. Firstly, we cover our sample with par-
ticles of impurity up to some concentrationid. This concen-
tration is defined as a fraction of sites of the hexagon that are
occupied by impurities. Each adsorbed particle of impurity
has the shape of a stick consisting ofad consecutive sites
s“atoms”d in a line. The lengthad is the same for all impurity
particles in a single simulation. Particles of impurity cannot
overlap and their spatialsand orientationald distribution is
random with uniform densitysgenerated using the RSA
methodd. After placing impurities up to a desired concentra-
tion id we turn to the second step of the experiment—
adsorption of the conductors. In this study we consider point-
like conducting particles that consist of one lattice site each.
We stop the adsorption process when the percolation of con-
ductors sets in the system. This is the case when there exists
a set of neighboring conducting particles that connect oppo-
site sites of the lattice. For each simulation a threshold den-
sity of adsorbed conducting particles is evaluated. An ex-
ample snapshot of the system at percolation can be viewed in
Fig. 1 sfor parametersL=50, ad=6, and id=0.2d. For the
given set of simulation parameters, size of the latticesLd,
length of impurity particlessadd, and density of impurities
sidd, we perform a series ofN=100 separate experiments
swith various seeds of random number generatord in order to
obtain statistical reliability of the results. We derive from
each such series a mean value of percolationscpd and its
mean standard deviationssd. Continuing this procedure for
different choices of parameters’ values we obtain the func-
tion cp=cpsad, id ;Ld. This function is a starting point for
ongoing investigations. The resulting percolation threshold
cp=cpsad, id ;Ld is sensitive to the size of the latticeL, but as
L→` the threshold converges to the infinite lattice limit,
cp

`sad, idd=cpsad, id ;L→`d. We have worked withL up to

500 and since finite-size effects seem to be very small for
L=500, we have takencp=cpsad, id ;L=500d for further
analysis. Some simulations finished without arriving at per-
colation, so “no percolation” quantitysNoPd was introduced
as a number of such simulations in a series divided by the
number of simulations in that seriessNd.

Here we adopted hard wall boundary conditionssany
part of the particle cannot extend beyond the substrated in
order to model the real experimentsno periodic boundary
conditions on a single real surface can be observedd.

For chosenL=500 we measured the value ofcp for val-
ues of ad=1. . .24 and foreach value ofad we tested the
whole range of id for which percolation of conductors
appears.

III. RESULTS

The case of point imperfectionssad=1d is exceptional
sdue to no correlation of empty places left after deposition of
insulatorsd. Let us look at the following problem of choosing
sites of the lattice: “take and markm sites out ofn avail-
able.” The probability distribution of the possible outcomes
will not change if at first we choose at random somepøn
−m sites that will not be marked, and then sites to be marked
are chosen out ofn−p sites leftsheren stands for the total
number of sites on the latticed. Let us calculate the appropri-
ate probabilities. LetPIsMd be the probability that inm
trials one has chosen the sites from the setM
=hx1,x2, . . . ,xmj. Obviously,

PIsMd =
m

n

m− 1

n − 1
¯

1

n − m+ 1
=

1

Sn

m
D .

Let PIIsp,md be the probability that, as above, one has cho-
sen inm trials the sites from the mentioned setM, but pre-
viously somep sites had been randomly thrown away from
the lattice. The last probability factorizes:PIIsp,md
=PIIAPIIB. Here PIIA stands for the probability of choosing
thesep sites to be thrown away in such a way that none of
the thrown away points belongs to the setM,

PIIA =
n − m

n

n − m− 1

n − 1
¯

n − m− p + 1

n − p + 1
=
Sn − m

p
D

Sn

p
D .

The second factorPIIB is the probability of choosing appro-
priate m sites in m trials, but here one chooses fromn−p
sites leftsp sites had been thrown awayd,

PIIB =
m

n − p

m− 1

n − p − 1
¯

1

n − p − m+ 1
=

1

Sn − p

m
D .

One can easily see that indeedPI =PII , provided thatpøn
−m. If, however,p.n−m, then PIIA=0 and the reasoning
breaks. This problem is equivalent to the one of generatingp
impurity positions before addingm conducting particles.

Let us now consider two probabilities:Psmd is the prob-
ability that percolating cluster forms just after adsorbingmth

FIG. 1. A typical example of a snapshot of the system at the end of simu-
lation. The size of the insulator particlessfull circlesd is ad=6, its concen-
tration id=0.2, and the concentration of conductorssdotsd at percolation is
c=0.5572. The size of the system isL=50.
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conducting particle onn-site lattice sno insulators previ-
ouslyd and Psmupd is the probability that after adsorbingp
insulator particles and them−1 conducting particles, the per-
colating cluster forms just after adsorbingmth conducting
particle. In view of the previous discussion it appears that
Psmd=Psmupd provided thatpøn−m, or equivalentlym
øn−p. The mean value of the percolation threshold reads as

cpsid = 0d =
1

n
o
m=1

n

Psmdm

and

cpSid =
p

n
D =

1

n
o
m=1

n−p

Psmupdm

for pure conducting and insulator contaminated cases, re-
spectively. These two probabilities practically coincide for
lattices big enough andp not too big. The only possible
difference comes from the set of configurations, for which
percolation appears in the system at densities 1−p/n=1−id
or bigger. And since the percolation transition for large lat-
tices becomes sharp,1 the probability of attaining percolation
at densities well away from the percolation threshold is neg-
ligible. Thus we arrive at equalitycpsid=0d=cpsidd for id
,1−cps0d. In other words the measured percolation thresh-
old for the case of point insulators should not depend on
insulator concentration up toid&0.5. Indeed the above rea-
soning is in a good agreement with simulations, as one can
see on Fig. 2, wherecpsidd=const=0.5 within statistical er-
ror. At first glance it may seem contradictory to simple
intuition—one can think that “for higher concentration of
obstacles percolation clusters should not form easily,” but
here that is not true. As it was explained above the positions
of particles of both kinds are independentsuncorrelatedd and
formation of percolating cluster of conductors is insensitive
to the distributions of impuritiessup to id&0.5d.

The analysis is different for bigger impurity particles. As
the use of finite-size impurities induces some correlations in
the distribution of empty placessand consequently of con-
ductorsd, the percolation threshold is sensitive to the pres-
ence of disturbancessinsulatorsd and increases monotoni-
cally with concentration and length of impurity particlesssee
Fig. 3d.

For a given size of insulators there is an interval
fid−, id+g, where the number of simulations that show no per-
colation rises from 0% to 100%. Aboveid+ there is no per-
colation at all. Even though the size of conductorsa=1 im-
plies that these conducting particles can fit the tiniest space
free of insulators on a lattice, the absence of percolation
results from the formation of an infinitesi.e., percolatingd
cluster of insulators that limits the connection between con-
ductors. This intervalfid−, id+g shrinks to a single pointid* as
the size of the system rises:L→` ssee Fig. 4d. The detailed
analysis shows that this limiting valueid* is the complement
of the percolation thresholdcp

* derived forid infinitesimally
below id* , id* =1−cp

* . More exactly id+=1−cpsid−d ssee
curve plotted with circles on Fig. 4d. Moreover, this value
sid*d coincides with the percolation threshold of sticks of
given length alonefthe case of adsorption of linear particles

FIG. 2. The percolation thresholdcpsidd for point insulatorssad=1d. The
error bars relate to the mean standard deviation.

FIG. 3. The percolation thresholdcpsidd for finite-size insulatorssad
=3¯24d. The data for which NoP.0 are not shown here.

FIG. 4. The specific values of the concentration of insulatorsid− sid+d for
which the percolation does not appear at least oncesrespectively, neverd in
the number of Monte Carlo runs as a function ofad. The size of the lattice
varies here fromL=100 sthick linesd to L=800 sthe thinnest linesd. The
relation id=1−cpsid−d is plotted with circles.
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ssticksd with no impurity preadsorbed on a substrate; see Ref.
5 for detailsg, which confirms that the percolation of conduc-
tors stops when the percolation of insulators sets in.

Looking at the percolation thresholdcp as a function of
insulator concentrationid for various sizes of insulator par-
ticles, one can observe the shape universality of the curves
sat least forid away fromid*d. On a single plot one can draw
all graphs properly rescaled in abscissa to see this universal-
ity ssee Fig. 5d. The scaling factor sf=sfsadd was determined

in such a way that the rescaled functionscpsxd for x=
df

idssfd
follow the singlesuniversald curve. To fix the reference point

we arbitrarily chose sfsad=6d=
df

1. The consistency is remark-
ably good on a wide interval ofid. Uncertainties of the scal-
ing factor were estimated via graph analysis.

Some deviations are present, especially for insulator
concentrations approachingid* sthe effect is more pro-
nounced for higheradd. It should be mentioned that all
graphs on Fig. 5 end atid−, the concentration, for which
simulations start to show that it is not possible to reach per-
colation sat least one simulation out ofN=100 shows no
percolationd. The scale factor sf as a function ofad ssize of
insulator particlesd is very smooth and can be fitted with high
accuracy by the formula sfsadd=p lnsqad+rd with valuesp
=2.345,q=0.106, andr =0.893.

Let us now discuss the case of high insulator concentra-
tions. It appearssFig. 6d that after continuous growth, the
function cpsidd reaches a maximum at the concentration of
impurities id= idMsadd and drops down whenid increases
further. The reason for the initial increase of the function is
rather easy to understand—for bigger amount of long ob-
stacles there are more long barriers that must be gone around
to make a connectionsor connecting path becomes longer for
higher idd. This factor is valid, however, only for elongated
obstaclessad.1d, as we discussed previously. To explain the
nonmonotonicity for higher insulator concentrationid we

have to analyze the structure of the insulating adsorbate and
especially the structure of the free space left for adsorption of
the conductors. It appears that this remaining free space has,
for high impurity concentration, a structure similar to that of
the infinite cluster slightly above the percolation threshold,
i.e., it consists of blobs, links, and dead ends.1 A blob is a
local region of wide open space where many paths connect-
ing borders of that region can be drawn there. A link is a
thin-line-shaped region that connects other parts of the sys-
tem, otherwise disconnected. A dead end is a region that has
no impact on the overall connectivity in the system. Let us
concentrate first on the regime of a very high concentration
of impurities, where some of the simulations do not end in
percolation sNoP.0d. This is the case foridP fid−, id+g.
Then we have the following interesting factor influencing the
percolation threshold. The effective insulator distribution is
affected bya posterioricondition of the appearance of per-
colation in the system, because only percolating samples are
taken into account in calculating the mean value of the per-
colation thresholdcp. In other words the latest insulator par-
ticles are added not uniformly to the empty space, but the
addition avoids places that must be occupied by conductors
to form the connectionslinksd. Otherwise percolation is
blocked and such simulation is discarded when evaluatingcp.
So further insulators are adsorbed not to links, but to blobs
and dead ends, and this decreases the resulting percolation
threshold.

One can assume that a similar mechanism can also work
for slightly lower concentrations, for which NoP=0, but still
id. idM sthe concentration of impurities, for which the per-
colation reaches its maximumd. Since most of the free space
presumably forms dead endssas does1 the case of the perco-
lating clusterd the subsequent impurity particles are more
likely to adsorb there. So the percolating cluster at the
threshold becomes more compactsand smallerd.

It is worth noticing sFig. 6d that all curvescpsidd for

FIG. 5. The rescaled percolation thresholdcpsxd for ad=1¯24. FIG. 6. The percolation thresholdcpsidd for extended insulatorssad
=3¯24d. The boundary linecpsidd=1−id is plotted with dots.
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ad=3¯24 lay below the boundary linecpsidd=1−id of the
allowed area, approaching this line asid increasessbecause
always cp+ idø1.0d. Each graph ends here atid= id+sadd,
since beyond this point there is no percolation at all. This
value approachessasL→`d the percolation threshold for the
pure conducting systemswithout insulatorsd of lengtha=ad
ssee Ref. 5d. The percolation of conductors in the system
stops when impurities start to percolate.

Another interesting quantity here is the relative percola-

tion thresholdcp
relsidd=

df

cpsidd / s1−idd, which has the interpre-
tation of the necessary amount of conductors to form an in-
finite cluster with respect to the volume of free spacesnot the
volume of the whole systemd. Obviously for low impurity
level sid<0d we havecp

rel<0.5. On the other extremesid
< id+d we can suspect thatcp

rel goes to 1.0 because all pos-
sible dead ends in the freesleftd space has been cut down by
impurities, so almost the whole free space becomes the per-
colating cluster. Assuming the linear increase ofcp

rel with id:
cp

relsidd=0.5+0.5id / id+ one arrives atcpsidd=0.5s1−idds1
+ id / id+d. This dependence reproduces the nonmonotonic
character of the functioncpsidd with the maximum atidM

=0.5s1−id+d. As seen in Fig. 7, the measured relative thresh-
old remains increasing function for the whole range ofid, as
one can expect.32 Moreover, the character of the increase is
in fact linear, at least for longer impurity particles. The ques-
tions of justifying with exact arguments the linearity of the
relative threshold as well as the deviations from the linear
dependence for shorter insulators still remain open.

In the regime of high concentration of impuritiessid
. idMd even though the percolation threshold decreases, the
relative one still increases, according to our intuitive expec-
tations. It should also be noted that the overall effect of the
nonmonotonicity ofcp is not very large—the decrease of the
threshold is at most of the order of 10%.

IV. CONCLUSIONS

In this paper we discussed how the presence of impuri-
ties disturbs the process of forming a percolating cluster of
pointlike conductors in the system. In the case of pointlike

insulators the percolation process of conductors is insensitive
to impurities sat least for impurity concentration below
50%d. For finite-size impurities and a small to medium level
of impurities the percolation thresholdcp increases with the
impurity concentration according to the universal curvesthe
effect is more apparent for larger size impuritiesd. There ex-
ists a characteristic value of impurity concentrationsthat de-
pends on the size of impurity particlesd above which the
percolation threshold in the system becomes a decreasing
function.

These phenomena relates not only to the case of adsorp-
tion of conducting particles onto precontaminated surface
se.g., in preparing conducting compositesd but also to other
systems where the notion of connectivity plays an important
role, e.g., colloids in the process of gelation, filters getting
blocked, and in the study of porous materials as well.
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We consider the jamming aspect of random sequential adsorption of extended particles onto
two-dimensional lattice by computer Monte Carlo simulations. The initial presence of impurities on
the substrate disturbs this phenomenon significantly and we study here how the size and density of
impurity particles affect the resulting jamming threshold. We present the formula for jamming
threshold as a closed function of all important parameters �the size of primary particles, the size of
impurity particles, and the final density of impurities�. The fractal dimension of the space free of
impurities is also discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2161206�
I. INTRODUCTION

The adsorption of large particles on the surface belongs
to one of the most important processes in surface physics and
chemistry of many real systems. Random sequential adsorp-
tion �RSA� models were used as the simplest approach to-
ward irreversibility.1 Since a long time ago there has been
interest in using RSA in models for reactions on polymer
chains,2,3 chemisorption on crystal surfaces,4 adsorption in
colloidal systems,5,6 random growth in surface physics,7

growth processes in three-dimensional �3D� solid-state
physics,8,9 in technology of composites,10 in granular matter
study,11 in disordered systems,12 and also in a wider context
such as ecology13 or sociology.14 The characteristic features
important here are �a� irreversibility of deposition �no de-
sorption�, �b� randomness of a position �and an orientation�
of a particle to be adsorbed, and �c� sequentiality what means
that at any time only one particle is being adsorbed, but
relaxing of these constraints leads also to interesting models
as well.15,16 There are wide reviews on the topic, see, e.g.,
Refs. 17–19.

In a large group of RSA models there is one more re-
striction often considered: no overlapping with previously
adsorbed objects is allowed. As a consequence of this the
investigated system approaches the jamming state, in which
no more objects can be adsorbed �due to absence of free
space of appropriate size or shape�. In many papers the main
concern is focused on the study of a dynamics leading to a
such state.20–23 On the other hand it is also interesting to
investigate the structure of the final �jammed� state. One of
the basic observations here is that the distribution of ad-
sorbed objects in RSA is different from that obtained at
equilibrium19,24 �in RSA case one has infinite memory of the
process and orientational order is purely local, in contrast to
the equilibrium case, where there are long-range correlations
in a nematic phase�.

In studying many systems one often has to consider also
some contaminations �impurities� that disturb the act of

a�
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deposition of primary particles �i.e., that of primary interest�
and introduce disorder into the system. It is a very common
situation that parts of the system are not perfectly clear, but
contaminations have significant effect on the system behav-
ior. This important case, however, is not very well studied
and the bibliography on that topic is rather short. In general
there are two ways of incorporating the factor of impurity
into the model—either competitive adsorption25–27 �one has
an adsorption of particles from a mixture and some probabil-
ity distribution is used for generating the type of a particle
being adsorbed at every time� or preadsorption �covering the
surface of interest with impurities up to some level, before
the RSA of primary particles starts�. It is rather clear that
both approaches are not equivalent �the appropriate choice
depends on the physical details of the process�. We concen-
trate here on the second possibility �preadsorption�, and we
want to investigate how the level and size of impurity par-
ticles interfere the jamming process of extended primary par-
ticles. Both primary and impurity particles considered here
are needlelike. We developed a computer code for Monte
Carlo simulations of the adsorption process and the analysis
of the obtained data constitutes the main body of the paper.

There is a close relation between the present work and
Ref. 28, in which we studied the percolation process affected
by impurities.

In the following section �Sec. II� we explain the details
of the model. Since there appears two different cases, we
describe them separately and present the results in two con-
secutive sections �Secs. III and IV�. In the final section �Sec.
V� some remarks and conclusions are included.

II. MODEL

In this paper we present conclusions based on extensive
Monte Carlo simulations of the system with impurities. The
details of this approach are described further in this section.
The system of interest consists of two kinds of extended
particles �impurities and primary particles� and a substrate on
which these particles are being adsorbed. We work here on a
triangular lattice and the substrate is a hexagonal of the edge

equals L lattice sites. Particles are modeled here as straight
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chains of consecutive lattice sites, with length �defined as the
number of sites it covers� depending on their type �through-
out the simulations primary particles have length a and im-
purity particles have length b�. In a series of simulations
these lengths remain constant. The adsorption is random and
sequential what means that at any time we try to put ran-
domly �at random position and orientation� one particle of a
given type. The particles cannot overlap �this constraint ap-
plies both to particles of the same type and to particles of
different types�, so in a case of detected overlapping the trial
of adsorption of given particle is rejected and the next posi-
tion and orientation are randomly generated. Once the par-
ticle lands in an empty space it stays there forever �no de-
sorption�.

One of the main quantities considered in this paper is the
jamming threshold for primary particles adsorbed on a sub-
strate previously filled up to some level with impurities. On
an empty substrate we adsorb impurities until the coverage ci

�the ratio of the number of lattice sites occupied by impurity
particles to the total number of sites in the substrate�. Then
we adsorb primary particles as long as possible. At some
moment, however, there is no empty place that can accom-
modate a single primary particle—we say that the system is
jammed. The jamming threshold cj

� is the coverage of pri-
mary particles at that moment �the ratio of the number of
lattice sites occupied by primary particles to the total number
of sites in the substrate�. This quantity depends on several
parameters: cj

�=cj
��a ,b ,ci�—on the size a of primary par-

ticles, the size b of impurity particles, the impurity level ci,
and also on the lattice size L. In order to obtain statistically
reliable results we repeat N times the simulations for the
same set of parameters’ value and we take the average cj �a
wavelet in the symbol cj

� denotes the single simulation value
in contrast to a value cj—the mean in a series of simula-
tions�. In this paper we took the length of each simulation
series N=100, what guarantees reasonably good accuracy
and low level of fluctuations. The mean standard deviation �
is also calculated and used for controlling statistical errors. In
order to get rid of finite-size effects we took for further
analysis the simulations done on a substrate as large as L
=500 lattice units, while we used smaller values L only for
comparison. In the study of the pure jamming curve �no im-
purities added: ci=0�, however, we have chosen L as big as
1000 since particles with the length up to a=50 were con-
sidered. In all simulations hard wall boundary conditions
were chosen �they mimic the situation of many real experi-
ments�. From the previous study of similar RSA
models18,29,30 it is known that the type of boundary condi-
tions may influence the decay of finite-size effects, but for
large enough lattices there have no impact on the results.

The main objective of this study is to discover how the
length of impurity particles and the level of impurities in the
system influence the jamming threshold of primary particles.
It appeared that one can distinguish two separate cases, when
the impurity particles are either smaller or larger than the
primary particles �either b�a or b�a, while the case of b
=a is trivial�. Because these two possibilities proved so dif-

ferent, we study them in two separate sections.
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III. RESULTS: THE CASE OF IMPURITIES SMALLER
THAN PRIMARY PARTICLES

At the beginning of our study we need to look at the pure
jamming threshold �no impurities at all� as a function of the
particles’ length: cj

0=cj
0�a�=cj�a ,b ,ci=0�. This function will

be the point of reference for further considerations.
In RSA approach the way that jamming threshold de-

pends on the size of objects being adsorbed on the surface is
sensitive to the details of the model. The major factor here is
the structure of the substrate: for continuous case it is ob-
served that the function cj

0��� has a maximum for aspect
ratio � of the objects �rectangles, ellipses� close to 2 and
decays to zero with power law.19,31,32 On the other hand the
discrete systems �modeled on a lattice� show different behav-
iors: the jamming threshold decreases monotonically with
size but the infinite limit �a→�� remains finite �nonzero�. In
the literature several forms of this decay are postulated:
power law,29 polynomial in inverses of a,33,34 inverse of
logarithm35 �for an end-on mechanism of deposition�, and
exponential36 �for small values of a�. Additionally it
appears29,30,36,37 that the type of underlying lattice has an
effect only on numerical constants in the formulas, not on the
formulas themselves.

For our data simulated on a triangular lattice with the
lattice size L=1000 the resulting formula for jamming reads:
cj

0�a�=cj
*+const a−� with cj

*=0.595�5�, const=0.54�4�, and
�=0.75�5�. The values of a considered here �and in the
whole paper� remain in the set �1, 2, 3, …, 50�.

In the numerical part of our study we obtained the func-
tion cj�a ,b ,ci� for fixed a and b while the impurity level ci

ran through the whole admissible interval �0, cj
0�b��, for

which one can still adsorb particles. This function is a mean
of a series of N=100 computer simulations with the same set
of parameters. We repeated such series for chosen sizes
of particles involved: a� �3,6 ,9 ,12,15,18,24� and
b� �1,3 ,6 ,9 ,12,15,18,24�.

It is obvious that the jamming threshold of longer par-
ticles is lower—there are many holes that can accommodate
shorter particles but not longer. Contaminating the substrate
by impurity particles up to some level ci in the RSA process
makes the surface of the substrate somewhat rough or disor-
dered. The amount of disorder introduced depends on the
impurity level ci as well as the impurity size b. For impurity
particles smaller than primary particles �b�a� areas forbid-
den for adsorption of impurities �where these particles can-
not fit too small cavities� are also forbidden for primary par-
ticles. Thus the resulting jamming threshold cj will be
smaller than the amount of impurities that could be further
adsorbed in place of primary particles �up to the jamming of
impurities: cj�a ,b ,ci��cj

0�b�−ci�. On the other hand in the
case when impurity particles are larger than primary particles
�b�a� there are also areas �holes within impurity structures�
that will be covered by primary particles and the final cov-
erage of the substrate by particles �of both kinds� is relatively
higher. The difference between these two possibilities seems
to be a bit deeper, so each case is described in a separate
section. The intermediate case when b=a �particles of both

kinds are equal in size� is trivial in the following sense. The
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jamming threshold cj�a ,b ,ci� simply equals the difference
between the total jamming threshold cj

0�a� for one kind of
particles only �no impurities� and the impurity level ci.

In the rest of this section we discuss the first case: b
�a. In the following we will be aiming at obtaining the
functional dependence cj =cj�a ,b ,ci� in a closed form. As it
stands the rough data cj�a ,b ,ci� for only some values of
parameters a and b �for clarity� are shown as a function of ci

on Fig. 1. To extract some regularities in this graph we need
to do additional operations on the data.

Firstly let us notice that both the function cj itself and
the impurity level ci practically do not go beyond pure jam-
ming threshold cj

0�a�. We have cj�a ,b ,ci��cj
0�a� since

cj�a ,b ,ci��cj�a ,b ,ci=0�=cj
0�a� �the jamming threshold is a

decreasing function of ci�. On the other hand for most cases
cj�a ,b ,ci��0 for ci�cj

0�a� �some minimal deviations can be
observed for b=1¯3 and a�6 due to the fact that for very
small lengths �a ,b� there are some elongated holes even for
very high level of impurities�. Thus we can normalize both
axes by dividing by the factor cj

0�a�.
After this rescaling one can draw the function

cj�a ,b ,ci� /cj
0�a� vs ci /cj

0�a� on a single graph for different
values of the parameters a and b �see Fig. 2�. It appeared that
all curves belong to the same family of functions and differ-
ent curves coincide for some choices of a and b. We discov-
ered that this family can be described by the formula: y�

+x=1 �or y= �1−x�1/��, where y	cj�a ,b ,ci� /cj
0�a� and x

	ci /cj
0�a�. The exponent �=��a ,b� does not depend on the

impurity level ci �it has some small deviations from a con-
stant function with respect to ci, but these are below 0.05 and
may be the subject of a finer analysis�. This unusually simple
formula can be related to some fractality of the area of the
substrate that is accessible for primary particles after impu-
rities are deposited. The exponent � may be pertained to the
fractal dimension, but here one can rather speak about “rela-
tive dimension,” because it determines the way how the ac-
cessible area �and the process of adsorption itself� can be
seen from the point of primary particles. The regular case
�=1 �that is y+x=1—all sites that are not impurity are ac-

FIG. 1. The case b�a: the jamming threshold cj�a ,b ,ci� for a=1,3,6, b
=1,3,6, and ci ran through the interval �0.0, 1.0�. The lattice size is L
=500.
cessible� is reproduced for b=a and especially for b=a=1

Downloaded 10 Jul 2006 to 156.17.88.182. Redistribution subject to 
�for this latter case the scaling factor cj
0�a=1� is just unity�.

Here bigger values of � means more space accessible for the
adsorption of the primary particles and the maximum value
�=1 is related to the highest adsorption. The smaller expo-
nent �, the lower jamming threshold �at the same impurity
level�.

The determination of the functional dependence of � on
a and b is the next step of our study. We have observed that
the arguments a and b of the exponent function ��a ,b� enter
it via their difference a−b :��a ,b�= f�a−b�. The value of �
vs a−b for all a and b investigated is plotted on the Fig. 3.
The points follow one function, roughly being f�x�=5/ �4
+x�−0.05. In the case of equal size particles of both kinds
�that is the regular case b=a� the value �=1 �as it was dis-
cussed above�. On the other extreme we have �→0 for big
difference in particles’ size. The fact that the behavior of the
system is governed only by the difference in particle’s sizes
can be simply explained. In the case of fitting a single pri-

FIG. 2. The jamming threshold after suitable rescaling �dividing both axes
by the factor cj

0�a��. Within the curves of the same type �i.e., the same value
of a� lower curves correspond to bigger values of b. For given a the values
of b considered on this figure belong to the set �1, 3, 6, 12, 24� providing
that b�a.

FIG. 3. The values of the exponent � vs the particles’ size difference
for all possible choices of a� �3,6 ,9 ,12,15,18,24� and b
� �1,3 ,6 ,9 ,12,15,18,24� such that b�a. The curve is an inverse-type fit

�=5/ �4+x�−0.05 with x=a−b.
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mary particle to some small hole in the impurity structure
this is just that difference which determines the number of
possible positions of the particle.

Thus one can describe the jamming threshold in the fol-
lowing closed form:

cj�a,b,ci� = cj
0�a�
1 −

ci

cj
0�a��

g�a−b�

, �1�

with

g�x� =
80 + 20x

96 − x
,

and

cj
0�a� = 0.595 + 0.54a−0.75.

It is noteworthy that the function describing such a compli-
cated process can be �at least at the first approximation� ex-
pressed in a such compact form. The accuracy of the above
formula is for some choice of parameters pretty good �e.g.,
a=12 and b=9�, for others �e.g., a=24 and b=9� still satis-
factory �see Fig. 4�. To get deeper insight into details of the
studied phenomenon of interplay between impurity particles
and primary particles in the process of adsorption, further
study of the subject is needed, however.

IV. RESULTS: THE CASE OF IMPURITIES LARGER
THAN PRIMARY PARTICLES

In the case when impurity particles are larger than pri-
mary particles the latter can penetrate some internal holes of
the impurity adsorbate that cannot be filled up with impurity
particles. This can introduce some roughness or fractality of
the space not covered by impurities, that is accessible for
RSA of primary particles. Let us check that by examining the
fluctuation behavior.

In pure RSA �no impurities considered� one can
introduce38 correlation length exponent 	J for jamming in the
form �
L−1/	J. The correlation length exponent is a standard
critical quantity in other critical phenomena, such as

39,40

FIG. 4. The illustration of conformity of the formula �1� �lines� to the
simulation results �circles� on some examples: the upper solid curve corre-
sponds to the choice a=12 and b=9 and the lower dashed curve corresponds
to a=24 and b=6.
percolation. It measures the decay of fluctuations � in the
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system as the size of the system tends to infinity. This expo-
nent governs also the divergence of correlation length at
criticality �as in percolation�. In the case of adsorption on
heterogenous media one can still introduce this exponent:
Loscar et al.41 report that the jamming correlation length
exponent 	J carries information not only about the universal-
ity class of the adsorption process itself but also about the
fractality of the substrate as well. This is implied by the fact
that the fluctuations of the final density of the adsorbate de-
pends not only on the adsorption process of primary par-
ticles, but also on the fluctuations introduced by the process
of preparing such a heterogeneous medium �i.e., adsorption
of impurities�. Thus in the RSA processes on heterogeneous
media the mean standard deviation of jamming �J �which
measures the fluctuations in the system� can be decomposed
into two terms: �Sub related to the substrate and �RSA related
to the adsorption process. The RSA part follows usual scal-
ing: �RSA
L−1/	J where the exponent 	J can be expressed41

via the fractal dimension of the substrate df and the dimen-
sionality of the underlying space D :	J=2/ �2D−df�, here D
=2. Thus the exponent 	J can be equal to unity only for the
case of df =2 �no fractality�. In the RSA on clean surface �no
impurities� one obviously has31 	J=1.

After analyzing fluctuations in the system for b�a and
extracting the correlation exponent 	J from the RSA part of
the mean standard deviation �RSA for various impurity levels
ci we came to the following conclusion. We have the fractal
dimension df =2 for all considered cases �we obtained 	J

=1.00±0.03�, which means that we have no fractality in the
system. After closer inspection �see Fig. 5, on which some
part of the system after jamming of impurities with b=15 is
shown� it appears that the empty space consists of quite
regular blocks, on the contrary to the previous suggestions.

V. CONCLUSIONS

In this paper we analyzed the RSA process with two
kinds of adsorbed particles: impurity particles that are depos-
ited up to some level in the first stage of the process, and
primary particles that are adsorbed on the substrate contami-
nated by impurities. The resulting jamming threshold of pri-
mary particles was investigated and a closed form of its de-
pendence on parameters �size of both kinds of particles and

FIG. 5. A typical example of emerging structures at jamming �here no
impurities were present: ci=0�. The figure shows the central part of a sub-
strate �L=500�. The adsorbed primary particles of length a=15 are plotted
in black, left free sites are shown with small dots.
level of contamination� was proposed for impurities smaller
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than primary particles. For impurities larger than primary
particles the analysis of fluctuations of the jamming thresh-
old indicated that after first stage of the process �adsorption
of impurities� the space left for adsorption of primary par-
ticles has no fractal properties, but its fractal dimension
df =2.
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We consider the percolation aspect of random sequential adsorption of extended particles onto a two-
dimensional lattice using computer Monte Carlo simulations. We investigate how the composition of the
particles influences the value of the percolation threshold. Two regimes can be distinguished: one for almost
linear particles �with the composition of straight segments reaching 85–100 %� and the second one for more
bent �flexible� ones. For more bent particles we found a high correlation between the percolation threshold and
the structure of an adsorbate at percolation. We also observe that there is no difference in the conclusions for
both kinds of lattice considered �square and triangular�.
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I. INTRODUCTION

Even though the problem of percolation �1� has been
known for many years �2� and many papers have dealt with
its various aspects, there are still many interesting questions
to be answered. In a basic lattice formulation, each site is
occupied with the probability c or is empty with the comple-
mentary probability 1−c. As c increases from 0, neighboring
occupied sites start to form connected clusters with greater
and greater size. Eventually, for a certain threshold value cp,
there appears an “infinite” cluster that spans the whole sys-
tem. The probability threshold depends on the system’s size
L, but it has a finite limit as L→� �the convergence is a
power law �1��. There are many applications of the percola-
tion theory in physics and chemistry, especially in disordered
systems, porous media, and critical phenomena. Percolation
is the simplest nontrivial model of phase transitions and is
widely used in describing transition phenomena �3� �e.g., ge-
lation�. Other important applications include resistivity of
composites �4,5� and strain behavior of solids �6�.

There are several mechanisms of particle deposition onto
a surface, but among them random sequential adsorption
�RSA� both is relatively simple and has many successful
applications in theory and experiment. The starting point in
this approach is usually an empty substrate surface. The pro-
cess of adsorption is sequential, i.e., there is only one particle
being adsorbed at a time. The position and orientation of the
adsorbed particle at each trial is generated randomly. The
result of each trial is determined by a nonoverlapping rule:
the trial is accepted �and the particle is adsorbed� if there is
no overlapping with the previously adsorbed particles. How-
ever, if any part of the particle overlaps with some other
particles, the whole trial is rejected and a new position and
orientation �in some models also a new shape� is generated
again �without any correlation to previous trials�. The whole
process is irreversible—adsorbed particles stay on the sur-
face forever at the adsorbed positions.

The RSA approach originates from the work of Flory �7�,
who studied a cyclization reaction in a polymer chain in
which adjacent pendant groups link randomly. In general, in

RSA-type models �8–13� one usually consider atoms, mol-
ecules, or geometric shapes like circles, lines, or ellipses that
adsorb on polymer chains, solid surfaces, biological mem-
branes, or lattice or continuum planes. These models are
widely used in various fields of physics and chemistry, espe-
cially where one deals with irreversible processes. The ap-
proach of RSA has been used, among others, in models for
reactions on polymer chains �7,14�, chemisorption on crystal
surfaces �15�, adsorption in colloidal systems �16,17�, ran-
dom growth in surface physics �18�, growth processes in
three-dimensional �3D� solid state physics �19,20�, technol-
ogy of composites �21�, granular matter study �22�, and dis-
ordered systems �23� and also in the wider context of ecol-
ogy �24� or sociology �25�. For an extensive overview of the
field, see Refs. �26–28�.

Recently the irreversible adsorption of large particles
�polymers, nanoparticles, etc.� has attracted much attention.
Among many papers devoted to the subject one can mention
Ref. �29�, where blocking effects in the adsorption dynamics
of linear macromolecules are explored. In Ref. �30� a scale-
invariant behavior of the jamming time for linear particles
adsorbed on arbitrary finite square lattices is revealed. An
analytical derivation of the power law describing the size of
jamming fluctuations on homogeneous and inhomogeneous
lattices can be found in �31�. The other shapes on a triangular
lattice as well as their mixtures were considered in Ref. �32�
�see also references therein�, where the approach to jamming
was investigated. There is an interesting comparison study of
lattice adsorption versus continuous adsorption in Ref. �33�.

Relatively many papers have been devoted to determining
the universality class and the threshold for the percolation of
particles modeled by random walks of given length; see
Refs. �34–36�. Additional effects connected to nonperiodicity
of the substrate �or contamination of the underlying regular
lattice� were studied in Refs. �37–39�. Some generalizations
of the problem using mixed side-bond percolation can be
found in Refs. �40,41�. The interplay between jamming and
percolation for monomers, dimers, and square particles at
various temperatures was studied in Refs. �42–45�. An inter-
esting model of percolation of very large polymers �with the
length of order of the system size� is discussed in Ref �46�.
Some aspects of percolation in nanocomposite films were
described in Ref. �47�.*gkon@ift.uni.wroc.pl
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The solutions of most percolation problems are of mainly
approximate nature, since the exact calculations can be done
only in very special cases �e.g., cp for random percolation on
a triangular lattice or percolation on Bethe lattices �1��. We
decided to perform Monte Carlo simulations of the problem
since other approaches did not prove promising.

The paper is organized as follows. In Sec. II we describe
the details of the model. A discussion of finite-size scaling
and the error bars of the data is included in Sec. III. The
main results of the paper are presented in Sec. IV. The rea-
sons for lack of percolation for some sets of parameters are
discussed in Sec. V. Additional data on the other �triangular�
lattice confirming the previous conclusions �drawn for the
square lattice in Sec. IV� are described in Sec. VI. Some
additional facts on cluster structure are put forward in Sec.
VII. Concluding remarks are included in Sec. VIII.

II. MODEL

In this paper we study adsorption of extended particles of
fixed length on a lattice. The coverage of the surface is in-
creased in the process up to the percolation threshold, when
there appears a so-called infinite cluster �a cluster that ex-
tends through the whole system�. The resulting percolation
threshold depends on the spatial structure of the particles
being adsorbed and their size. We investigate here by means
of Monte Carlo simulations how the composition and the
size of the particles determine the threshold. Other aspects of
a similar model were studied in Ref. �48�. In order to obtain
a deeper insight into the problem we carried out simulations
on two kinds of 2D lattice: square and triangular.

Each particle is modeled here as a group of a consecutive
neighboring sites �monomers� of the lattice �we deal with
unbranched polymers�. Between successive monomers we
have bonds that form a broken line �the backbone of the
particle�. By the composition of the particle we understand
here the fractions of corresponding bending types in a back-
bone. On a square lattice there are only two types of bend-
ing: straight �S0� and at right angles �S1�; on a triangular
lattice we have three: straight �T0�, slightly bent at the angle
of 120° �T1�, and highly bent at the angle of 60° �T2�; see
Fig. 1. For a given particle composition �p0 , p1� for the
square lattice and �p0 , p1 , p2� for the triangular one, we put
particles on a lattice randomly �details below� until percola-
tion appears. Then the resulting density of the particles is
calculated �the ratio of occupied sites of the lattice to the
number of all sites accessible�. To obtain statistically reliable
results with a low level of fluctuations we carry on the simu-
lations for a given composition of particles for N=100 times.
In order to acquire a comprehensive set of data for each
considered particle size �a=3, . . . ,30�, we sample the whole
space of compositions with a density step from 0.2 down to
0.01.

A single run for the given composition starts with an
empty substrate �a square L�L on the square lattice, a hexa-
gon with the edge of L lattice units on the triangular one, and
hard wall boundary conditions adopted in both cases�. The
process of adsorption is random and sequential, i.e., at any
time we try to put randomly �at random position and orien-

tation� a single particle. Its shape is generated also randomly
according to the probability distribution of possible bending
types �p0 : p1 for the square lattice, p0 : p1 : p2 for the triangu-
lar one�. Thus the exact numbers of bending of each type can
vary from particle to particle, while the average composition
remains constant in a single run. If the particle under consid-
eration overlaps with the particles previously adsorbed, the
whole trial is rejected. If there is no overlapping, the particle
stays there forever. In each case, we then try to put on the
substrate a new particle �with a new shape� at a new position
with a new orientation. We repeat this procedure until the
percolation cluster arises in the system �i.e., the opposite
edges of the system are connected via some path of nearest
neighbor sites occupied by the particles�. One can consider
many definitions of the overall connectivity �e.g., any oppo-
site edges are to be connected, given opposite edges are to be
connected, all opposite edges are to be connected, etc.�, but
asymptotically all are equivalent �49�. Here we check the
connectivity between upper and lower edges of the system. It
appeared that for some values of the simulation parameters
we cannot observe percolation, especially for long particles
and p2 very close to 1. In this case particles tend to form
compact, isolated islands, so the connectivity in the system is
poor. Jamming in the system sets in before percolation can
appear �no more particles can be added due to a lack of free
space of appropriate shape�. More detailed discussion of this
effect is postponed to Sec. V. For reliability of the results it is
important to keep finite-size effects within reasonable limits.
For bigger lattices the statistical fluctuations of the threshold
obtained are smaller. Also the difference between the limit-
ing �“exact”� value of the threshold �size of the lattice
L→�� and the values obtained for a given size L drops
down to zero with increasing L. Thus it is desirable to use as
large latices as possible. We carry out our simulations on
lattices as big as L=1000 for a square lattice and L=300 for
a triangular one. Extensive discussion of finite-size effects
�scaling�, statistical deviations, and errors is included in the
following section.

S0 S1

T0 T1 T2

FIG. 1. Possible types of backbone bending on a square �top�
and a triangular lattice �bottom�.
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III. DISCUSSION OF FINITE-SIZE SCALING

For percolation-type systems on finite lattices, it is known
�1� that finite-size scaling theory describes correctly the de-
pendence of the average threshold and its standard deviation
on the size of the lattice L. In such systems one assumes that
the probability � that a lattice of linear size L percolates at
concentration p has the form ��p ,L�=���p− p��L1/��. The
scaling function ��x� increases from 0 to 1 as its argument x
increases from −� to +�. Here p� is the infinite �exact� per-
colation threshold �as L→�� and the constant � is the critical
exponent �4/3 for simple site percolation in two-dimensional
systems�. It appears from the scaling theory that �a� the stan-
dard deviation � of the threshold ��= �p2�− �p�2� measured
for a finite lattice L satisfies the power law

� � L−1/�, �1�

and �b� the effective percolation threshold cp �the mean value
measured for a finite lattice� approaches the exact value p�

also via power law

cp − p� � L−1/�. �2�

To check the validity of relation �1� we collected data for
various sizes of the particles �a=3, . . . ,30�, various compo-
sitions �p1=0 ,0.2,0.4,0.7,0.9�, and square lattices of vari-
ous sizes �L=30, 60, 75, 100, 130, 180, 300, 500, and 1000�.
Obviously, for long particles �a�30� we omit the lattice size
L=30 due to extremely high finite-size effects. For all data
we obtained the confirmation of Eq. �1� with the value of the
exponent 1 /� ranging from 0.69�0.02 to 0.77�0.02. This
coincides with the theoretical value for two-dimensional per-
colation 1 /�=0.75. A typical log-log plot of � vs L is given
in Fig. 2. Numerical points follow the power law within
reasonable accuracy.

In the following we will analyze the percolation threshold
cp for L=1000 as a function of composition in more detail,
but now we estimate the differences in the threshold value
between the finite �L=1000� and infinite �exact� cases: 	
= �cp�L=1000�− p��. Plotting the mean value cp of the thresh-
old for various lattice sizes L against L−1/�, we confirm the

validity of the finite-size scaling in the system. From the
plots we estimate the difference 	
0.004 for all parameters,
except for very long straight particles �a�30 and p0�1.00�,
where 	
0.01. An example of such a plot is given in Fig. 3.
Our 	 stands here for the error we make taking thresholds
for L=1000 instead of the exact �L→�� value.

We can also ask about the statistical fluctuations and un-
certainty for the chosen L=1000. We obtain the mean value
of cp in a series of N=100 simulations. The statistical error
of the mean is 	N times smaller than the standard deviation
�. The numerical values of this error are well below 10−3 for
all parameters of the model and do not exceed 2�10−4 for
L=1000.

IV. RESULTS FOR SQUARE LATTICE

In the case of the square lattice we analyzed particles of
sizes between 3 and 30. We skipped the case a�3 �mono-
mers and dimers�, as one cannot speak about the composition
of such small particles. We chose the sampling step of p as
0.1, but additionally we considered a more refined grid for
sufficiently small p1, where the percolation threshold
as a function of a composition changes more quickly
�small p1 implies p0�1.0, i.e., straight particles�.
The considered value of p1 belongs to the set

0,0.01,0.02, . . . ,0 ,05,0.010,0.15,0.2,0.3, . . . ,1.0� and the
complement p0=1− p1. The percolation threshold cp is
shown in Fig. 4. For all lengths and compositions of the
particles we plot the resulting percolation threshold �lines are
guides for the eye only�, obtaining a two-dimensional sur-
face. The sections of this surface for constant values of the
length a are the main point of interest in this work, since they
show the composition dependence of the percolation thresh-
old. Examples for some chosen lengths �a=5, 10, and 20�
are shown in Fig. 5. It can be seen that the variation of
composition dependence is larger for longer particles, while
for the smallest ones �a=3� the threshold remains a nearly
constant function. For all lengths, however, we observe a
common qualitative behavior as p1 increases from zero. For
p1=0.0 �thus p0=1− p1=1.0 and the particles form straight

10 100 1000
L

10
-4

10
-3

10
-2

σ

a= 3
a=10
a=30

FIG. 2. Standard deviations � of the square lattice threshold for
a=3, 10, and 30 as a function of the lattice size L. The composition
parameters are p0=0.80, p1=0.20. Straight lines represent power
law fits with exponents −0.770�21�, −0.724�25�, and −0.770�22� for
a=3, 10, and 30, respectively.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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-0.75

0.30
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FIG. 3. Finite-size scaling of the square lattice threshold cp

against L−1/� for �=4 /3, particles with a=3, 10, and 30, and lattice
size L=30, . . . ,1000. The composition parameters are p0=0.80, p1

=0.20.
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needles� we have a local maximum; then the threshold
sharply decreases as p1 approaches a particular value of 0.15,
for which we have a minimum. Then the function increases
in a linear manner in the rest of the interval �0,1�.

The fact that for higher values of p1 the threshold is larger
comes from the smaller diameters of such particles �to make
up a percolating cluster one needs more particles, when they
are more compact�. In contrast, the straightest shapes �with
p1�0.0� do not mean the easiest way of making connections
in the system �or the lowest value of the percolation thresh-
old�. This is because needlelike particles in the process of
adsorption make domains of common alignment. When a
linear particle is adsorbed close to another particle with the
same orientation, they will be likely connected by other par-
allel particles. The density of a system composed of such
domains is higher than for more flexible �bent� particles,
where the particles have more possibilities of touching each
other and the clusters have a sparser structure. It should be
noticed that the changes of the threshold cp are large in the
vicinity of p1=0. From the experimental point of view, this
means that the system is very sensitive to small deviations
from linearity of the particles �in the case of less straight
particles, variation of their composition results in smaller
changes of the percolation threshold�.

With the two above-mentioned mechanisms of increasing
the threshold for either small or large values of the parameter
p1, one expects a minimum at some intermediate value of p1.

The localization of this minimum can in general depend on
the size of the particles. We found, however, that it is not the
case here—the value of p1=0.15 is universal for particles of
all sizes. That means that this specific composition �p0
=0.85, p1=0.15� is the most favorable one for percolation on
a square lattice. Unfortunately, a theoretical determination of
that value is difficult and still needs further investigation.

We consider now the threshold cp�p0 , p1� as a sum of a
linear part �the main component� and a function with a peak
around p1=0 �the domain component�. In particular, we mea-
sure the height of the peak of the latter in the following way.
We take the difference 	cp between the value of cp obtained
in simulations for p1=0 and the linear dependence extrapo-
lated to p1=0 �we draw an extrapolation line through two
points for p1=0.4 and 0.7, since in that interval we have very
well-pronounced linear behavior of cp�. The resulting height
of the peak accounting for domains of parallel alignment is
presented in Fig. 6. The results for the square lattice are
plotted as squares. The triangles on the plot correspond to a
similarly defined 	cp on a triangular lattice; see the detailed
discussion in Sec. VI. The uncertainties of the data shown
are smaller than the size of the symbols.

V. NO-PERCOLATION REGIME

For large values of p1�0.8 and for long particles �a

23� there are problems in reaching percolation. For such
compositions the particles are quite compact and connectiv-
ity between them is rather low. The interparticle space is
narrow, so it is difficult to adsorb another big compact par-
ticle. Owing to the statistical algorithm used for generating
the shape of the particles �each next bond is chosen accord-
ing to probability�, it is often possible to fill such a narrow-
shaped space with a big particle; however, one needs an ex-
tremely large number of trials �very long expected values of
adsorption times�. In order to avoid waiting for practically
infinite time to end a simulation, we introduced in our com-
puter code a maximum number of allowed unsuccessful ad-
sorption trials in a row. After reaching this limit a current run
is qualified as “no-percolation” case and stopped. In Fig. 4
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FIG. 4. Percolation threshold cp as a function of the particle size
a and its composition on a square lattice �p1 is the relative amount
of bendings of type S1�. Here the size of the system L=1000. Lines
are guides for the eye only.
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angular �triangles�. This height is measured against the reference
level; see text for details. Uncertainties are smaller than the size of
the symbols.
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only such sets of parameters are taken into account, for
which in all N=100 runs percolation was reached. For each
series of simulations we introduce the quantity NNOP, the
ratio of the number of no-percolation cases to all cases in a
series �N�. For L=1000 we obtained NNOP
0 for a=30
�p1=0.8�, a
26 �p1=0.9�, and a
23 �p1=1.0�. The finite-
size scaling of NNOP done for L=30, . . . ,1000 divided the
considered set of parameters �a, p0, and p1� into two catego-
ries: �a� those for which NNOP→0.0 as L increases, and �b�
those for which NNOP→1.0 as L increases. In other words,
the transient set of parameters for which neither NNOP�0 nor
NNOP�1 is shrinking as we go to larger lattices. Thus the
no-percolation characteristics can be attributed to the given
particles’ parameters �namely, their size and composition�
rather than stemming from computational limitations and
finite-size effects. A similar absence of percolation in adsorp-
tion models was reported in the study of adsorption of big
squares on a lattice �50,51�, where no percolation was found
for the size of the squares a
3.

VI. RESULTS FOR TRIANGULAR LATTICE

We carried out the simulations also on the triangular lat-
tice in order to check the universality of the studied depen-
dencies. Indeed, the whole behavior is confirmed. The details
of the triangular version of the simulations do not differ dis-
tinctly from the square case. Here we considered particles of
size a=3, . . . ,20 and the substrate size L as large as 300.
These values are smaller than those for the square case
mainly due to the much larger computational costs of simu-
lations on the triangular lattice. For example, the time forN
=100 simulations for �p0 , p1�= �0.2,0.8� and L=300 was
about 31 000 s �nearly 9 h�, while for �p0 , p1 , p2�
= �0.2,0.4,0.4� and the same values of L and N the simula-
tions on the triangular lattice lasted 81 000 s �22.5 h�.

The typical landscape of dependence of the percolation
threshold on the composition is given in Fig. 7, where cp is
plotted against p1 and p2 �probabilities of bending types T1
and T2 of Fig. 1, respectively� for particles of size a=10.
The three vertices of the plot, left, right, and rear, correspond
to straight linear particles �p0=1, p1=0, and p2=0�, particles
with bonds of type T1 �p0=0, p1=1, and p2=0�, and most
bent particles with bonds of type T2 �p0=0, p1=0, and p2
=1�, respectively. The arrows on the plot point to isolines of
constant level of p1 or p2. It can be clearly seen that the
behavior of the threshold is dominated by the linear part �flat
surface�, above which there is a peak around the leftmost
vertex that corresponds to the linear straight particles.

Finite-size scaling was checked also for these data and we
obtain confirmation of Eq. �1� with the value of the exponent
1 /� ranging from 0.68 to 0.81 with errors 
0.05. Again this
coincides with the theoretical value for two-dimensional per-
colation, 1 /�=0.75. As before, we estimate the difference in
the threshold value between the finite �L=300� and infinite
�exact� cases: 	= �cp�L=300�− p��. From the plots of the
mean value cp of the threshold against L−1/�, we obtained the
difference 	
0.004 for all parameters, except for long
straight particles �a=20 and p0�1.00�, where 	
0.012.
Again the value of 	 is considered as giving the accuracy of
Fig. 7.

We now determine the height of the peak rising above the
plane of Fig. 7, as it is a measure of deviation from linear
behavior for straight particles. We took three representative
points on the flat �linear� part of the plot, �p0 , p1 , p2�
= �0.6,0.4,0.0�, �0.6,0.0,0.4�, and �0.2,0.4,0.4�, and we ex-
trapolate this plane to the composition of linear particles
�1.0,0.0,0.0� �see the dotted lines on Fig. 7�. The height of
that peak, 	cp, is plotted on Fig. 6 with triangles. One can
see that the data for square and triangular lattices coincide.
Here the error bars do not exceed the size of the symbols.

The most favorable composition �for which the percola-
tion threshold acquires its minimal value� is located for all
particle sizes at p2=0 and p1 between 0.2 and 0.3 �thus p0
lies between 0.7 and 0.8�. The more exact estimation of that
point needs further study, however.

On the triangular lattice there are also simulations where
no percolation was reached �see more detailed discussion of
this effect in Sec. V�. For relatively small particles �a�14�,
we arrive at percolation at every run for all compositions
�p0 , p1 , p2�. When we consider larger particles, more bent
shapes cease to percolate while straight ones still form per-
colating clusters. Here the value of the percentage p2 of most
bent segments is crucial. For example, percolating particles
for the most bent shape �p0=0 , p1=0 , p2=1� have the maxi-
mum size a=13, for lower p2 �p0=0 , p1=0.4, p2=0.6� the
maximum size is a=22, but for p2=0 all considered particles
�up to a=30� percolate. The exact finite-size scaling of NNOP

in the triangular case was not done, however, due to very
long times of simulations for high values of lattice size L and
particle size a.

VII. CLUSTER STRUCTURE ANALYSIS

In order to verify the possibility of correlation between
the percolation threshold and some single-particle character-
istics, we checked also how the composition of the particles
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FIG. 7. Percolation threshold cp on the triangular lattice for
particles of length a=10 as a function of their composition �p1 , p2�.
The arrows point to isolines of constant level of p1 or p2. The
leftmost vertex �with cp�0.41� corresponds to strictly linear par-
ticles �p0 , p1 , p2�= �1,0 ,0�; the rightmost one with cp�0.39 corre-
sponds to particles made of T1-type bending only �composition
�0,1,0�� while the rear one describes the most compact case of cp

�0.55 and composition �0,0,1�. The dotted lines approaching the
value cp�0.33 represent the reference level, from which the height
	cp of the peak is measured �see more details in the text�.
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affects the mean square radius of gyration and the mean end-
to-end distance. It turned out that there is no sharp transition
for any composition of a single particle, so the appearance of
different regimes of percolation �high value of the threshold
for almost straight particles, no percolation for very compact
particles, mild linear dependence for the other cases� can be
attributed only to collective interaction of the particles.

On the other hand, the composition of the particles influ-
ences the structure of the percolating cluster. We investigated
this relation further and looked at the percentage of sites
having a given number of neighbors. We found a strong cor-
relation between the relative number of sites with exactly
two neighbors �for the square lattice� and the percolation
threshold. For the linear part �away from the peak for p0
�0.8 and no-percolation regime� the equation cp=0.897�1
−R2� is satisfied within an accuracy of 0.03. The quantity R2
is defined as the mean ratio of a number of adsorbed sites
with exactly two neighbors to the total adsorbed number of
sites �monomers of the particles� at percolation, averaged
over N simulation runs. The collected data �for p0� �0.1,0.8�
in the square case� as well as the linear relation postulated
above are presented in Fig. 8. The statistical errors of the
points are of order ��R2�
0.02 and ��cp�
0.015. All data
presented in Fig. 8 are obtained for lattice size L=300.

VIII. CONCLUSIONS

We analyzed the random sequential adsorption of ex-
tended particles with a given size and composition of the
shape on square and triangular lattices. The shape variables
on the square lattice p0 , p1 �defined as the percentage of a

given kind of bending in a chain� influence the percolation
threshold cp in such a way that one can look at the whole
landscape of the function cp�p0 , p1� as a sum of a mildly
linear part for p1�0.4 and sharp peak around p1=0. The
overall behavior of the threshold cp is common on both lat-
tices considered. In particular, the height of the peak as a
function of the particle size coincides for both cases.

A linear correlation between the percolation threshold and
cluster structure �more precisely, the relative amount of
monomers with exactly two neighbors at percolation� was
observed for particles with 0.2
 p1
0.9 �on a square
lattice�.
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