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Wprowadzenie

Nieustanny rozwoj nauki i technologii powoduje, ze pewne dawno rozpatrywane zagad-
nienia staja sie na nowo interesujace. Dobrze znane konstrukcje teoretyczne w nowym
kontekscie zyskuja nowego wymiaru, co pozwala na stawianie nowych pytan i potwierdza
zasadno$¢ wielu uprzednich, czesto czysto teoretycznych poszukiwan. Istotny postep
w dziedzinie nanotechnologii, ktéry obserwujemy w ostatnich latach, sprawit, ze na nowo
wzrosto zainteresowanie perkolacja i zablokowaniem, rozwazanymi m.in. w kontekscie
wlasnosci nowoczesnych kompozytow.

Wtlasnie tym zagadnieniom, modelowanym za pomoca ciagle nosnego podejécia ad-
sorpcji sekwencyjnej, po§wiecona jest niniejsza rozprawa. Rozwazam w niej réznorodne
aspekty perkolacji i zablokowania oraz ich wzajemnych relacji w przypadku, gdy obiekty
przytaczajace sie do badanej powierzchni sg relatywnie duze, tzn. maja pewna strukture
przestrzenna. Pozwala to opisywaé procesy z udziatem wtokien weglowych, nanorurek czy
tez innych czasteczek o bardziej ztozonych ksztattach.
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Rozdziat 1

Kontekst

Niniejszy rozdzial stanowi krotkie wprowadzenie w tematyke rozprawy habilitacyjne;j.
Omoéwie tutaj pojecia i zagadnienia dotyczace proceséw adsorpcji sekwencyjnej.

Czesto z pozoru zupelnie niezwiazane ze soba zjawiska mozna opisa¢ stosujac podobne
schematy teoretyczne, gdyz istnieja podobnego typu zaleznosci miedzy poszczegdlnymi
elementami uktadu. Wiele proceséw zachodzacych w przyrodzie charakteryzuje sie nieod-
wracalnoscia w badanych skalach czasowych, a ich dynamika jest ograniczona przez nie-
dostepne dla procesu obszary, ktére powickszaja sie na skutek adsorpcji, czyli trwatego
wiazania sie obiektow (czasteczek, makromolekul, krysztalow itp.) z podtozem. Mimo
bardzo duzej ztozonosci wielu proceséw okazuje sig, ze istnieja stosunkowo proste modele
teoretyczne, ktore sa w stanie wyttumaczy¢ rzeczywistos¢ z duzg doktadnoscia. Punktem
wyjscia dla wyzej wspomnianej klasy zjawisk jest model losowej adsorpcji sekwencyjnej
(ang. RSA — Random Sequential Adsorption), ktory odpowiednio modyfikowany znaj-
duje zastosowanie w bardzo wielu sytuacjach.

W podstawowej wersji mamy do czynienia z obiektami, ktore zajmuja okreslong ilosé
miejsca i moga sie wiazaé¢ z podtozem. W jednym momencie dopuszcza si¢ mozliwos¢ ad-
sorpcji tylko jednego obiektu, a jego polozenie i orientacje ustala sie¢ w sposob losowy za
pomoca okreslonego rozktadu prawdopodobieristwa (zwykle uzywa sie rozkladu jednostaj-
nego). W przypadku gdy wylosowana pozycja nie koliduje z obiektami uprzednio zaad-
sorbowanymi, obiekt zostaje tam unieruchomiony, powiekszajac tzw. adsorbat. W prze-
ciwnym wypadku (gdy obiekty nachodza na siebie) proba adsorpcji jest odrzucana i gene-
rowana jest nowa pozycja, ktora nie jest skorelowana ze starg. Tak skonstruowany model
odtwarza szereg istotnych charakterystyk powierzchni, takich jak stopienn zapetnienia czy
wzajemne korelacje. Dodatkowo otrzymuje sie zaleznos¢ tych wielkosci od czasu.

Aby mozliwie wiernie opisaé¢ rzeczywistos¢, wprowadza sie rézne modyfikacje do pod-
stawowego modelu [1]. W zaleznosci od sytuacji podtoze moze by¢ jednowymiarowe (np.
tanicuch polimeru, do ktérego w réznych punktach przylaczaja sie odpowiednie grupy?),

"'Wtasnie z reakcji laczenia sie sasiednich podstawnikéw w taiicuchu poliwinylowym wywodza sie
pierwsze tego typu modele [2].
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dwuwymiarowe (np. blony biologiczne, powierzchnie krysztatow) albo nawet fraktalne.
Sama struktura podloza moze by¢ ciaggta albo dyskretna, przy czym dynamika obu typow
modelu bardzo si¢ od siebie r6zni. Pewnym rozszerzeniem modelu jest ograniczenie
losowosci kolejnych préob adsorpeji na rzecz wprowadzenia rozktadu pozycji zaleznego
od stanu otoczenia (taka modyfikacja uwzglednia np. oddzialywania czasteczek z ad-
sorbatem jeszcze przed przylaczeniem sie). Aby uwzgledni¢ wplyw mechanizmu trans-
portu czasteczek na badane procesy, modyfikuje sie model, wlaczajac do niego dyfuzje
adsorbowanych czasteczek (dominujace sily typu brownowskiego) albo zakladajac ruch
balistyczny (obiekt adsorbowany trafiajac na zajete juz miejsce probuje zeslizgnaé sie
w linii najwiekszego spadku w kierunku podtoza: jesli na nie upadnie — zostaje, jesli nie
— wraca do roztworu; odpowiada to sytuacji zdominowanej sitami grawitacji). W niek-
torych modelach dopuszcza sie takze mozliwosé desorpcji, tzn. spontanicznego odtaczenia
sie czasteczek z powrotem do roztworu. Zupekie odrebng podklase stanowia modele ad-
sorpcji, w ktorych rozpatruje sie rozne rodzaje czasteczek (od mieszaniny dwoch typow
czasteczek do ciaglego rozkladu wielkosci charakteryzujacej czasteczki). Wowczas za-
chowanie uktadu istotnie zalezy od przyjetych parametréw mieszaniny, takich jak wielkosé
czasteczek, ich wzgledna ilos¢ itp. Mozna takze rozpatrywaé adsorpcje czasteczek jed-
nego rodzaju na podtoze uprzednio zanieczyszczone, tzn. pokryte do pewnego stopnia
innego rodzaju czasteczkami. Aby modelowaé procesy wzrostu za pomoca adsorpcji sek-
wencyjnej, mozna wprowadzi¢ do modelu mozliwo$é uktadania sie jednych czasteczek na
drugich, otrzymujac wielowarstwowy adsorbat. Wreszcie na charakterystyke uktadu za-
sadniczy wplyw ma wielkos¢ i ksztalt obiektow, ktore podlegaja adsorpcji. W przypadku
cigglym bada sie adsorpcje m.in. dyskow, kwadratow, prostokatow, elips, a dla sieci
dyskretnych — dimeréw, trimeréw, liniowych tancuchow, a takze polimeréw o bardziej
ztozonych ksztattach.

Jednowymiarowy ciaglty model adsorpcji odcinkéw na prostej (tzw. problem parkowa-
nia samochodéw) daje sie rozwiazac $cisle [3]. Otrzymana gestosé adsorbatu 0(t) w granicy
dtugich czaséw zmierza do progu zablokowania 6(co) =~ 0,7476 w sposob potegowy:
0(t) — 0(o0) o t~1. Funkcja rozktadu G przerw o dlugosci h miedzy odcinkami w granicy
dhugich czasow wykazuje logarytmiczna rozbieznosé wokot h = 0: G(h,t = o0) ox —In h.
Otrzymana w tym modelu dwupunktowa funkcja korelacyjna zanika na duzych odlegtos-
ciach duzo szybciej niz wykltadniczo (w przeciwienistwie do wykladniczego zaniku w ty-
powych uktadach rownowagowych).

W wigkszej liczbie wymiaréw modele nie daja sie rozwiazac $cisle i stosuje si¢ metody
przyblizone (analityczne i numeryczne). Okazuje sie, ze charakterystyki modelu jed-
nowymiarowego sg rowniez typowe dla wyzszych wymiaréw — mamy takze do czynienia
z nietrywialnym progiem zablokowania (np. 6(co) = 0,547 dla dyskow), wolna kine-
tyka (0(t) — 0(c0) o< t~Y/2 dla dwéch wymiaréw), logarytmiczng rozbieznoscia funkcji
korelacyjnej dla h = 0 i nieréwnowagowoscia osiggnietego stanu granicznego. Sytuacja
jest tu inna niz w przypadku réwnowagowej mechaniki statystycznej, dla ktérej modele
jednowymiarowe istotnie réznia sie od 2- i 3-wymiarowych odpowiednikéw (w jednym
wymiarze nie ma termodynamicznych przejsé fazowych).
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Poniewaz w wielu zastosowaniach mamy do czynienia z adsorpcja obiektéw anizotropo-
wych (np. silnie wydtuzonych w jednym kierunku), w wielu pracach analizuje sie adsorpcje
takich obiektow jak elipsy, prostokaty (zwykte i zaokraglone) albo nawet nieskoriczenie
cienkie igly. Okazuje sie, ze z reguly: a) maksymalne zapelnienie otrzymuje sie dla
obiektéw o stosunku rozmiarow (dtugosé/szerokosé) rzedu 2; b) dla bardzo wydtuzonych
obiektéw granica zapetnienia jest bliska zeru; c¢) dla obiektow anizotropowych graniczna
warto$¢ zapelnienia jest osiggana wolniej niz dla dyskow.

W przypadku sieci dyskretnej dla klasycznego jednowymiarowego modelu adsorpcji
dimeréw [2| z granicznym zapelieniem 0(oo0) = 1 — e* ~ 0, 8647 korelacje przestrzenne
zanikaja z odlegloscia szybciej niz wyktadniczo, podobnie jak ma to miejsce w przypadku
ciagtym. W jednym wymiarze przejécie miedzy przypadkiem dyskretnym i ciaglym otrzy-
muje sie w granicy wielkosci czasteczek k — oo (dla duzych k shuszne jest rozwiniecie
6(k) = 6(c0) + 0,216181/k + 0,362559/k* + ...). Na dyskretnej sieci inna jest jednak
dynamika dochodzenia do stanu zapelienia — od pewnego momentu réznica miedzy ges-
toscia adsorbatu a progiem zablokowania maleje wykltadniczo z czasem: 6(oc0) — 6(t) o
exp(—t/const) [4] (w przeciwieristwie do zaniku potegowego dla przypadku ciaglego).
Stynna hipoteza Palastiego méwi o tym, ze prog zablokowania dla adsorpcji n-wymiaro-
wych kostek o boku k na sieci hiperkubicznej jest n-ta potega progu zablokowania dla
problemu adsorpcji k-meru w jednym wymiarze?.

Dla adsorpcji liniowych k-meréw na sieci kwadratowej otrzymano [5| analitycznie przy-
blizony zwiazek granicznego zapelnienia 0(k) = 0,664+ 0,827/k —0,699/k* (co pozostaje
w zgodnosei z wynikami Monte Carlo z doktadnoscia do 2%). Badania procesu adsorpcji
liniowych k-meréw na dyskretnym substracie byty prowadzone tylko w przypadku sieci
wezlow, natomiast ujecie sieci wigzan nie bylo wezesniej badane (co jest przedmiotem
pracy [H2|).

Oproécz analizy kinetyki adsorpcji i stanu zablokowanego w procesach adsorpcji sek-
wencyjnej czesto zwraca sie szczegblng uwage na zagadnienia perkolacji. Bada si¢ warunki,
w jakich powstaje klaster rozpinajacy (tzn. zbiér bezposrednio sasiadujacych ze soba
obiektow siegajacy brzegow ukladu). Jest to jeden z prostszych i réwnoczesnie fundamen-
talnych modeli przejs¢ fazowych, ktory znajduje szerokie zastosowanie w fizyce statysty-
cznej. Przypadek perkolacji jest klasycznym przyktadem jednej z podstawowych klas
uniwersalnosci zjawisk krytycznych (tzw. klasy uniwersalnosci perkolacji). Wyktadniki
krytyczne, decydujace o przynaleznosci do klas, opisuja zachowanie si¢ szeregu wielkosci
charakteryzujacych uktad (korelacje przestrzenne, wielkos¢é klastra maksymalnego itp.)
przy zblizaniu sie do punktu krytycznego. Od poczatkow zainteresowania perkolacja [6],
kiedy autorzy badali perkolacje nieskorelowanych monomeréw na sieci, do chwili obecnej
tematyka pozostaje ciagle interesujaca i ukazuje sie wiele prac jej poswieconych (patrz
np. przeglady [7, 8, 9, 10]).

2Chociaz hipoteza nie jest $cisle prawdziwa, daje zaskakujaco dobre wyniki liczbowe, np. (2 x 2) ~
0, 74788, a 0(2)? ~ 0,74765, 0(3 x 3 x 3) =~ 0,5595, a 0(3)3 ~ 0, 5588.



12

Modele perkolacji w procesach adsorpcji sekwencyjnej mozna podzieli¢ na dwie grupy:
ciggte 1 dyskretne. W ramach podejscia ciaglego rozwaza sie obiekty sztywne (np. twarde
dyski, kule), ze sztywnym jadrem (ang. hard core soft shell), a takze z mozliwoscia
nawet catkowitego naktadania sie (model typu sera szwajcarskiego, w ktorym w jedno-
litym bloku materialu wycina sie dziury odpowiedniego ksztattu). Ponadto rozwaza sie
adsorpcje nieskoriczenie cienkich linii, ktére modeluja pekniecia materiatu (to podejscie
wykorzystuje sie m.in. w petrologii do opisu osrodkéw porowatych) badz odpowiadaja
wloknom tworzacym kompozyt. Modele rozszerza sie, podajac zamiast jednej wielkosci
charakteryzujacej adsorbowane obiekty caly ich rozklad (w rzeczywistosci czesto mamy
do czynienia ze zbiorem obiektow podobnych, ale jednak réznigcych sie rozmiarami).
W rézny sposob zadaje sie kryterium taczenia obiektow w klastry — od bezposred-
niego styku (zachodzenia na siebie), przez minimalna odlegtosé, az do losowania sposrod
bliskich sasiadow. W jeszcze innym podejsciu modeluje si¢ proces wzrostu domen przez
umieszczenie punktowych zarodkéw domen, ktore nastepnie sie powiekszaja (puchna), az
zetkna sie z sasiednimi domenami. W ramach teorii perkolacji bada sie takze bardziej
skomplikowane ciagte modele polimeréw, ktore bedac w roztworze podlegaja wielu sitom
wewnatrz- i miedzyczasteczkowym, w efekcie ktorych nastepuja zmiany konformacyjne
i przejscia fazowe typu np. zol-zel. We wszystkich wyzej wymienionych modelach bada
sie wyktadniki krytyczne, progi perkolacji, funkcje korelacyjne itp. Okazuje sie, ze wiele
roznych modeli — m.in. ciggla perkolacja sztywnych dyskow, dyskow ze sztywnym ja-
drem, nieskonczenie cienkich igiel, a nawet dyskretna perkolacja dimeréw, trimeréw itp.
na sieciach jednorodnych i niejednorodnych — nalezy do jednej klasy uniwersalnosci perko-
lacji (wyktadniki krytyczne zaleza tutaj raczej od wymiaru przestrzennego modelu niz od
szczegotow samej dynamiki).

Odrebna klase tworza modele sieciowe, dla ktérych potozenia i orientacje obiektow
moga przyjmowaé wartosci ze zbioru dyskretnego. Ograniczenie to, z jednej strony,
stanowi pewne uproszczenie utatwiajace dalszg analize, a z drugiej — lepiej pasuje do
rzeczywistosci fizycznej w przypadkach, w ktorych np. substrat ma strukture periody-
czna i tylko w niektorych miejscach czasteczki moga sie do niego przytaczyé. Poniewaz
ksztalt czasteczek moze miec istotny wplyw na ich zachowanie si¢, obecnie bada sie¢ modele
perkolacji w uktadzie prostokatow, igiet oraz, w ogélnosci, k-meréw, utworzonych z po-
jedynczych atomoéw na rézne sposoby. Pomiedzy liniowym ksztattem tancucha z jednej
strony a ksztaltem otrzymanym przez losowe btadzenie z samounikaniem z drugiej ist-
nieje cale spektrum mozliwosci, ktorego zbadaniu poswiecone sa m.in. prace [H3| i [H6].
Analizuje sie takze wplyw sktadu na perkolacje dla mieszanin réznych typow czasteczek.
Aby opisaé sytuacje bardziej skomplikowane (i czesto blizsze rzeczywistosci), wprowadza
sie niejednorodnosé sieci przez modyfikacje dostepnych wiazan (tzw. site-bond problem)
albo nawet tworzac sie¢ zupelnie od nowa (do tej szerokiej klasy probleméw nalezy np.
zagadnienie odpornosci sieci na atak z zewnatrz). Odrebna sprawa jest zwiazek perkolacji
z zablokowaniem — czy np. klaster perkolujacy jest szkieletem dla fazy zablokowanej
(temu poswiecona jest m.in. praca [H1]).

Jesli chodzi o badanie adsorpcji obiektéw rozciaglych, okazuje sie, ze jedynie mo-
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dele jednowymiarowe daja si¢ w niektorych przypadkach rozwiazaé¢ Scisle do korica |[3].
Zwykle pozostaja metody przyblizone, ktére mozna podzieli¢ na dwie grupy. W pierwszej
grupie metod analitycznych znajduja si¢ m.in.: podejscie bazujace na uzyciu argumentow
geometrycznych i rozwiniecia funkcji korelacyjnych na wzor teorii rownowagowej (row-
nania typu Mayera-Montrolla, Kirkwooda-Salsburga, Ornsteina-Zernike’a). Druga grupe
stanowiag metody numeryczne, m.in. symulacje Monte Carlo, ktore w wielu przypadkach
wnoszg najwiecej informacji o badanym procesie, gdyz napotykane trudnosci techniczne
czesto znacznie ograniczaja stosowalnosé¢ metod z grupy pierwszej.

Istnieje wiele prac eksperymentalnych weryfikujacych modele adsorpcji sekwencyjne;j.
Juz w latach osiemdziesiatych XX wieku mierzono progi zablokowania dla lateksowych
kulek wytracajacych sie z roztworu koloidalnego [11] i wykorzystywano perkolacje do wy-
jasnienia charakterystyki przewodnictwa kompozytoéw z wiokien weglowych [12]. Badano
eksperymentalnie adsorpcje sferycznych czasteczek koloidéw podlegajacych dyfuzji oraz
grawitacji, otrzymujac dobra zgodno$¢ z modelem teoretycznym [13]. Ciekawym przykta-
dem do$wiadczalnego badania zwigzku nadprzewodnictwa z orientacja ziaren NbsSn na
gruncie perkolacji jest niedawna praca [14]. Rowniez pewne wtasnosci elektryczne ostatnio
tak popularnych kompozytéw utworzonych z nanorurek weglowych prébuje sie ttumaczyé
za pomoca opisanego wyzej schematu teoretycznego [15, 16]. Niektore niedawne ekspery-
menty sugeruja wykorzystanie modeli adsorpcji na sieciach dyskretnych [17]. W czesci
doswiadczen substrat jest poddawany naturalnym procesom, ograniczajacym wolna prze-
strzeni, na ktorej moze wystepowaé adsorpcja [17] — do opisu tego typu sytuacji odpo-
wiedni jest model adsorpcji na uprzednio zanieczyszczonej powierzchni [H4, H5.
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Rozdziat 2

Cel 1 tezy rozprawy

2.1 Cel rozprawy

Celem rozprawy jest analiza proceséw adsorpcji sekwencyjnej na dwuwymiarowych sub-
stratach ze szczegblnym naciskiem potozonym na wlasnosci zwiazane z perkolacja (tworze-
niem sie globalnego klastra zlozonego z sasiadujacych czasteczek danego typu) oraz z za-
blokowaniem (ang. jamming), ktére ma miejsce, gdy biezaca konfiguracja przytaczonych
czasteczek (adsorbat) nie pozwala na adsorpcje kolejnej czasteczki. Moje podejscie bazuje
na stosunkowo prostych modelach teoretycznych, ktore jednak nie daja sie rozwiagzaé
analitycznie. Wlasciwym narzedziem do realizacji tego zadania sa numeryczne symu-
lacje Monte Carlo wzbogacone o odpowiednia obrobke statystyczna i argumenty natury
fizycznej. Punktem wyjscia jest uzyskanie zaleznosci odpowiednich progow (perkolacii,
zablokowania) w funkcji parametréw modelu (np. wielkosci czasteczek, ich sztywnosci,
wielkosci substratu). Dalszy krok w analizie to wyeliminowanie efektéw brzegowych
zwigzanych ze skoniczono$cia probki, na ktora adsorbuja czasteczki — uzywam tutaj m.in.
skalowania skoriczonych rozmiaréw (ang. finite size scaling). Tak przygotowane dane
podlegaja dalszej analizie w celu glebszego zrozumienia dynamiki modelu i przyczyn ob-
serwowanego zachowania. W moich badaniach zajmuje¢ sie istniejacymi modelami, ktore
analizuje w nowy sposob ([H1|), oraz — w przewazajacej czesci — tworze nowe modele,
bedace rozszerzeniem juz istniejacych (prace [H2-H6]).

W cyklu prac [H1-H6] wchodzacych w sktad rozprawy rozwazam rézne sytuacje mo-
delowe, ktore mozna podzieli¢ na grupy ze wzgledu na cztery nastepujace kryteria:

e typ badanego zjawiska:

— perkolacja

— zablokowanie
e jakos¢ substratu:

— czysty
17
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— uprzednio zanieczyszczony
e struktura czasteczek:
— sztywne igly
— gietkie tanicuchy
e typ sieci substratu:
— kwadratowa sie¢ punktow (KP)

— kwadratowa sie¢ wiazan (KW)

— trojkatna sie¢ punktow (TP).

Ponizsza tabela pokazuje w graficzny sposob obszar badan bedacy przedmiotem po-
szczegolnych prac wchodzacych w sktad rozprawy:

PERKOLACJA ZABLOKOWANIE
czysty | zanieczyszczony czysty | zanieczyszczony

KP H1 H1

sztywne
KW H2 H2

igy

TP H4 H5
KP H3, H6

gietkie
KW

tancuchy
TP H3, H6

Zanim przejde do szczegdlowego omdwienia tez rozprawy, chciatbym najpierw opisaé
wykorzystany we wszystkich pracach wchodzacych w jej sktad mechanizm symulacji Monte
Carlo, za pomoca ktorego otrzymuje sie dane podlegajace dalszej analizie.
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2.2 Losowa adsorpcja sekwencyjna i symulacje Monte
Carlo

Punktem wyjscia jest substrat — pewien skoriczony podzbiér dwuwymiarowej regularne;j
sieci (w rozprawie beda to sieci kwadratowe punktow [weztow|, sieci kwadratowe wiazan
oraz sieci trojkatne punktow). Modeluje on skonczong powierzchnie rzeczywistej probki,
na ktorej osiadaja czasteczki (drobinki, krysztaty itp.). W praktyce wybieram kwadrat
o boku L badz szesciokat (dla sieci trojkatnej) takze o boku L jednostek!. Wielkosé¢ L jest
parametrem, ktérgo wartosci zawierajg sie w przedziale od 30 do 3000. Przyjmuje szty-
wne warunki brzegowe (hard wall b.c.), ktore maja nasladowaé zachowanie prawdziwych
probek (cykliczne warunki brzegowe zmniejszaja wprawdzie wplyw skoniczonego rozmiaru
probki na wynik, ale sa w tym kontekscie niefizyczne). Sprawdzitem rowniez ([H1, H2|), ze
przyjecie otwartych warunkéw brzegowych nie zmienia zachowania modelu. W zaleznosci
od wariantu modelu pierwotnie substrat jest czysty (sieé¢ jest pusta) badz zanieczyszczony
(pokryty czesciowo czasteczkami zanieczyszczenia).

Zasadniczym elementem modelu sg czasteczki?, ktore moga ulega¢ nieodwracalne;
adsorpcji na powierzchni substratu. Adsorbujgce czagsteczki obowiazuje regulta nieza-
chodzenia na siebie, a adsorbat (tj. wszystkie zaadsorbowane do tej pory czasteczki)
przez caly czas miesci si¢ w warstwie jednoatomowej. Rozwazam tutaj dwa rodzaje
czasteczek: sztywne igly, ktore sktadaja sie z kolejno po sobie nastepujacych atomow
wzdhuz linii prostej, a odlegto$¢ miedzy kolejnymi atomami jest rowna stalej sieci, oraz
gietkie lancuchy tworzace linie tamana taczaca kolejne punkty (wiazania) sieci. Pod-
stawowym parametrem opisujacym wielko$¢ czasteczki jest liczba atomoéw, z ktorych
sic ona sktada (oznaczenie: a). Wartos¢ a zawiera si¢ zwykle miedzy 1 a 50 (cho¢
w [H1] uzywam rowniez wigkszych wartosci, ale w celu zilustrowania wplywu skornczo-
nych rozmiaréw uktadu na wynik). W przypadku gietkich taicuchow wprowadzam do-
datkowy parametr posrednio opisujacy ich sztywnosé. W pracy [H3] jest nim temperatura,
wchodzaca do czynnika Boltzmanna exp(—AFE/kT), ktory bezposrednio reguluje praw-
dopodobienistwo uzyskania w czasteczce odpowiednio wygietego fragmentu taricucha (dla
temperatur bardzo niskich dozwolone sa jedynie proste tancuchy, natomiast dla bardzo
wysokich temperatur rozktad otrzymanych ksztaltow odpowiada btadzeniu losowemu z sa-
mounikaniem |[self avoiding random walk]). W pracy [H6|, ktora opiera sie na rozsze-
rzonej wersji modelu, parametrem opisujacym ksztalt jest wprost procentowa zawartosé
odpowiednich typow wiazan (zgie¢) w taricuchu — dla sieci kwadratowej py opisuje odsetek
wigzan prostych (typu S0, zob. rys. 1), a p; = 1 — py wiazan pod katem prostym (typu
S1). Dla sieci trojkatnej mamy trzy sumujace sie do jedynki parametry opisujace ksztatt:

1 Jednostka dtugosci jest tutaj stala sieci.
2Pojecie czgsteczka jest tu uzyte nie tylko w dostownym tego slowa znaczeniu, ale takze do opisu
wiekszych struktur, ktére jako calo$é podlegaja adsorpcji, np. metalowe igly, wiékna itp.
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Pa, P11 po, dotyczace typow, odpowiednio, 170, T'1 1 T2.

—

SO S1
o——9 ©—f° @&) .
T0 T1 T2

Rys. 1. Typy wiazan wystepujacych w gietkich tanicuchach.

Adsorpcja czasteczek jest losowa — potozenie i orientacja czasteczki, ktéra ma by¢ zaad-
sorbowana, sa wybierane losowo z rozktadu jednostajnego. Proba adsorpcji jest zakonczo-
na sukcesem, jesli czasteczka o wybranym potozeniu i orientacji nie naktada sie¢ na zadna
inng czasteczke uprzednio zaadsorbowana. W przeciwnym razie wybiera sie nowg konfi-
guracje czasteczki i ponawia probe az do skutku. Adsorpcja jest tez sekwencyjna — podej-
muje sie probe adsorpcji kolejnej czasteczki po zakonczeniu poprzedniej proby. W trakcie
adsorpcji coraz to nowych czasteczek tworzy sie na substracie adsorbat, ktorego pewne
charakterystyki sa na biezaco monitorowane. W przypadku badania perkolacji sprawdzam
wielkos¢ adsorbatu (stopient zapekienia sieci zaadsorbowanymi atomami) w momencie,
w ktorym pojawita sie perkolacja (powstal klaster taczacy przeciwleglte brzegi uktadu).
W przypadku badania zablokowania w uktadzie sprawdzam wielko$¢ adsorbatu w takim
momencie, w ktéorym nie ma juz mozliwoéci dodania do adsorbatu nowych czasteczek ze
wzgledu na brak wolnego miejsca.

Dla zapewnienia statystycznej wiarygodnosci powtarzam pojedyncze symulacje, za-
pisujac otrzymane progi (perkolacji, zablokowania). Do dalszej analizy biore wartosé
srednig progu z serii N symulacji, a szerokos¢ rozktadu mierze za pomoca odchylenia
standardowego o. Zwykle wybor N = 100 daje dobra statystyke wynikéw, choé w niekto-
rych przypadkach (np. w badaniu rozktadu masy wszystkich klastrow w uktadzie w pracy
[H2|) przyjalem N = 10 000.

W pracach do generowania liczb pseudolosowych uzywam znanego [18] generatora
ran2, ktory charakteryzuje sie dobrymi parametrami.
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2.3 Szczegdélowe omobéwienie tez rozprawy

2.3.1 Perkolacja i zablokowanie na sieci punktéw (sztywne igly)

W pracy [H1| dokonatem analizy zaleznosci progéw perkolacji i zablokowania dla adsorpcji
liniowych czasteczek (sztywnych igiel) o rozmiarze 1xa na czystym substracie. Rozwazane
byty sieci o wielkosci L = 30, ..., 2500 i igty o dtugosci a = 1, ..., 2000; duze wartosci a byty
analizowane w pracy gléwnie pod katem ilustracji efektu skonczonego rozmiaru uktadu.
Otrzymaltem niemonotoniczng zaleznos¢ progu perkolacji ¢,(a) w funkcji wielkodci igiel.
Zauwazytem, ze wzrost progu dla a > an;, = 13 (rys. 2) mozna powiazaé¢ z faktem,
iz dla dtuzszych czasteczek tatwiej tworza sie zwarte domeny ztozone z wielu sasiednich
czasteczek ulozonych rownolegle do siebie. Otrzymatem zalezno$¢ progu zablokowania
¢j(a), ktora dalo si¢ dobrze opisa¢ prawem potegowym c;(a) = 0,66 + 0,44a*"" dla
a=>5,..,45 (rys. 3).

°© mean
-0
—— power fit | 4§

0,60

O mean
-0
— linear fit (a=15..45)

0,50

0,45 L | L | L | L | 0.01 L
0 10 20 30 40 10 100
a a

Rys. 2. Prég perkolacji w funkcji dtugosci igly. Rys. 3. Prég zablokowania w funkcji dtugosci igty.

Po przeanalizowaniu wartosci stosunku progéw c,/c; wykazalem, ze nie jest on staty,
jak wczesniej sadzono [19], ale po osiagnicciu plateau dla a = 3,...,7 nastepuje dalszy
wzrost jego wartosci (rys. 4). Zatem trzeba odrzuci¢ sugerowany w [19] zwiazek struktury
klastra perkolujacego z faza pelnego zablokowania (postulowano, ze ten pierwszy jest
klastrem fundamentalnym [szkieletem| dla fazy zablokowanej).
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07l | ™ log fit (a=15..45)

cp/c 0.66 |

0.62 -

0.58

1 10
a

Rys. 4. Iloraz progéw c,/c; w funkeji dtugosci igty.

Analizujac skalowanie szerokosci przejscia (mierzonego odchyleniem standardowym o)
z wielkoscig uktadu L, potwierdzilem zgodnosé wykladnika krytycznego v, z wartoscia
znang dla standardowej nieskorelowanej perkolacji punktéow vy = 4/3 [7]. Podobnie dla
zablokowania otrzymalem wartos¢ v; = 1 zgodng z innymi danymi dla tego typu procesow.

Istotng sprawa jest wykazanie, ze istnienie minimum progu perkolacji nie jest artefak-
tem zwigzanym z malymi rozmiarami sieci, ale ze jest to wlasno$¢ uniwersalna, rowniez
dla duzych wartosci L — dane prezentowane w pracy [H1|, poszerzone dodatkowo o wyniki
symulacji dla sieci o rozmiarach az do L = 5000, stanowia tego potwierdzenie (rys. 5).

L

0gs K2 1k 50 300 200 150 { 100 75
1
0,54 e &5
¢ &2
053 &40

0,52
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0550

0,49

0,48
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0,46

0,45
0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040
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L

Rys. 5. Prog perkolacji w funkcji rozmiaréw sieci dla igiet o dtugos$ci @ = 5, 20 i 40. Z wykresu jasno
wynika, ze niemonotonicznosé¢ progu perkolacji w funkeji dlugosci igly ma miejsce réowniez dla bardzo

duzych sieci.

Przystepujac do pracy nad perkolacjg i zablokowaniem sztywnych igiel na sieci nie
dotartem do zadnych zrodet, w ktorych rozwazano by taki uktad, poza praca [19], ktora
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stanowita bezposredni przyczynek do zajecia sie ta tematyka. W trakcie dalszych moich
badan nad zagadnieniami adsorpcji (juz po opublikowaniu pracy [H1]) odkrytem, ze
podobny problem (ale dla cyklicznych warunkéw brzegowych i dla innego wyboru dtu-
gosci igiet) byt wezesniej rozwazany w literaturze [21]. Moje podejscie dotyczy sztywnych
warunkow brzegowych, pokazuje dla szerszego zbioru dlugodci igiet prawidlowosci w prze-
biegu funkeji ¢,(a) i ¢j(a) oraz dokonuje analizy w innym kontekscie (wzajemne powigzanie
perkolacji i zablokowania).

2.3.2 Perkolacja i zablokowanie na sieci wiazan (sztywne igly)

W pracy [H2| rozwazytem progi perkolacji i zablokowania pojawiajace si¢ w procesie ad-
sorpcji sztywnych igiet w przypadku modelowania substratu na kwadratowej sieci wiazari,
a nie punktéw. Odkrylem, ze dla igiel o dtugosci a > a* = 6 perkolacja w ogole nie
zachodzi w dostatecznie duzych uktadach. Dokladniejsza analiza doprowadzita mnie do
zaobserwowania zmiany charakteru rozktadu masy w klastrach (w momencie zablokowa-
nia) przy przechodzeniu przez wartosé¢ a* (rys. 6). Dla igiel krotkich (a < a*) wicksza
czes¢ masy jest skupiona w duzym klastrze (istnieje duzy klaster perkolujacy). Dla igiet
dhugich (a > a*) mamy do czynienia gtéwnie z malymi klastrami, a duze klastry wystepuja
sporadycznie. Dla wartosci przej$ciowej (a = a*) zaleznosé sredniej masy zawartej w klas-
trach nie wiekszych od s w funkeji s jest zblizona do liniowej. Dla igiet perkolujacych
(a < a*) zbadalem wyktadnik Fishera opisujacy potegowa zaleznosé gestosci rozktadu
masy w momencie perkolacji [7]. Uzyskana wartos¢ 7 = 2,02+£0, 04 jest zgodna z wartos-
cia teoretyczna 7o = 187/91 ~ 2,055, uniwersalna dla wielu dwuwymiarowych modeli
perkolacji (w tym klasycznej perkolacji nieskorelowanych punktow).

Zaobserwowalem, ze, podobnie jak w przypadku adsorpcji igiet na sieci punktow, prog
zablokowania zalezy potegowo od diugosci igly: ¢j(a) — ¢} o< a~b% 7 tym ze wartos$é
graniczna a — oo dla sieci wigzan (c;k = 0,3350) jest potowa wartosci granicznej dla ad-
sorpcji na sieci punktow. Majac zaleznosci progu perkolacji i zablokowania od dtugosci
igly, zauwazytem, ze ich stosunek jest z dobra dokladnoscia funkcja liniowa (rys. 7).

16000 - - - 10
14000 ~ a= 2
0.8 N
12000 + 4 \3\
. .
10000 - 7 6 5 o 06 =N
M 5000 | 10 o q B
& T |
6000 | & o4t b
4000 4 G © Cp
02 | B--0 CJ
2000 1 +—ecjc
0 0 . . . .
0 5000 10000 15000 1 2 3 4 5 6
S a
Rys. 6. Uéredniona dystrybuanta rozktadu masy Rys. 7. Progi perkolacji i zablokowania oraz ich
w klastrach réznej wielko$ci w momencie zabloko- stosunek w funkcji dtugosci igty.

wania dla réznych dtugosci igiet.
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2.3.3 Perkolacja gietkich tanicuchow

W pracach [H3| i [H6] zbadalem dwa warianty modelu adsorpcji gietkich tancuchow
pod katem perkolacji. W pierwszym przypadku ([H3|) gietkos¢ tanicuchow jest posred-
nio zwiagzana z temperatura roztworu 7', z ktorego czasteczki pochodza. Dla dowol-
nego tancucha liczona jest energia konformacji, okreslona przez sume energii potencjal-
nych zwiagzanych z oddzialywaniem poszczegdlnych atomoéw ze soba — poszczegdlnym
katom zgiecia tancucha (dla przypadku rozwazanej sieci trojkatnej) dla 70, 71 i T2
z rys. 1 odpowiadaja energie E0 = 0, E1 = 15 oraz E2 = 100 wyrazone w pewnych,
blizej nieokreslonych jednostkach (ich wyboér jest rzecza wtorna: wartosci EO oraz E2
sa przyjete arbitralnie, a ich zmiana odpowiada przeskalowaniu osi energii, wartos¢ E'1
wynika z przyjecia odpychajacego coulombowskiego typu oddzialywania). Prawdopodo-
bienistwo wyboru odpowiedniego ksztattu czasteczki podlegajacej adsorpcji okreslone jest
za pomocy czynnika Boltzmanna exp(—FE/T) opisujacego szanse trafienia na konforma-
cje o caltkowietj energii £ w rownowadze; temperatura 7' jest mierzona w tych samych
jednostkach co energia. Badajac zaleznos§¢ progu perkolacji ¢, w funkcji temperatury T
i dlugosci igiet a (rys. 8) wyrdznilem i przeanalizowalem rézne typy zachowania ograni-
czone trzema charakterystycznymi temperaturami: granicag sztywnosci 77 = 2,0, ponizej
ktorej czasteczki perkolujg tak jak sztywne igly; temperatura 7o = 2,65, dla ktoérej prog
perkolacji nie zalezy od dlugosci taricucha (dla a > 10); oraz T3 = 7,5 — temperatura,
w ktorej perkolacja zachodzi najtatwiej (minimum ze wzgledu na 7" wspoélne dla réznych

a). Zauwazylem tez, ze dla bardzo wysokich temperatur prog perkolacji wysyca sie jak
1/T.

0.50
Cp 045
0.40
0.35

0.30

Rys. 8. Perkolacja gietkich lancuchow.

Zaobserwowalem ciekawe zjawisko zachodzace w stosunkowo niskiej temperaturze (7T
< 6): energie konformacji adsorbowanych czasteczek sa istotnie nizsze (w niektorych
przypadkach nawet o 40%) niz $rednia energia konformacji czasteczki swobodnej w danej
temperaturze (tzn. o ksztalcie wynikajacym z czynnika Boltzmanna). Jest to efekt fil-
trowania z roztworu czasteczek o ksztaltcie pasujacym do pozostalych pustych miejsc.

Potwierdzitem uniwersalnos¢ otrzymanych efektow — na sieci kwadratowej zaleznosé
¢p(a,T) jest podobna, a otrzymane temperatury charakterystyczne pozostaja w takiej
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samej proporcji na obu sieciach: T1(T'RI) : To(TRI) : T5(TRI) = T1(SQR) : TH(SQR) :
T3(SQR).

Ponadto sprawdzitem, ze prog zablokowania nie jest tak czuly na temperature jak
prog perkolacji i wladciwie od niej nie zalezy.
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Rys. 9. Prog perkolacji ¢, (po, p1,p2)- Rys. 10. Wielko$¢ maksimum drugiego sktadnika.

W drugim, uogdlnionym wariancie modelu, opisanym w pracy [H6|, badam wptyw
wystepowania roznych zgie¢ taricucha na perkolacje. Podstawowymi parametrami modelu
sa udzialy procentowe pg, p1, p2 odpowiednich typow zgie¢ w czasteczkach (odpowiednio
dla 70, T'1 i T'2 na sieci trojkatnej oraz py i p; dla S0 i S1 na sieci kwadratowej, zob. rys.
1). Dla obu przypadkéw sieci prog perkolacji w funkeji {p; }i—o.1,2 mozna przedstawic¢ jako
sume liniowego skladnika oraz funkcji przyjmujacej ostre maksimum w zerze® i szybko
znikajacej poza nim (na rys. 9 przedstawiona jest zaleznosc¢ c,({p;}) dla sieci trojkatne;j).
Wartos¢ samego maksimum jest wielkoscig uniwersalng — nie zalezy od typu sieci, ale
tylko od dlugosci taricucha (rys. 10). Wielkosé ta opisuje, na ile sztywne igly roznia sie
pod wzgledem perkolacji od gietkich tancuchow.

Zaobserwowalem, ze w rozszerzonym modelu wystepuje zjawisko braku perkolacji
w przypadku diugich taricuchow (a > 23) i wysokiej zawartosci zgie¢ typu 72 badz
S1 (w zaleznosci od rodzaju sieci). Dokonalem analizy skalowania wielkosci NoP opisu-
jacej wzgledna liczbe pojedynczych symulacji w serii, ktore nie zakonczyty sie perkolacja.
Przej$cie miedzy obszarami z NoP = 0 a NoP = 1 ma cechy przejscia fazowego (wraz
ze wzrostem rozmiaru sieci obszar parametrow (a, {p;}) z wartoscia 0 < NoP < 1 zaweza
sie).

Z dokonanej przeze mnie analizy zwigzku miedzy progiem perkolacji a §rednim promie-
niem bezwladnosci (zyracji) adsorbowanych czasteczek i srednia odlegtoscia miedzy kori-
cami taricucha wynika, ze nie istnieje bezposrednie powiazanie tych wielkosci. Natomiast
zauwazyltem istnienie znaczacych korelacji miedzy warto$cia progu perkolacji a ilocia
atomow w adsorbacie, ktore w chwili perkolacji maja doktadnie dwoch sasiadow (na sieci
kwadratowej).

Analiza skalowania progu perkolacji z rozmiarem uktadu pozwolita ustali¢, ze dla tego

3Wartosé zero przyjmuja parametry p; i (dla sieci trojkatnej) po.
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modelu wyktadnik krytyczny v jest zgodny z wartoscia 4/3 uniwersalna dla wielu modeli
w dwoch wymiarach.

2.3.4 Perkolacja na zanieczyszczonym substracie (sztywne igly)

W pracy |H4| rozwazytem wplyw zanieczyszczen na perkolacje w uktadzie. Bardzo czesto
dzieje sie tak, ze substrat, na ktory adsorbuja czastki, nie jest czysty, ale juz od samego
poczatku pokrywa go pewna ilo$¢ zanieczyszczen. Ich poziom oraz wlasciwosci czasteczek
zanieczyszczenia maja istotny wpltyw na procesy przebiegajace na powierzchni substratu.
W pracy [H4| badam sytuacje nastepujaca: substrat jest poczatkowo pokrywany (w pro-
cesie losowej adsorpcji sekwencyjnej) czasteczkami zanieczyszczen do poziomu zapetnienia
id; czasteczki te maja postac sztywnych igiet o dtugosci ad stalych sieci (w pracy rozwazam
wartodci ad = 1, ...,24). Na tak przygotowany substrat nastepuje adsorpcja punktowych*
czasteczek przewodnika®. Jedna z podstawowych wielkoéci badanych w tym modelu jest
prog perkolacji czgsteczek przewodnika w funkcji wielkosci czasteczek zanieczyszczenia
i catkowitego poziomu zanieczyszczeni. Zauwazytem, ze mozna wyrozni¢ dwie catkowicie
odmienne sytuacje: ukltad zachowuje sie inaczej dla zanieczyszczen punktowych (ad = 1)
niz dla wszystkich innych przypadkow (ad > 1).

W sytuacji ad = 1 (punktowe zanieczyszczenia) otrzymany prog perkolacji w ogole
nie zalezy od poziomu zanieczyszczen, pod warunkiem jednak, ze poziom zanieczyszczen
id < 0,5. W pracy |[H4| podalem prosty argument kombinatoryczny wyjasniajacy to,
skadinad zaskakujace, zachowanie. To, ze perkolacja nie wystepuje dla id > 0,5, mozna
wyjasni¢ faktem, ze wlasnie wartosc¢ 0,5 jest progiem perkolacji dla punktowych czasteczek
zanieczyszczenia, wowcezas czasteczki przewodnika nie moga juz perkolowac.

Zbadatem, ze dla wickszych czasteczek zanieczyszczen réwniez perkolacja czasteczek
przewodnika jest ograniczona do pewnego obszaru zmiennosci poziomu zanieczyszczen —
dla skoniczonych rozmiaréw sieci L istnieje przedzial id € [id~ (ad),id" (ad)], dla ktorego
liczba symulacji zakoriczonych brakiem perkolacji zwieksza sie od 0 do 100%. Przedzial
ten kurczy sie dla L — oo, osiagajac punkt id*(ad), bedacy dopelnieniem progu perko-
lacji zanieczyszczen: id*(ad) = 1 — c;(ad), gdzie c;(ad) jest graniczna wartoscia poziomu
zanieczyszczen o wielkosci czasteczek ad, dla ktoérej pojawia sie perkolacja tychze zanie-
CZyszczen.

4To znaczy zajmujacych pojedynczy wezel sieci.

STerminu czgsteczki przewodnika uzywam tu w sensie czasteczek, ktoérych perkolacja jest badana.
W  praktyce perkolacja moze nie tylko oznaczaé¢ przejscie typu izolator-przewodnik, ale takze, w wielu
przypadkach, chodzi np. o pewne globalne wlasnosci mechaniczne (powstanie fazy zelu).
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Rys. 11. Prog perkolacji przy wiekszych Rys. 12. Naktadanie sie odpowiednio
czasteczkach zanieczyszczen. przeskalowanych zalezno$ci.

Dla wickszych czasteczek zanieczyszezen (ad > 1) prog perkolacji czasteczek przewod-
nika zalezy nietrywialnie od poziomu zanieczyszczenn (rys. 11), gdyz korelacje miejsc
zajetych przez zanieczyszczenia sa niezerowe. Po systematycznym wzroscie progu c,
na duzym przedziale zmienno$ci id funkcja przestaje by¢ monotoniczna dla argumentdw
zblizajacych sie do granicznej wartosci id*, dla ktorej perkolacja znika. Dokladniejsza ana-
liza zaleznosci ¢,(ad, id) pozwolita mi zauwazy¢ pewna uniwersalnos¢ zachowania. Przy
ograniczeniu sie do obszaréw odlegtych od i¢d* i odpowiednim przeskalowaniu argumen-
tow wszystkie wykresy dla roznych wartosci ad nakltadaja sie na siebie (rys. 12). Z kolei
obszar bliski ¢d* jest ciekawy ze wzgledu na pojawienie si¢ maksimum: powyzej pewnej
warto$ci uprzednie zwiekszenie poziomu zanieczyszczen daje efekt obnizenia sie progu
perkolacji. Zaproponowatem wyjasnienie tej sytuacji, biorac pod uwage dwa czynniki: a)
obszar wolny od zanieczyszczen dla id < id* ma strukture podobna do struktury klastra
perkolujacego nieco powyzej progu perkolacji, tzn. sklada sie z kropel (blobs), tacznikow
(links) i slepych konicow (dead ends) [7]; oraz b) pierwotny rozklad zanieczyszczen jest
modyfikowany warunkiem a posteriori wystepowania perkolacji przewodnikéw w uktadzie
(tylko symulacje koriczace sie¢ perkolacja sa wykorzystywane przy obliczaniu sredniej c,).
Blisko granicy d* zwigkszenie poziomu zanieczyszczen czesciej nastepuje w $lepych kon-
cach, gdyz: po pierwsze, stanowia one znaczacy odsetek pozostalej wolnej przestrzeni, po
drugie, czasteczki zanieczyszczen nie moga by¢ zaadsorbowane w tacznikach, gdyz wte-
dy blokowana jest perkolacja przewodnikéw, i w rezultacie symulacja nie jest liczona do
sredniej. Ostatecznie daje to wzgledne zmniejszenie gestosci Slepych koricow dostepnych
dla adsorpcji czasteczek przewodnika i prowadzi do obnizenia progu perkolacji. W pracy
zaproponowalem takze uzycie wzglednego progu perkolacji c;d (id) = ¢,(id)/(1—id), ktory
okresla ile procent powierzchni wolnej od zanieczyszczen jest zajete przez czasteczki prze-
wodnika w momencie perkolacji. Tak wprowadzona wielko$¢ pozostaje rosngca w calym
zakresie zmiennosci parametru id.
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2.3.5 Zablokowanie na zanieczyszczonym substracie (sztywne igly)

W pracy [H5| zbadalem wplyw zanieczyszczeri na zablokowanie w ukladzie. Substrat
podlega najpierw adsorpcji czasteczek zanieczyszczenia, ktore, bedac sztywnymi igtami
o dtugosci b, zapeliaja czysta poczatkowo powierzchnie do poziomu ¢;. Na tak przygo-
towane podloze nastepnie adsorbowane sa czasteczki drugiego typu (tez sztywne igly, ale
o dtugosci a). Po dojsciu uktadu do stanu zablokowania (zadna czasteczka drugiego typu
nie jest w stanie zmiesci¢ sie w pozostatej wolnej przestrzeni) sprawdzam poziom pokrycia,
substratu czasteczkami drugiego typu. Po wykonaniu odpowiedniej liczby symulacji otrzy-
muje¢ wiarygodna warto$¢ srednig progu zablokowania c;, ktora jest przedmiotem dalszej
analizy. Badajac zaleznos¢ progu zablokowania w funkcji wielkosci poszczegolnych rodza-
jow czasteczek oraz poziomu zanieczyszczenia uktadu c;(a, b, ¢;), zauwazam, ze nalezy roz-
graniczy¢ dwa jakosciowo rozne przypadki: kiedy a < b (wieksze sa czasteczki zanieczysz-
czen) oraz kiedy a > b (wieksze sa czasteczki drugiego rodzaju). Przypadek graniczny
a = b okazuje si¢ trywialny (¢;(a,a,¢;) = ¢j(a,a,0) — ¢;). Dla sytuacji, gdy a > b,
odkrytem, ze odpowiednio przeskalowany prog zablokowania y spelnia z dobra doktad-
noscig proste réwnanie = 4 y? = 1, gdzie z jest odpowiednio przeskalowanym poziomem
zanieczyszczen, a wykladnik g zalezy tylko od réznicy dtugosci igiet obu typow (rys. 13).
W drugim przypadku a < b (wieksze sa czasteczki zanieczyszczen) wyznaczytem wyklad-
nik krytyczny v oraz wydzielajac z fluktuacji cze$é odpowiedzialng za niejednorodnosé
zanieczyszczonego substratu [20], otrzymaltem fraktalny wymiar przestrzeni wolnej od
zanieczyszczen rowny 2.
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Rys. 13. Wyktadnik 8 w funkcji r6znicy dlugosci igiet obu typow.



Rozdzial 3

Podsumowanie wynikow

W niniejszym rozdziale znajduje sie zbiorcze zestawienie nowych wynikéw uzyskanych
przeze mnie i opublikowanych w pracach wchodzacych w sktad rozprawy.

[H1] G. Kondrat, A. Pekalski,
Percolation and jamming in random sequential adsorption of linear segments

on a square lattice,
Phys. Rev. E 63 (2001), 051108.

e Zaproponowalem jakosciowe wyjasnienie przyczyn istnienia minimum progu perko-
lacji dla przypadku adsorpcji prostych tancuchéw (igiet) na sieci kwadratowe;.

e Odkrylem brak wysycenia dla wartosci ilorazu progu perkolacji do progu zablokowa-
nia dla przypadku adsorpcji prostych taricuchow (igiet) na sieci kwadratowej — po
lokalnym wyplaszczeniu dla dtugosci igiet a = 3-7 6w iloraz dalej rosnie ze wzrostem
wartosci a.

[H2] G. Kondrat, A. Pekalski,
Percolation and jammaing in random bond deposition,
Phys. Rev. E 64 (2001), 056118.

e Odkrytem, ze dla adsorpcji prostych tancuchéw na kwadratowej sieci wigzan perko-
lacja zachodzi tylko dla taricuchéw o dlugosci co najwyzej a* = 6.

e Odkrytem niemonotoniczne zachowanie progu perkolacji w funkcji dtugosci tanicucha
(minimum dla a = 4).

e Zbadalem strukture rozktadu masy klastrow w momencie zablokowania — funkcja
opisujaca te strukture zmienia charakter przy przejsciu przez warto$¢ charakterysty-
czna a*.

e Wyznaczylem wyktadnik Fishera dla tego modelu 7 = 2,02(4).

e Wyznaczytem prog zablokowania w funkcji dtugosci tancucha i znalaztem prostg
postac tej zaleznosci: ¢;(a) — ¢ < a® z ¢§ = 0,3350(25) i A = —1,05(10).

J
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Odkrytem liniowos¢ ilorazu progu perkolacji do progu zablokowania w zakresie do-
puszczonym przez istnienie perkolacji.

Dokonatem analizy zbieznosci progéw perkolacji i zablokowania w granicy bardzo
duzych sieci.

[H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains
adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.

Zaproponowatem prosty model gietkich polimeréw podlegajacych adsorpcji, w kto-
rym jeden parametr (temperatura) charakteryzuje stopieni ich sztywnosci i zarazem
determinuje ksztalt czasteczek.

Przeanalizowalem wartos¢ progu perkolacji w zaleznosci od wielkosci tancuchow
i temperatury (istnieje kilka reziméw temperaturowych, dla kazdego zachowanie
uktadu jest inne) oraz zaproponowalem wyjasnienie otrzymanych wynikow.

Zaobserwowalem dla pewnych sytuacji efekt filtrowania, ktory polega na dopa-
sowywaniu sie adsorbowanych czasteczek do ksztaltu wolnych obszaréw, co powo-
duje dla tych czasteczek obnizenie $redniej energii zwiazanej z ich ksztattem.

Wykazatem uniwersalno$¢ zachowania modelu — otrzymane temperatury charak-
terystyczne (oddzielajace rozne rezimy temperaturowe) pozostaja w stalym sto-
sunku dla réznych sieci.

Zbadalem, ze prog zablokowania nie zalezy od temperatury.

[H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.

Zbadatem wptyw ksztaltu czasteczek i poziomu zanieczyszczen na prog perkolacji
w procesie adsorpcji na uprzednio zanieczyszczona powierzchnie.

Dla przypadku punktowych zanieczyszczeni uzyskatem niezaleznosé progu perkolacji
od poziomu zanieczyszczen (ponizej pewnej granicznej wartosci) i uzasadnitem te
nieoczekiwang wlasno$¢ modelu w sposob Scisty.

Dla przypadku wydtuzonych czasteczek zanieczyszczen uzyskana zaleznosé progu
perkolacji od parametréow udalo mi sie przedstawi¢ w postaci zwartej funkcji.

Wyjasnitem istnienie otrzymanego maksimum progu perkolacji za pomoca argumen-
tow odwotujacych sie do struktury adsorbatu.
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[H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elon-
gated objects,
J. Chem. Phys. 124 (2006), 054713.

e Dla procesu adsorpcji jednych czasteczek (P) na powierzchni zanieczyszczonej uprze-
dnio innymi czasteczkami (I) zbadatem prog zablokowania czasteczek typu P w za-
leznosci od parametrow (wielkosci obu rodzajow czasteczek, poziom zanieczyszcze-
nia czasteczkami typu I) i opisalem go za pomoca zwartej funkcji.

[H6] G. Kondrat,
Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.

e W zaproponowanym przeze mnie modelu gietkich tancuchéw (rozszerzenie modelu
z [H3]) zbadatem prog perkolacji w zaleznosci od wielkosci oraz sktadu czasteczek
(doktadniej — od czestosci wystepowania odpowiednich typow wiazan miedzy ko-
lejnymi atomami).

e Zbadalem wielkos$¢ odchylenia od liniowej zaleznosci dla prostych czasteczek o duzej
sztywnosci dla dwoch réznych sieci (trojkatnej i kwadratowej).

e Zbadalem przejscie ,,perkolacja” — ,brak perkolacji’, ktére wystepuje przy pewnych
wartosciach parametréw modelu.

e Odkrytem wysoka korelacje miedzy progiem perkolacji a gestoscia atomoéw majacych
doktadnie dwoch sasiadow.
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Rozdzial 1

Wykaz publikacji wchodzacych w sklad
rozprawy

[H1] G. Kondrat, A. Pekalski,

Percolation and jamming in random sequential adsorption of linear segments on a square

lattice,
Phys. Rev. E 63 (2001), 051108.

[H2] G. Kondrat, A. Pekalski,

Percolation and jamming in random bond deposition,
Phys. Rev. E 64 (2001), 056118.

[H3] G. Kondrat,
Influence of temperature on percolation in a simple model of flexible chains adsorption,
J. Chem. Phys. 117 (2002), 6662-6666.

[H4] G. Kondrat,
The study of percolation with the presence of impurities,
J. Chem. Phys. 122 (2005), 184718.

[H5] G. Kondrat,
The effect of impurities on jamming in random sequential adsorption of elongated objects,
J. Chem. Phys. 124 (2006), 054713.

[H6] G. Kondrat,

Impact of composition of extended objects on percolation on a lattice,
Phys. Rev. E 78 (2008), 011101.
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Rozdzial 2

Wykaz wszystkich publikacji

Do dnia 23.08.2010 lista moich publikacji w czasopismach naukowych sktadata sie z 16
pozycji, z czego:

e 14 prac to prace niekonferencyjne, a 2 [P4, P5| konferencyjne
e 4 prace [P1, P3-P5| wchodzity w sktad doktoratu
e 11 prac to prace po doktoracie [P6-P16]

e 6 prac wchodzi w sktad rozprawy habilitacyjnej [P7-P11, P13].

Opublikowatem je w nastepujacych czasopismach:

e G prac w Phys. Rev. E

3 prace w J. Chem. Phys.

2 prace w J. Phys. A: Math. Gen.

1 prace w Phys. Rev. Lett.

1 prace w J. Stat. Mech. Theory and Experiment

1 prace w Int. J. Mod. Phys. C

1 prace w Chaos, Solitons and Fractals

1 prace w Acta Phys. Polon. B.
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Rozdzial 3

Cytowania prac wchodzacych w sklad
rozprawy

Prace wchodzace w sktad rozprawy habilitacyjnej bylty cytowane 40 razy (z pominieciem
samocytowan) [39 razy bez cytowari wspotautorow|!.

[H1] G. Kondrat, A. Pekalski,
Percolation and jamming in random sequential adsorption of linear segments
on a square lattice;
Phys. Rev. E 63 (2001), 051108.
Praca byta cytowana 17 razy:

1.

Cherkasova VA, Tarasevich YY, Lebovka NI, et al., Percolation of aligned dimers
on a square lattice, EUR PHYS J B 74 (2): 205-209 MAR 2010.

. Adamczyk P, Polanowski P, Sikorski A, Percolation in polymer-solvent systems: A

Monte Carlo study, J CHEM PHYS 131 (23): art. no. 234901 DEC 21 2009.

Cornette V, Ramirez-Pastor AJ, Nieto F, Adsorption of interacting monomers on
spanning clusters of polyatomic species, PHYSICA A 388 (20): 4387-4396 OCT 15
2009.

Adamczyk P, Romiszowski P, Sikorski A, A simple model of stiff and flexible polymer
chain adsorption: The influence of the internal chain architecture, J CHEM PHYS
128 (15): art. no. 154911 APR 21 2008.

Tarasevich YY, Cherkasova VA, Dimer percolation and jamming on simple cubic
lattice, EUR PHYS J B 60 (1): 97-100 NOV 2007.

. Vygornitskii NV, Lisetskii LN, Lebovka NI, Percolation in the model of random

successive adhesion of anisotropic particles, COLLOID J+ 69 (5): 557-562 OCT
2007.
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Rozdzial 4
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[P2]

[P3]

[P4]

Rozdziat 5

Opis prac niewchodzacych w sklad
rozprawy

P. Garbaczewski, G. Kondrat, Burgers Velocity Fields and Dynamical Trans-
port Processes, Phys. Rev. Lett. 77 (1996), 2608-2611.

W pracy rozwazalismy transport czastek znaczonych w polach predkosci spetniajgcych
rownanie Burgersa z uwzglednieniem deterministycznych sit zewnetrznych. Scharaktery-
zowaliSmy proces dyfuzyjny opisujacy pole gestosci czastek znaczonych i szczegdlowo
przeanalizowalismy jego stochastyczne wtasnosci, uzywajac do tego celu tzw. schematu
Schrodingera interpolacji miedzy warto$ciami brzegowymi.

A. Jadczyk, G. Kondrat, R. Olkiewicz, On uniqueness of the jump process in
event enhanced quantum theory, J. Phys. A: Math. Gen. 30 (1997), 1863-
1880.

W pracy rozwazaliSmy matematyczne podstawy rozszerzonej mechaniki kwantowej w ra-
mach modelu EEQT (ang. Event Enhanced Quantum Theory), w ktorym oddzialywanie
uktadow klasycznego i kwantowego opisywane jest potgrupa dynamiczng z generatorem
typu Lindblada. Wychodzac z dynamiki uktadu na poziomie macierzy gestosci, wykaza-
liSmy istnienie procesu stochastycznego odtwarzajacego dynamike uktadu oraz jego jed-
noznaczno$é i pokazaliémy explicite jego postac.

P. Garbaczewski, G. Kondrat, R. Olkiewicz, Burgers’ flows as Markovian dif-
fusion processes, Phys. Rev. E 55 (1997), 1401-1412.

W ramach podejscia przedstawionego w pracy [P1| przeprowadzilismy szczegdtows analize
sytuacji, gdy czton sit zewnetrznych w réwnaniu Burgersa jest niezachowawczy. Wyko-
rzystujac jadra Feynmana-Kaca, otrzymaliSmy posta¢ procesu stochastycznego dla przy-
padku zewnetrznego pola magnetycznego. Dla najprostszej nietrywialnej sytuacji statego
i jednorodnego pola magnetycznego przedstawiliSmy postaé rozwigzania fundamentalnego.

P. Garbaczewski, G. Kondrat, R. Olkiewicz, Burgers Velocity Fields and Elec-
tromagnetic Forcing in Diffusive (Markovian) Matter Transport, Acta Phys.
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[P6]

[P12]

[P14]

[P15]
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Polon. B 28 (1997), 1731-1746.
Jest to praca konferencyjna opisujaca wyniki z prac [P3] i [P5].

P. Garbaczewski, G. Kondrat, R. Olkiewicz, Schrodinger’s Interpolating Dy-
namics and Burgers’ Flows, Chaos, Solitons and Fractals 9 (1998), 29-41.

Przedmiotem pracy jest analiza zwiazkéw rownania Burgersa (w ogolnosci z cztonem sit
zewnetrznych) z dyfuzjami i problemem interpolacji miedzy wartosciami brzegowymi (tzw.
problem Schrodingera). Rozwazane przez nas przyktady ilustruja szczegétowo subtelnosei,
ktore napotyka sie przy rozwiazywaniu tego typu zagadnien. Jest to praca konferencyjna.

G. Kondrat, S. Peszat, B. Zegarliniski, Ergodicity for generalized Kawasaki
dynamics, J. Phys. A: Math. Gen. 33 (2000), 5901-5912.

Dla uogolnionej dynamiki typu Kawasaki z potencjalem skoriczonego zasiegu podalismy
warunki dostateczne i konieczne na miare Gibbsa, zeby spetniony byl warunek przerwy
masowej oraz logarytmiczna nier6wno$é Sobolewa. Dla odpowiednio matych gladkich
potencjaléow o skonczonym zasiegu pokazaliémy istnienie miary Gibbsa, ktora ponadto
spelnia logarytmiczna nier6wnosé Sobolewa. Omoéwilismy konstrukcje potgrupy Markowa
w nieskonczonej objetosci dla ogdlnego przypadku, gdy jednoczastkows przestrzenia
stanow jest zwarta i spojna rozmaitos¢ Riemanna.

G. Kondrat, K. Sznajd-Weron, Three types of outflow dynamics on square and
triangular lattices and universal scaling, Phys. Rev. E 77 (2008), 021127.

W pracy zaproponowaliémy proste uogélnienie jednowymiarowej dynamiki wyptywu na
sieciach dwuwymiarowych i zbadaliSmy je, a takze dwa inne, znane wczesniej uogol-
nienia pod katem rozktadu czasow relaksacji, wrazliwosci na typ sieci (trojkatna, kwadra-
towa) i warunki poczatkowe. Przedmiotem pracy byly réwniez odpowiednie skalowania
wielkosci takich jak czasy relaksacji wraz z rozmiarem uktadu. Odkryliémy dwa rezimy
czasowe w rozkladzie czasow relaksacji, w ktorych obowiazuja wykltadnicze zaleznosci
ogonu dystrybuanty od czasu z réoznymi wspotczynnikami w wyktadniku.

G. Kondrat, K. Sznajd-Weron, Percolation framework in Ising-spin relax-
ation, Phys. Rev. E 79 (2009), 011119.

W pracy badaliémy zerotemperaturowe dynamiki Glaubera i dynamiki wyplywu na sie-
ciach pod katem zrozumienia pojawiajacych sie tam dwoch rezimoéw czasowych w roz-
ktadzie czasow relaksacji. Zaproponowaliémy schemat ttumaczacy te zjawiska, oparty
na pojeciu perkolacji. Odkrylidémy, ze szybka relaksacja zwiazana jest z przechodzeniem
uktadu przez stany typu kropla, a relaksacja wolna jest zwigzana z przechodzeniem przez
stany typu pasy.

G. Kondrat, M. Gorzelannczyk, On phase transitions in quantum continuous
gases in the Mazxzwell-Boltzmann statistics, J. Stat. Mech.: Theory and Ex-
periment (2010), P01022.

W pracy rozwazaliémy wtlasnosci stanu Gibbsa w granicy termodynamicznej. Dla gazu
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Maxwella-Boltzmanna z nieujemnym, regularnym i ograniczonym potencjatem wykaza-
lismy brak przejscia fazowego dla istotnie wiekszych obszaréw gestosci, niz te dotychczas
badane. W dowodzie wykorzystaliSmy podejscie J. Ginibre’a i teorie dodatnich opera-
toréow na stozkach w przestrzeniach Banacha. W efekcie udato nam sie zbada¢ wtasnosci
spektralne operatora Kirkwooda-Salsburga prowadzace do analityczno$ci odpowiednich
funkcji korelacyjnych i braku przejs¢ fazowych.

[P16] G. Kondrat, K. Sznajd-Weron, Spontaneous reorientations in a model of opin-
ion dynamics with anticonformists, Int. J. of Mod. Phys. C 21(2010), 559-
566.
W pracy rozwazylismy zmodyfikowany model wyptywu, w ktérym oprocz zachowan kon-
formistycznych dopuszczone sa takze zachowania nonkonformistyczne. Przy odpowied-
nich wartosciach parametréow zaobserwowalismy w modelu spontaniczne przeorganizowa-
nia catego uktadu i zbadalidémy, w jakich warunkach takie przejscia zachodza najszybciej.
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Rozdziat 1

Dzialalnos¢ naukowa, dydaktyczna
1 organizacyjna

1.1 Zyciorys naukowy

Imie i nazwisko: Grzegorz Kondrat

Stopien i tytul naukowy: doktor nauk fizycznych

Data i miejsce urodzenia: 21.03.1970 Wroctaw

Miejsce pracy: Uniwersytet Wroctawski, Instytut Fizyki Teoretycznej (od
01.10.1997)

Stanowisko: adiunkt

Wyksztalcenie:

szkota Srednia: 1984-1988 XIV L.O. im. Polonii Belgijskiej we Wroctawiu

studia wyzsze: 1988-1993 fizyka (Uniwersytet Wroctawski, Instytut Fizyki
Teoretycznej)

praca magisterska: 17.06.1993 Stochastyczne i nieliniowe modele redukcyi
wektora stanu w kwantowej teorii pomiaru, pod opieka prof. Arkadiusza Jad-
czyka

studia doktoranckie: 1993-1997, fizyka teoretyczna (Uniwersytet Wroctaw-
ski, Instytut Fizyki Teoretycznej)

doktorat: 18.04.1997 Niestacjonarne procesy losowe w zewnetrznie zaburza-
nych uktadach klasycznych © kwantowych, promotor prof. Piotr Garbaczewski

e Wyréznienia, granty, nagrody i stypendia:

1985-88 stypendium Krajowego Funduszu na Rzecz Dzieci
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1.2

— 1986-88 laureat Olimpiad: Astronomicznej (3 razy, w tym dwukrotne zajecie I

miejsca) i Fizycznej (3 razy)
1987, 1988 wyrdznienia na Miedzynarodowej Olimpiadzie Fizycznej
1991-93 stypendium Ministra Edukacji Narodowe;j

14.11.1997 nagroda Rektora Uniwersytetu Wroctawskiego za osiagniecia nau-
kowe (nagroda zespotowa)

01.10.1998 nagroda Ministra Edukacji Narodowej (nagroda zespolowa)

01.01.1999-31.12.1999 grant badawczy Uniwersytetu Wroctawskiego Niestacjo-
narne procesy losowe na rozmaitosciach Riemanna

01.08.2001-30.06.2002 grant badawczy KBN Badania modelu losowej adsorpcyi
sekwencyjnej obiektow rozciggtych (jako kierownik)

01.10.2002 nagroda Ministra Edukacji Narodowej i Sportu (nagroda zespotowa)

Dzialalnos$é naukowa

o Glowne zainteresowania naukowe:

— Problem rozszerzenia mechaniki kwantowej o stochastyczny opis oddzialywania

z klasycznym ukladem pomiarowym, zagadnienia teorii pomiaru kwantowego
(praca magisterska, [P2]).

Zagadnienie procesu dyfuzji w polach zewnetrznych, zwiazek pol predkosci
procesu z réwnaniem Burgersa, problem Schrodingera odtwarzania procesu
stochastycznego z rozkladéow poczatkowych i koricowych (praca doktorska, [P1,
P3-P5)).

Pola wektorowe na rozmaito$ciach Riemanna, procesy dyfuzji na rozmaitos-
ciach z hipoeliptycznym generatorem zadanym przez pola wektorowe w kon-
tekscie uogodlnionej dynamiki typu Kawasaki ([P6]).

Procesy adsorpcji obiektow rozciaglych, perkolacja, zablokowanie ([P7-P11,
P13)).

Matematyczne podstawy przej$¢ fazowych — podejscie wywodzace sie z prac
Ginibre’a ([P15]).

Uogolnienia modeli wyptywu — ich dynamika, rozktady czasow relaksacjii za-
stosowania (|[P12, P14, P16]).

¢ Wyjazdy naukowe:

— Universitét Bielefeld 17-29.07.1995 (na zaproszenie prof. Phillipe’a Blanchar-

da)

— ICTP Triest 17-31.08.1997 (w ramach programu Federation Scheme)
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Imperial College Londyn 27.06-20.12.1998 (staz naukowy u prof. Bogustawa
Zegarliniskiego)

ICTP Triest 29.07-19.08.2001 (w ramach programu Federation Scheme)

Katholieke Universiteit Leuven 13-20.01.2002 (na zaproszenie prof. Josepha
Indekeu)

e Recenzowanie prac w czasopismach naukowych:

Physical Review E (8 prac)
Physica A (1 praca)
Physics Letters A (1 praca)

Chemical Engineering Communications (1 praca)

e Uczestnictwo w konferencjach:

High-T¢ thin films and single crystals (Ustron 1989)

31 Zimowa Szkota Fizyki Teoretycznej: Chaos, The Interplay Between Stochas-
tic and Deterministic Behaviour (Karpacz 1995)

Quantum Theory Without Observers (Bielefeld 1995)

Quantum Structures (Berlin 1996)

The Dynamics of Complexity (Triest 1997)

Nonlinear Cooperative Phenomena in Biological Systems (Triest 1997)
Workshop on Statistical Physics of Frustrated Systems (Triest 1997)
34 Zjazd Fizykow Polskich (Katowice 1997)

10 Sympozjum Maksa Borna: Quantum future (Przesieka 1997)

11 Sympozjum Maksa Borna: Anomalous Diffusion: from Basis to Applications

(Ladek Zdr. 1998)
The Future of Stochastic Analysis II — referat (Sztokholm 1998)
13 Sympozjum Maksa Borna: Statistical Physics in Biology (Wroctaw 1999)

36 Zimowa Szkola Fizyki Teoretycznej: Exotic Statistical Physics (Ladek Zdr.
2000)

26 MECO — poster (Praga 2001)

School and Workshop on Dynamical Systems (Triest 2001)
Challenges in Granular Physics (Triest 2001)

27 MECO - poster (Sopron 2002)

28 MECO — poster (Saarbriicken 2003)
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— 18 Sympozjum Maksa Borna: Statistical Physics Outside Physics (Ladek Zdr.
2003)

— 41 Zimowa Szkota Fizyki Teoretycznej: Diffusion and Soft Matter Physics —
referat (Ladek Zdr. 2005)

— 23 Sympozjum Maksa Borna: Critical Phenomena in Complex Systems (Pola-
nica Zdr. 2007)

1.3 Dziatalnos$é dydaktyczna

e Prowadzenie zaje¢ dydaktycznych:
— na Uniwersytecie Wroctawskim (1.10.1994-30.09.1997 jako doktorant,
od 1.10.1997 jako adiunkt w Instytucie Fizyki Teoretycznej)

— w Wyzszej Szkole Informatyki i Zarzadzania ,,Copernicus” we Wroctawiu
(1.03.2002-30.09.2002 jako starszy wyktadowca, 1.10.2002-30.09.2006 jako
adiunkt, od 1.10.2006 na umowe o dzieto)

e Prowadzenie wykladow:

— metody komputerowe I

— programowanie graficznego interfejsu uzytkownika
— wstep do programowania

— algebra liniowa

— analiza matematyczna

— matematyka dyskretna

— fizyka
e Prowadzenie konwersatoriow:

— algebra

— analiza matematyczna

— rachunek rézniczkowo-catkowy
— elementy probabilistyki

— elektrodynamika

— matematyka i statystyka

— fizyka

e Prowadzenie laboratoriow komputerowych:

— metody komputerowe I
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1.4

metody komputerowe 11
— programowanie obiektowe
— zastosowanie komputeréow w fizyce teoretycznej

— programowanie graficznego interfejsu uzytkownika

wstep do programowania

grafika komputerowa
Prace dyplomowe:

— opieka nad pracami licencjackimi: 3
— opieka nad pracami magisterskimi: 5
— opieka nad pracami inzynierskimi: 3

— recenzje prac dyplomowych: 4

Dziatalno$é organizacyjna

Organizacja konferencji (skarbnik):

— 36 Zimowa Szkota Fizyki Teoretycznej (2000)
— 18 Sympozjum Maksa Borna (2003)
— 23 Sympozjum Maksa Borna (2007)
— 47 Zimowa Szkota Fizyki Teoretycznej (2011)

Czlonek Komitetu Glownego Olimpiady Astronomicznej (od 1990)

Cztonek International Board of International Olympiad on Astronomy and Astro-
physics (2008/9)

Lider (opiekun) polskiej reprezentacji na 2nd International Olympiad on Astronomy
and Astrophysics (Bandung 2008)

Koordynator Wydziatu Fizyki i Astronomii ds. Dolnoslaskiego Festiwalu Nauki (od
2008)

Czlonek Polskiego Towarzystwa Fizycznego (2001-2009)

Sekretarz seminarium Zaktadu Dynamiki Nieliniowej i Uktadow Ztozonych IFT (od
1996)

Prezentacje z fizyki w szkotach ponadpodstawowych w ramach koétek fizycznych
(2010)
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Rozdzial 3

Oswiadczenia wspotautoréow

Mo6j udzial w powstaniu prac [H1| (G. Kondrat, A. Pekalski, Percolation and jamming
in random sequential adsorption of linear segments on a square lattice, Phys. Rev. E 63
[2001], 051108) oraz [H2| (G. Kondrat, A. Pekalski, Percolation and jamming in random
bond deposition, Phys. Rev. E 64 [2001], 056118) byl podobny i polegal na dyskusji
zatozeni, otrzymanych wynikow (programy pisat samodzielnie dr Grzegorz Kondrat) oraz
na wspottworzeniu ostatecznej wersji tekstu.

prof. dr hab. Andrzej Pekalski
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Burgers Velocity Fields and Dynamical Transport Processes

Piotr Garbaczewski and Grzegorz Kondrat

Institute of Theoretical Physics, University of Wroctaw, pl. M. Borna 9, PL-50 204 Wroctaw, Poland
(Received 13 March 1996

We explore a connection of the forced Burgers equation with the Schrédinger (diffusive) interpolating
dynamics in the presence of deterministic external forces. This entails an exploration of the consistency
conditions interpreting the dispersion of passive contaminants in the Burgers flow as a Markovian
diffusion process. In general, the usage of the continuity equatien= —V(2p), with o = v(x, ) the
Burgers field ang the density of transported matter, is at variance with the explicit diffusion scenario.
We give a complete characterization of diffusive matter transport governed by Burgers velocity fields.
This extends both to the approximate description of the transport driven by an incompressible fluid and
to motions in an infinitely compressible medium. [S0031-9007(96)01263-X]

PACS numbers: 47.10.+g, 05.40.+j, 05.60.+w, 47.20.Ky

The Burgers equation [1,2] recently has acquired dial data and deterministic force fields, by regarding the
considerable popularity in a variety of physical contexts.stochastic diffusion process as a primary phenomenon re-
They range from an astrophysical issue of the stratifiedponsible for the emergence of (1).
large-scale distribution of matter in the early Universe [3— Knowing the Burgers fields, we may consistently ask
5], through acoustic turbulence dealing with intense noisevhat is the particular matter transport dynamics (of den-
in compressible liquids and gases [6], to primitive fluid sity fields) that is consistent with the chosen (Burgers)
turbulence modeling in terms of the statistics of Burgersvelocity field evolution. Then, the passive scalar (tracer
shocks in the low viscosity regime (enhanced by randonor contaminant) advection-in-a-flow problem [10,13] nat-
initial data) [1,3,7,8], eventually ending with the analysisurally appears through the parabolic dynamics,
of a fully developed Burgers t_urpulence that is_ regardeq as 0,T + GV)T = vAT: )

a result of random forcing (stirring) of respective velocity ] ) )

fields [9,10]. It also pertains to the turbulence-without-S€€; €.g., also [15-17]. For incompressible fluids, (2)
pressure models [11], description of directed polymer§0'nc'de§ Wl'_[h the convent|o_nal Fokker-Planck equation
in a random potential [10], random interface growthfor the dlﬂu5|qn process. This feature does not persist in
problem governed by the related Kardar-Parisi equatiof® compressible case. o _

[12], and fluctuations or dispersion in deterministic or While looking for the stochastic implementation of the
random flows [12,13]. An exhaustive discussion of itsmicroscopic (molecular) dynamics (2) [10,13,17], it is
role in acoustic turbulence and gravitational contextsassumed that the “diffusing scalar” (contaminant in the
where the emergence of shock pressure fronts is crucidere of early statistical turbulence models) obeys the Ito

can be found in Ref. [14]. equation,

The Burgers equation usually is considered without df((;) = o(%,0)dt + \/ﬁdﬁ/(t), (3)
any forcing term, and its solutions are known under . .
the gradient form assumption. We shall preserve the X(0) =% — X(1) = X,

latter restriction, but consider a more general form of thgyhere the given forced Burgers velocity field is per-
Burgers equation that accounts for an external force fielgyrheq by the noise term representing a molecular diffu-
F(x,1), sion. In the, by now conventional, 1td representation of
- O T . diffusion-type random variabl& () one explicitly refers
00 + (V)0 = vAD + F(X,1). (1) to the standard Brownian motion (e.g., the Wiener process)
Many recent investigations are devoted to the statistically/2v W(r), instead of the usually adopted formal white
relevant curls = 0 solutions implemented by random noise integralf;, 7(s) ds, coming from the Langevin-type
initial data and/or random forcing term (the random po-version of (3).
tential in the above-mentioned Parisis-Kardar equation), Under these premises, we cannot view Egs. (1)—(3) as
and Burgers velocity fields (or their potentials) are ana-completely independent (disjoint) problems: The velocity
lyzed on their own. However, an issue of matter transporfield 7 cannot be arbitrarily inferred from (1) or any other
driven by those nonlinear velocity fields requires knowl-velocity-defining equation without verifying theonsis-
edge of an exact evolution of concentration and/or densityencyconditions, which would allow one to associate (2)
fields, much in the spirit of early hydrodynamical studiesand (3) with a well defined random dynamics (stochastic
of advection and diffusion of passive tracers [15,16]; segrocess), and Markovian diffusion, in particular [18].
also [17]. This particular issue is addressed in the present In connection with the usage of Burgers velocity fields
paper, under a simplifying assumption of nonrandom ini{with or without external forcing) which in (3) clearly are

2608 0031-900796/77(13)/2608(4)$10.00 © 1996 The American Physical Society
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intended to replace the stand@odward drift of the would- —3,8(%,s) = vAg(®,s) + [b(E s)V]gEF,s). (5)
be-involved Markov diffusion process, we have not found

in the literature any attempt to resolve apparent contratet us point out that the validity of (5) is known to
dictions arising if (2) and/or (3) are defined by means ofhe anecessarycondition for the existence of a Markov
(1). Also, an issue of the necessayrrelation (cf. [13],  diffusion process, whose probability densjiy#, 7) is to
Chap. 7.3, devoted to the turbulent transport and the r%bey the Fokker-Planck equation [the forward dbiE, 1)

lated dispersion of contaminants) between the probabilistigapjaces the previously utilized Burgers figlé, ¢)]:
Fokker-Planck dynamics of the diffusing tracer and this of

the passive tracer (contaminant) concentration (2) hasbeen  9,p(x,1) = vAp(x,t) — V[b(x,0)p(x,1)].  (6)
left aside in the literature.

Moreover, rather obvious hesitation could have been
observed in attempts to establish the most appropriat?cét
matter transport rule, if (1)—(3) are adopted. Dependin ) ) L
on the particular phenomenological departure point, on ’hs [18]h, S€e, h_o_vvever, kEZé]_I_fordan a}lternatlv_efstuar:lon.
adopts the standard continuity equation [3,4] that is valid en, the transition probability densiplso satisfies the -
to a high degree of accuracy in the low viscosity limit second Kolmogorov (e.g., the Fokker-Planck) equation in

v | 0 of (1)—(3), but incorrect on mathematical groundsmglt r;n;;?én;?/\?g ’ et Egltlifo?; \g:ﬁbﬁioi#tet al::f SeTeprrr]iisue
if there is a diffusion involve@nd simultaneously a solu- 9 J par, 9

tion of (1) stands for the respecticarrrentvelocity of the to the slightly counterintu_iti_ve for physicis_ts, although
flow: 9,p(%, 1) = —V[3(%,)p(%,1)]. Alternatively, fol- transparent for mathemaﬂmans [23-26], issue of time
lowing the white noise calculus tradition stating that there\ff{:?l o;g'lfjfglt?;]ons. (3) to the present context
stochastic integrak (1) = [, 5[X(s),s]ds + [, 7(s) ds J 9 P ;

_ Alter adid . or

necessarily implies the Fokker-Planck equation, ond ) = Jo b(X(s).s)ds + y2v W(r) we can utilize

adopts 9,p(%, 1) = vAp(E, 1) — V5, 1)p(F )] which standard rules of the It6 stochastic calculus [24-27], to
t ’ - ’ s s

is clearly problematic in view of the classic McKean's rea!lze that for any 5”790”‘ functhf(x',t) of the random
discussion of the propagation of chaos for the Burgerga”ablex(’) the conditional expectation value
equation [19,20] and deriving the stochastic “Burgers

process” in the following: “The fun begins in trying lim A_[/ p(E, 1,5, t + ADF(F,t + At)d®y — f(&, t)}
to describe this Burgers motion as the path of a tagge 0ot

The case of particular interest in the nonequilibrium
atistical physics literature appears wheqy, s, x, t) is
fundamental solutiorof (5) with respect to variables

molecule in an infinite bath of like molecules” [19]. = (D4 f)X(1),1) = [9; + (BY) + vAlF(E, 1), (7)
To put things on solid ground, let us consider a
Markovian diffusion process, which is characterized by X(t)=*,

the transition probability density (generally inhomoge-
neous in space and time law of random displacement
p(y,s,%,1),0 =5 <t =T, and the probability density
p(x,t) of its random variableX(¢),0 =t <T. The

Saetermines the forward drifi(%, t) (if we set components
of X instead off) and introduces the local field of forward

. . accelerations associated with the diffusion process, which
process is completely determined by these data. For cl

itv of di . q ti tial bound ve constrain by demanding (see, e.g., Refs. [24—-27] for
Ity of discussion, we do not Impose any spatial boun ‘prototypes of such dynamical constraints)
ary restrictions, nor fix any concrete limiting value f

which, in principle, can be moved to infinity. (Di)}) ()= (D+b) (X(1), 1)

The following conditions valid for any R - s I
e<0: (a there  holds  lim (1/r — = [9:b+ OV)b + v Ab] (X (1), 1) = F(X(1),1),
$) [15-zpe P(3,8,%,1)d*x = 0, (b) there exists a (for- (8)

ward)  drift  b(F,s) = limy, (1/t = 5) [15_g=c (5 —
X)p(x,s,y,1)d?y, and (c) there exists a diffusion fun-
ction (in our case it is simply a diffusion

where, at the moment arbitrary, the functiéffc, t) may be
interpreted as the external forcing applied to the diffusing
- - . - system [22]. In particular, if we assume that drifts remain
E;)zeﬁlflenz V)d3a(x’s) = lim, E.l/t H s) tfliﬂ?(:(iyt _d gradient fields, curb = 0, under the forcing, then those
fine & diflison process [18]. Under sutable restrcional2 are allowed by the prescribed choicerdf, 1) must
(boundedness gf involved .functions their Continuousfulflll the compatibility condition (nqt|ce the conspicuous.

X R ! ’ absence of the standard Newtonian minus sign in this
differentiability) the function

analog of the second Newton law)

g(.;C),S) = ‘/’P(i’s’j’,T)g(;’,T)dBy (4) I_)?(';C)’t) = VQ(';C)’t)’ (9)
satisfies the backward diffusion equation [notice that the - 1 (b?
minus sign appears, in comparison with (2)] Q1) =2p 0, P + D) <Z + Vb) :
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This establishes the connection of the forward drift pE, )p(y,s,%,1) = p(y,5,%,)p(y,s), (10)
b(x,1) = 2vVd(x, r) with the (Feynman-Kac, cf. [21,22])
potentialQ (%, r) of the chosen external force field. so thatf p(y,s)p(,s,X,t)d>y = p(x,t) andp(y,s) =

One of the distinctive features of Markovian diffusion [ p.(y,s,X,t)p(¥,t)d*x. This allows us to define the
processes with the positive densip(x,r) is that the backward derivative of the process in the conditional
notion of the backward transition probability density mean (cf. [22,27—-29] for a discussion of these concepts
p«(¥,s,Xx,t) can be consistently introduced on each finitein the case of the most traditional Brownian motion and
timeinterval,say) = s <t =T, | Smoluchowski-type diffusion processes)

lim i[; — fp*(y,z - AL 1Y dﬂ = (D_X) (1) = b(X(2), 1),

Ao At i N ) (11)
(D-f)(X(2),1) = [0; + (b:V) — vA]f(X(2),1).

Accordingly, the backward version of the dynamicbl work of the so-called Schrédinger boundary-data (interpo-
constraint imposed on the acceleration field reads lation) problem [21,22,25,26,29,30]; see also [31,32]. In
DEX) (1) = (D2X) (1) = F(X(0). ¢t 12 particular, in its recent reformulation [21,22], the problem
( )1 = (D3X)(0) (X®.1, *( ) of defining a suitable Markovian diffusion process was re-

where under the gradient-drift field assumption, éur=  duced to investigating the adjoint pairs of parabolic partial
0, we have explicitly fulfilled the forced Burgers equation differential equations, as, e.qg., (5) and (6) or (14) and (15).
[cf. ()], For gradient drift fields this amounts to checking (imposing

9,bs + (bsV)bs — vADy = F, (13) limitations on the admissible force field potential) whether

. > > the Feynman-Kac kernel
where [22,24,25], in view ofb. = b — 2vV In p, we

t
deal with F(%, t) previously introduced in (9). A notable k(y,s,X,t7) = f exp{—f c(w(7), T)dTi|d,u8”:)) (w)
consequence of the involved backward Itd calculus is that s (17)
the Fokker-Planck equation (6) can be transformed to an
equivalentform of is positive and continuous in the open space-time area of
. interest, and whether it gives rise to positive solutions of
dp(X,1) = —vAp(X, 1) — V[b(x,1)p(%,1)], (14) the adjoint pair of generalized heat equations,

which, however, describes a density evolution in the re- du(x, 1) = vAu(x,t) — cX, u(x,1), (18)
verse sense of time. Let us recall that a time inversion of 0,0G.1) = —vAv@E.1) + GOV 1)
the probabilistic evolutionp(x,0) — p(x,1) — p(x,T), e ’ ’ e
with0 =t = T,readp(x,T) — p(x,T — t) = p(x,0).  wherec(x,7) = (1/2v)Q(%, ) follows from the previous
At this point let us recall that Egs. (5) and (6) form tormylas. In the aboved,ug’f)) (w) is the conditional
a natural adjoint pair of equations that determine th&yiener measure over sample paths of the standard Brown-
Markovian diffusion process in the chosen time intervali;y motion.
[0,7]. Clearly, an adjoint of (14) reads Solutions of (18) upon suitable normalization give rise
a,f(x,5) = vAf(X,s) — [l;*(?c,s)V]f(?c,s), (15) to the Markovian diffusion process with the factorized
probability densityp(x,t) = u(X, )v(x,t) which inter-
polates between the boundary density data,0) and
f(Z,s) = f p«(3,0,%,9)f(3,0)d’y, (16) p(x,T), with the forward and backward drifts of the
process defined as follows:
to be compared with (4) and (5) and the previously

where

mentioned passive scalar dynamics (2). Here, manifestly, b(%,1) = 2v Vu(E, 1)/ v(E 1),

the time evolution of the backward drift is governed by (19)
the Burgers equation, and the diffusion equation (15) is Z,*(;C’ 1) = —2vVuE, 1)/u(Z 1),

correlated [via the definition (10)] with the probability

density evolution rule (14). in the prescribed time intervdld,T]. The transition

This pair only can be consistently utilized if the probability density of this process reads
diffusion process is to be driven by forced (or unforced)
Burgers velocity fields. p(y,5,%,1) = k(3,8, %, ) v(X,1)/v(,s). (20)

Let us notice that the familiar logarithmic Hopf-Cole
transformation [2] of the Burgers equation into the generHere, neithek (17) norp (20) needs to be the fundamental
alized diffusion equation (yielding explicit solutions in the solutions of appropriate parabolic equations; see, e.g.,
unforced case) has received a generalization in the fram&ef. [21] where an issue of differentiability is analyzed.
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Abstract. We prove that, in constrast to the theories of continuous observation, in the formalism
of event enhanced quantum theory the stochastic process generating sample histories of pairs
(observed quantum system, observing classical apparatus) is unique. This result gives a rigorous
basis to the previous heuristic argument of Blanchard and Jadczyk.

1. Introduction

Effective time evolution of a quantum system is usually described by a dynamical semigroup:
a semigroup of completely positive, unit preserving transformations acting on the algebra
of observables of the system. A general form of generator of a norm-continuous semigroup
was published in 1976 independently by Goréial [1] (for matrix algebras) on the one
hand, and by Lindblad [2] (for the more general, norm-continuous case) on the other. It is
usually referred to as the Lindblad form; it reads

A=i[H, Al +)_ViAV, — J{A, A} (1)

where H = H* is the Hamiltonian{, } stands for anticommutator, and

A= "ViVe. 2

In contrast to a pure unitary evolution that describes closed systems and which is time-
reversible, the second dissipative part of the generator makes the evolution of an open
system irreversible. This irreversibility is not evident from the very form of the equation, it
is connected with the positivity property of the evolution. Formally we can often solve the
evolution equation backward in time, but positivity of the reversed evolution will be lost.

We can also look at the dual time evolution of states rather than of observables. For
states, described by density matrices, we get

p=—ilH Al+) VapVs = 3lp, A) ®)
where the duality is defined by Tp) = Tr(4p).
Here again only propagation forward in time is possible, when we try to propagate

backward we will have to deal with negative probabilities. This irreversibility is reflected
in the fact that pure states evolve into mixed states. How do mixed states arise? In quantum

1 E-mail address: ajad@ift.uni.wroc.pl
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theory, similarly as in classical theory, they arise when we go from individual description
to ensemble description, from maximal available information to partial information. Or
simply, they arise by mixing of pure states. Pure states are represented by one-dimensional
projection operator®. If du(P) is a probabilistic measure on pure states, then the density
matrix p defined byp = [ P du(P) is a mixed state, unlessudP) is a Dirac measure.

In contrast to classical theory, however, in quantum theory decomposition of a mixed state
into pure ones is non-unique. So, for instance, the identity operator can be decomposed into
any complete orthonormal basist = ), |i)(i|, thus in indenumerably many ways. This
mysterious and annoying non-uniqueness of decomposition into pure states in quantum
theory can be simply taken as an unavoidable price for our progress from classical to
guantum—as a fact of life. And so it was. Yet it has started to cause problems in quantum
measurement theory.

The first attempt to give a precise mathematical formulation of quantum measurement
theory must be ascribed to John von Neumann. In his monograph [3] he introduced
two kinds of evolution: a continuous, unitary evolutidh of an ‘unobserved’ system,
and discontinuous ‘projections’ that accompany ‘observations’ or ‘measurements.” His
projection postulate, later reformulated byuders for mixed states, is expressed as follows:

‘if we measure a propertg of the quantum system, and if the propefyholds, then as the
result of this measurement the system which was previously described by a density matrix
o switches to the new state described by the density mawik/ Tr EpE.’

A whole generation of physicists has been influenced by this apparently precise
formulation. Few dared to ask: who are ‘we’ in the phrase ‘if we measure’ [4], what
is ‘measurement’ [5, 6], at which particular instant of time does the reduction take place?
How long does it take [7], if ever [8], to reduce? Can it be observed? Can it be verified
experimentally [9-11]? Nobody could satisfactorily answer these questions. And so it
was taken for granted that quantum theory cannot really be understood in physical terms,
that it is a peculiar mixture of objective and subjective. That it is about ‘observations,’
and so it makes little or no sense without ‘observers,” and without ‘mind’. There were
many who started to believe that it is the sign of a new age and the sign of progress. A
few opponents did not believe the completeness of a physical theory that could not even
define what constitutes ‘observation’ [5-6]—but they could not change the overall feeling
of satisfaction with the successes of quantum theory.

This situation started to change rapidly when technological progress made it possible to
make prolonged experiments with individual quantum systems. The standard ‘interpretation’
did not suffice. Experimenters were seeing with their own eyes not the ‘averages’ but
individual sample histories. In particular, experiments in quantum optics allowed one to
almost ‘see’ the quantum jumps. In 1988 Cook [12] discussed photon counting statistics
in fluorescence experiments and revived the question ‘what are quantum jumps?’ Another
reason to pay more attention to the notion of quantum jumps came from the several groups
of physicists working on effective numerical solutions of quantum optics master equations.
The works of Carmichael [13], Dalibardt al [14,15], Dumet al [16], Gardineret al
[17], developed the method of quantum trajectories, or the quantum Monte Carlo (QMC)
algorithm for simulating solutions of master equations. It was soon realized (cf e.g. [18—
22]) that the same master equations can be simulated either by the quantum Monte Carlo
method based on quantum jumps, or by a continuous quantum state diffusion. Wiseman
and Milburn [23] discussed the question of how different experimental detection schemes
relate to continuous diffusions or to discontinuous jump simulations. The two approaches
were recently also put to comparison by Garraway and Knight [24]. There are, at present,
two schools of simulations. Gisiat al [25] tried to reconcile the two arguing thathée
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guantum jumps can be clearly séatso in the quantum state diffusion plots. On the other
hand, already in 1986 Diosi [26] proposed a pure state, piecewise deterministic process that
reproduces a given master equation. In spite of the title of his paper that suggests uniqueness
of his scheme, his process, although mathematically canonical for a given master equation,
is not unique. This problem of non-uniqueness is especially important in theories of gravity-
induced spontaneous localization (see [27], also [28, 29] and references therein) and in the
recent attempts to merge mind-brain science with quantum theory [30-32], where quantum
collapse plays an important role.

In the next section we shall see how the situation changes completely with the new
approach to quantum measurement developed by Ph Blanchard and one of us (AJ) (see [33]
and references there)ln section 2 we will sketch the main idea of the new approach. We
will also indicate infinitesimal proof of uniqueness of the stochastic process that reproduces
the master equation for the total system, i.e. quantum systaassical apparatus. In
section 3 we give concrete examples of non-unicity when only a pure quantum system is
involved—as it is typical in quantum optics. In section 4 we give a rigorous, global proof
of unicity of the process, when classical apparatus is coupled in an appropriate way to the
guantum system. The technical part of the proof can be found in the appendix. Conclusions
are given in section 5. There we also comment upon the most natural question: we all
know that every apparatus consists of atoms—then how can it be classical?

2. The formalism

Let us sketch the mathematical framework of the ‘event-enhanced quantum theory’. Details
can be found in [33]. To describe events, one needs a classical systéinen possible
events are identified with changes of a (pure) stat€.0One can think of events as ‘clicks’
of a particle counter, changes of the pointer position, or changing readings on an apparatus
LCD display. The concept of an event is of course an idealization, like all concepts in
a physical theory. Let us consider the simplest situation corresponding to a finite set of
possible events. The space of pure stateg oflenoted byS,, hasm states, labelled by
a = 1,...,m. Statistical states of are probability measures af.—in our case just
sequencep, > 0,> ", p, = 1.

The algebra of observables 6fis the algebrad, of complex functions ors.—in our
case just sequences, o = 1, ..., m of complex numbers.

We use Hilbert space language even for the description of the classical system. Thus
we introduce ann-dimensional Hilbert space{, with a fixed basis, and we realizé. as
the algebra of diagonal matrices = diag(f1, ..., /). Statistical states o€ are then
diagonal density matrices diggt, ..., p»), and pure states of are vectors of the fixed
basis of H,.. Events are ordered pairs of pure states> 8, « # 8. Each event can thus
be represented by an x m matrix with 1 at the(«, 8) entry, zero otherwise. There are
m? — m possible events.

We now come to the quantum system. l@tbe the quantum system whose bounded
observables are from the algebdg of bounded operators on a Hilbert spakig. In this
paper we will assum@{, to befinite dimensional Pure states o are unit vectors irt{,;
proportional vectors describe the same quantum state. Statistical stafearef given by
non-negative density matricgs with Tr(p) = 1.

Let us now consider the total systefh= Q x C. For the algebrad, of observables

1 Complete, actual bibliography of the quantum future project is always available under URL:
http://www.ift.uni.wroc.pl/” ajad/qgf-pub.htm
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of T we take the tensor product of algebras of observableg ahdC: A, = A, ® A.. It
acts on the tensor produti, ® H. = ®_, He, where'H, ~ H,. Thus.A, can be thought
of as algebra otliagonalm x m matricesA = (aqg), Whose entries are quantum operators:
Qg € Agy aqp =0 for o # .

Statistical states of) x C are given bym x m diagonal matricep = diag(ps, ..., pm)
whose entries are positive operatorsigy with the normalization Tip) = >, Tr(p.) = 1.
Duality between observables and states is provided by the expectation {lipe=
Yo TH(Aapa).

We will now generalize slightly our framework. Indeed, there is no need for the quantum
Hilbert space$,, corresponding to different states of the classical system, to coincide. We
will allow them to be different in the rest of this paper. We dengte= dim(H«).

We now consider dynamics. It is normal in quantum theory for classical parameters
to enter the quantum Hamiltonian. Thus we assume that quantum dynamics, when no
information is transferred fronQ to C, is described by Hamiltonian#,, : H, — H,
that may depend on the actual statelofas indicated by the index). We will use matrix
notation and writeH = diag(H,,). Now take the classical system. It is discrete here. Thus
it cannot have continuous time dynamics of its own.

As in [33] the couplingof Q to C is specified by a matri¥’ = (g.5), whereg,z are
linear operatorsig,s : Hg —> H.. We putg,, = 0. This condition expresses the simple
fact: we do not need dissipation without receiving information (i.e. without an event).
To transfer information fromQ to C we need a non-Hamiltonian term which provides a
completely positive (CP) coupling. As in [33] we consider couplings for which the evolution
equation for observables and for states is given by the Lindblad form

Aa = i[Ha, Aa] + Zg;;aAﬂgﬂa - %{A(xv Aa} (4)
B
or equivalently:
pu = =1 Ho pal + ) 8app8ip — 5 (A o) ®)
B
where
Ao = Zg/gagﬂa' ©)
B

The above equations describe the statistical behaviour of ensembles. Individual sample
histories are described by a Markov process with values in pure states of the total system.
In [33] this process was argued to be infinitesimally unique. For the sake of completeness
we repeat here the arguments. First, we use equation (5) to compidte when the initial
statep, (0) is pure:

Pa(0) = Saaq | V0) (Yol (7

In the equations below we will discard terms that are higher than linear order ifrat
o = ag We obtain

Pao (A1) = |90) (Yol — i[ Hay [V0 >< Yol] di — 3{Auq. [0} (Wol} dt (8)
while for o # ag
Pao (dF) = 8aaol o) (Y0lgq, df- 9)

The term fora = g can be written as
,an(dl‘) = Pa0|1ﬂao>(1ﬁao| (10)
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where
; 1
T Zﬁi—'ﬁi :Itt - 2;; zgi(;n -

and

P = 1 = A (Y0, AgoPo) di. (12)
The term witha # ag can be written as

o (At) = pola) (Yol (13)
where

Pa = l|gaasVoll* dt (14)
and

wp Y0
Y = h (15)

This representation is uniqgue and it defines the infinitesimal version of a piecewise
deterministic Markov process. The process is defined by the following piecewise
deterministic algorithm (cf [33]).

Let us assume a fixed, sufficiently small, time step Guppose that at time the
system is described by a quantum state vegtprand a classical statey. Compute the
scalar produci(vo, ag) = (Yo, Aey, Yo). Choose a uniform random numbegre [0, 1].

Jump if p < A(¥o, xg) dt. Otherwise do not jump. When jumping, change— « with

prObablllty Pag—a = ||gaa01ﬂ0||2/)»('ﬂ0, O50)1 and Changeﬂo - gaaowO/”gaaowO”- If not
jumping, change

exp{—iHy, df — 3 Ay, dt}io
% .
Il exp{—i Hao df — £ A, dr} ol
Repeat the steps.

t— t+dr.

4

3. Non-uniqueness in the pure quantum case

In this section we will show on simple examples the nature of non-uniqueness in the pure
guantum case. At first let us note that so-called ‘canonical decomposition’ of a dynamical
generatorL is not unique. To see this suppose that

n

. 1
L(p) = ~i[H. p] + ) _ axpa; — 2{ D> aiar, p}
k=1

k=1
where H = H* is the Hamiltonian and; are arbitrary bounded operators. Let us define

- 1 n
H=H+ —(§-§* I = A
+ 2|( ) dg 1:21 aa + 2k
wherez; € C, (Ax) is a unitary matrix ands = ), ; zxhua- ThenL(p) given by

= oo L (N
L(p) = —i[H. p] + ) _depdi” — 2{ > ddi, p}
k=1 k=1

coincides withL(p). For more details see [34].
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Now we show that the nature of the non-unigqueness is much deeper than that described
above. For simplicity let us consider a two-state quantum system whose algebra of
observables is equal td,,,. Let T, be a dynamical semigroup with a generatogiven by

L(p) = apa* — }{a*a, p}

wherea € My,».

3.1. Pure diffusion process

First let us show that the time evolution determinedi/bgan be described by a diffusion
process with values i€ P! [35]. Let a two-component complex valued procegs=

(1, w2 (prime denotes the transposition) be given by the following stochastic differential
equation,

dyi = fi(Y) B, + gi(Y)dr  i=12
where B; is a one-dimensional real Brownian motion and

&) =Y _((a")ai; — 3@ )iy — 3(a*)ila) ]
J

F@) =Y ayyi — (@)
J

_ (Wilaly) o (Wnla )
(@), = LLP0 gy, = P08 R
Wil Wil

Moreover, let us choose an initial conditiafy = (23, z3)’ such that|z3|* + |z3]° = 1.
Becausef; and g; are continuously differentiable (in the real sense)@n\ {0} so there
exists a local solution with a random explosion tiffigsee, for example, [36]). But

diy1? = v diy + 9 dy; +dly. ],
where ff/;, /], is the quadratic covariation aof, and+,. Thus
dly;. vile = 1 fi )2 dr
and so
diel® = D i vy + v dy) + 11 f (Y| dr = .
It implies thatT = oo with probability one and so our process is a diffusion with values in

a spheres®. Let us define a proces® with values in one-dimensional projectors by
Po= )Wl =Y ivle;
ij
wheree;; form the standard basis i#,.,. Then, using the equation
A )) = (Fw) + fiv) B + G + & + £ f) e
we obtain that
dP, =[(a — {a)) P, + P;,(a* — {a™),)]dB, — %{a*a, P} dt +aPa*dr.
Since B, is a martingale then after taking the average we get
dE[P] = aE[P]a*dr — %{a*a, E[P/]} dt.
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Let us define a density matrix, = E[P;]. Then
pr = apa”* — %{a*a, o1}
and so the average of the diffusion gives the quantum dynamical evolution.
Finally, we show thato, = [ P(z, xo,dy)Py, where Py, = |y)(yl, xo = |¥o)(¥ol
and P(z, x, dy) is the transition probability of the described diffusion. By the definition,

P(t, xo,T) is the distribution of the random variablg™ such thatP;° = xo. It implies
that for every bounded and measurable functfodefined onC P! we have

E[f(P)] = / F)P(t, xo, dy).
Let us consider a function given bg(y) = Tr(AP,), whereA € M,,,. Then
/Tr(APy)P(t, x0, dy) = E[Tr(A P,xo)] =Tr(Ap,).

So THA [ P(t, xo,dy) Py)) = Tr(Ap,) for every A and thusp, = [ P(t, xo, dy) P, with
Lo = Xo.

3.2. Piecewise deterministic solution

On the other hand, it is possible to associate with the same quantum dynamics a piecewise
deterministic process, as in the method of quantum trajectories [13]. Now the situation

is more complicated, because, in general, we cannot replace the Brownian motion by the
Poisson process. We have to solve a stochastic differential equation for an unknown process

(Ny, ¥).
dy! = fi(y-) dN; + g (y) dr

where f; and g; are prescribed functions, together with the following constraih:is a
semimartingale such that

(@) [N, N], = N,, No=0, E[N,] < oc for all t >

(b) for a given non-negative function: C2 — R the processV, ;= f A(Ys) ds
is a martingale.

It is clear thatM, will be a purely discontinuous martingale. A continuous, increasing
and with paths of finite variation on compacts proc§[§$(w,) ds is called the compensator
of N,. In our case due to assumption (a) it is also the conditional quadratic variatisn of
[36]. The functional () is called the stochastic intensity and plays the role of the intensity
of jumps. Let us recall that for the (homogeneous) Poisson prd\@essfot Ads =N, — At
is a martingale. From the assumption (a) above we obtamNhaﬂ; quadratic pure jump,
its continuous part is equal zero andV, = (AN,)?, where AN, = N, — N,—so it is a
point process. Let us emphasize that in general it is not an inhomogeneous Poisson process
since its compensator would be a deterministic function equal[#,] [37]. So it will be
the case only when the stochastic intensity is a deterministic function depending on

Moreover, IV, 1], = 0 as N, is of finite variation on compacts. This implies the
following symbolic rules:

(dN)? = dN dN dr = dtdN = 0.

From assumption (b) we get\fj = dN, — A(y,) dt. Let F; be ac-algebra of all events up
to time ¢. BecauseV/, is a martingale, s&[dM;|F;] = 0 which implies

E[AN;|F] = A(¥;) ot
see [39].
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Up until now the operator € M,.»> was arbitrary. A particular simple case is if we

take
a*=a= 0 1
7 \1 0

Then L(p,) = ap,a — p, and so the intensity

(Yela*aly)
AY) = (a*a), = """ =1
’ (v
which implies thatV, = N,. Because there is no deterministic evolution (we do not have
the Hamiltonian part and the jump rate is constant) so in this case we can pug, =0
and f1(Y,) = ¥2 — ¥, L(4) = ¥ — ¢? as the probability of a particular jump depends
on the difference betweep! and2. Thus we arrive at

dy; = f;(¥,-) dN,.

Using the identity df’, /], = f; f; dN, we find that d v |> = 0 and &P, = (a P,a—P;) dN,.
Taking the average we obtajiy = ap,a — p;, since N, — it is a martingale. The above
stochastic differential equation admits the following solution:

1+ (=™ 1—- (-
wzlzzé 2 +Z§ 2

1— (=DM 14 (=M
)

This implies that

1+ (=D N yol — (=DM
2 2

wherexo = |v0) (Yol and yo = |do) (dol, do = (a + a*) o = (2, 25/
If we take

. (o 1)
~\0 O
as is usual in quantum optics problems, then we have
Eak
I 112
So we need a point process whose rate function is random and the situation is slightly more
complicated. We have to use the more general method described at the beginning of this
paragraph.
Let us start with calculating functiong, which are responsible for the deterministic
flow. They are obtained by taking the derivative of

exq—%sa*a)l//,
Il exp(—gsa*a)y |
with respect tas and at the instant = 0. So we get
g(Wn) = 3(=a*a + (@ a)) .

It can be checked that the only functiofiswhich lead to the Lindblad equation are of the
following type,

[ = =y + V(W) €40 L) = —y?

P,=)Co

A(y) =

v [l
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whereh : C? — R is an arbitrary Lipschitz function. Let us point out that if we put
e" = y2/|y?| then we can writef in a compact form

a
fW) = ( - 1) 1
(a*a),

see [39], but it needs a careful interpretation because zero can appear in the denominator.
Again by simple calculations we find thaf¢,|> = 0 and

22 172 .
on = (Ljise k) o
1 ( 20y 22 w,1¢,2<|w,2|2—|1/f,1|2>>dt_

oy \ G222 S [ 2Ry

However, dV, = dM, + A(y;) dt so after averaging we get the quantum evolution equation
for p, = E[P/].

4. Global existence and uniqueness

After analysing a typical example of non-uniqueness in the pure quantum case, here we will
return to the general EEQT scheme as described in section ZI; lbet a norm-continuous
dynamical semigroup on states of the total algedracorresponding to equation (5). We
extendT; by linearity to the whole predual spacgr., which is equal tad;, because the

total algebra is finite-dimensional. L& denote a space of all one-dimensional projectors

in Ay. Becausedr = @571 M (n, x ny) We obtain thatt = U,CP, and SoE is a disjoint

sum of compact differentiable manifolds (complex projective spacég,jn We would like

to associate witlf, a homogeneous Markov—Feller process with valueg isuch that for
everyx € E

T,(Py) = / P, x.dy)P, (16)
E

where P(z, x, dy) is the transition probability function for the procegsandy — P, is
the tautological map, which assigns to every poirté E a one-dimensional projectar,.
This leads us to the following definition.

Definition. Let M(E) denote a Banach space of all complex, finite, Borel measures on
E. We say that a positive and contractive semigréyp M(E) — M(E) with a Feller
transition functionP (¢, x, I') is associatedwvith 7; iff equation (16) is satisfied.

Let us describe this notion more precisely. lzetbe a map between the two Banach
spacesM(E) and Ar, given by

() = /Eu(dx) Py.

It is clear thatr is linear, surjective, preserves positive cones gmd = 1. An intuitive
meaning of the mapr is clear: every measure on one-dimensional projections of the
total algebra defines an operator and every operator in the algebra decomposes into one-
dimensional projections. This decomposition is non-unique, because of the non-uniqueness
of the quantum decomposition of the unit, and kemeasures this non-uniqueness.

Proposition 1. U, is associated witlT; iff ker = is U, invariant andl, = T,, whereU, is
the quotient group ot/, by ker .
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Proof. Let U, be associated witlf,. It implies that

/P(t,.x, dy) 1))' = T}(P)L)
E

thus for anyuo € kerr we have

/ (Unpto) (@) P, = f / P(t. y, d) po(dy) P, = / T,(P,)po(dy)
E EJE E

= Tz[/Euo(dy) Py} =0

and soU, ug € kermr. Moreover,Yu € M(E)

Uzn(u)=n(Ufu)=/E(Uzu)(dy)Py=/E/EP(t,x,dy)u(dX)Py

- TUE u(dx)Px] — T,

Now let us assume thdt, = 7,, i.e. Vu € M(E) we haveU,7(w) = T, (w). Let us take
u =38,. Then

U, (8,) = (U, 8,) =/(Uz5x)(dy) Py ://P(tvz7dy)5x(dZ)Py
E EJE

= / P(t,x,dy) P,
E

and T, () = T,(P,) SOT,(P,) = [, P(t, x.dy)P,. O

This means that to find/, is to extend the semigroufy from M(E)/kermx to M(E)
in an invariant way. It should be emphasized that, in general, such an ‘extension’ may not
exist or, if it exists, need not be unique. We show that in our case, under mild assumptions,
the existence and the uniqueness can be proved.

Let us write the evolution equation for states in the Lindblad form

. : . 1 .
p = —i[H, p] +ka PVi — Z{P’kavk }
k k

where H = diag(Hi, ..., H,), H, = H} € M(ny, x ny) and V; satisfy the following
assumptions:

() (Vi)aw = O for everyk ande;

(b) if for somek, [, a, B (Vi)ag # 0 and(Vi)es # 0 thenk = I7.

We will now construct a Markov process on pure states of the total system, associated
with the above master equation, and then prove its uniqueness. Because we can already
guess the process from the infinitesimal argument of section 2, we start with the description
of the generator of the semigrodp that describes the process.

Let A be a densely defined linear operator ©E) with D(A) = C1(E) given by

(Af)(x) = Z Ca(X) f(Xe) = c(x) f(x) +v(x) f

aFag

T In general, we can allow for a weaker versiaivi)es # 0 and(Vi)eg # 0 = 3c € C: (Vi)ag = c(Vi)ag, but
this simply reduces to (b) above by the substitut{&m)(,ﬁ =1+ [cl2(Vi)ap and(V,)‘,ﬂ =0 fork #1.
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wherex € (CPaoy Coz(x) = Tr(PxWotan* ), Waoa = Zk(vk)aoot € L(Hct» H(Xo)l szoa =

(674104
>V € LMoy, Hy), c(x) = ZO,#D Ca(X), Py, = Wi, PiWage/ TH(PcWo0a Wy ,) €
CP, andx — v(x) is a vector field onE given by

. 1
v(x) = —i[ Hap, P] — Z{Px, > Waoawjoa} + P Tr (Px > WaanJOL,).
aFag aFag
It may be easily checked thatx) € T,CP, = T, E. Because

expl (—iHy, — % Za;&ao Waga Wo )] Py €Xple (i Hy, — % Za;ﬁao Waga Wepe)]

&(Py) =
! Tr(Px eXp[—t Za;ﬁao Waoa W;oa])

is an integral curve foo, we have thav is a complete vector field.

Theorem 2. A is a generator of a strongly continuous positive semigroup of contractions
S; on C(E).

Proof. A = A; + Ay, where (A1 f)(x) = Z#ao ca(X)8y, f — c(x)8,f and Ay = v.
It is clear that A; is a bounded and dissipative operator. It is also a dissipation,
i.e. A1(f? > 2fA.(f) for f = f. BecauseA, generates a flow orE given by
f(x) = f(g,(x)), whereg,(x) is the integral curve ob starting at the poink, it follows
that A = A; + Ay is the generator of a strongly continuous semigroup of contractions (see,
for example, [40]). Positivity follows from the Trotter product formula, since héthand
A, generate positive semigroups. O

Let P(r,x,T") denote the transition function of;. It is clear that this is a Feller
transition function [41].
Now prove that our process reproducgs

Theorem 3. Let (U,u)(I') = fE P(t,x,T)u(dx) for u € M(E). ThenU, is associated
with T;.

The proof is given in the appendix. We can pass to the uniqueness problem. Let us
consider a Markov pregeneratBp given by

(Bou)(x) = Y T (x)(3:0;u)(x) + Y _ V' (x)(du) (x)
ij i

+/ po(x, dy)u(y) — po(x, E)u(x) (17)
E

where (T (x)) form a positive matrix anduo(x, dy) is a positive measure such that
wo(x, {x}) = 0 for everyx € E. Its domainD(Bg) consists ofC*-functions. It follows

from the theory of Dirichlet forms that this is the most general form of a pregenerator of a
Markov semigroup (see [42]).

Theorem 4. Let B be the operator closure &h. If B generates a Markov—Feller semigroup
associated witlf; then D(A) = D(B) andA = B.

The proof is given in the appendix. Thus we have the uniqueness. In the proof we
used repeatedly the fact that our Hilbert spaces were finite-dimensional. In an infinite-
dimensional case the problem is much harder and we have no rigorous result. Our intuition
is shaped here only by the infinitesimal argument of section 3.
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5. Conclusions

We have seen that the special class of couplings between a classical and a quantum system
leads to a unique piecewise deterministic process on pure states of the total system that, after
averaging, recovers the original master Liouville equation for statistical states. Irreversibility
of the master equation describing time evolution of ensembles is reflected by going from po-
tential to actual in the course of quantum jumps that accompany classical events. Why is this
uniqueness result so interesting? During the roundtable discussions at the conf@guanee

tum Theory Without Observerkeld in Bielefeld in August 1995, the following wish was
repeatedly expressed: ‘in a complete quantum theory all should be in the equations, nothing
relegated to the background.” Although this statement was made in particular reference to
the consistent histories approach to quantum measurement theory, it applied as well to the
problem of quantum mechanical descriptions of individual quantum systems. The necessity
of having such a description became increasingly apparent as progress in technology enabled
us to perform continuous observations of individual atoms. Quantum opticians were among
the first to propose and to look for the philosophical consequences of stochastic algorithms
reproducing a given master equation (ME). It soon became apparent that not all is in the
equations. As we have illustrated in section 3 there are infinitely many different algorithms
that, after averaging, lead to the same ME. Yet, in each case, Nature chooses only one of
them. Our position is that the only way to have all in the equation is by admitting explicitly
the classical nature of part of the experimental set-up—according to Bohr's philosophy. We
interpret the results of the present paper as confirming that this is, indeed, the case.

One may ask what are the possible implications of EEQT in general, and of the
uniqueness theorem in particular? One of the simplest applications that is already worked
out is in the solution of Mielnik’s ‘waiting screen problem’ [43]. As shown in [11] the long
standing problem of the time of arrival observable in quantum theory (cf [44] for a recent
review) finds a simple solution within EEQT. Moreover, in [45] a relativistic formulation
of the event generating algorithm has been given. The uniqueness theorem of the present
paper applies also to this relativistic generalization—provided time is replaced by proper
time.

Our results may be compared to those obtained by Diosi [26]. As noted in the
introduction his ‘ortho-process’, using only the quantum master equation, although canonical
(in cases where there is no infinite-dimensional degeneraaywtisnique. It is, however,
interesting to observe that if the method by Diosi is generalized and extended to a hybrid
classical- quantum system then his prescription coincides with our process. This is not a
surprise because, as we have proven in this paper, our prigcassique one for the total
system.

That is all fine and good, but the natural question arises: whatassical? There
are several options possible when answering this question. First of all the theory may be
considered as phenomenological—then we choose as classical that part of the measurement
apparatus (or observer) whose quantum nature is simply irrelevant for the given problem.
Second, we may think of superselection quantities [46, 47] as truly classical variables. Some
of them may play an important role in the dynamics of the measurement process—this
remains for a while just a hypothesis. It is to be noted that Jibu and Yasue (cf [48],
especially the last section ‘Quantum measurement by quantum brain’ puts forward a similar
hypothesis in relation to the possible role of microtubules in the quantum dynamics of
consciousness.

Finally, a careful reader certainly noticed that in the formalism of EEQT one never really
needsC to be aclassical system. It can be a quantum system as well. What is important
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is that the the Liouville evolution preserves the diagonalCof Thus the end product of
the decoherence program [49-51] can be directly fed into the EEQT event engine. The
uniqueness result above will be immediately relevant in this case also.
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Appendix

A.1. Proof of theorem 3

At first we show thatvx € E
L(P,) = [A(P)](x) (18)

whereL is the generator of;, A is the generator of, andP : x — P,.

Letx € CP,,. In'H = @)/_;H, let us choose any orthonormal bagis ;, }f:::ll’;_'_'jf,’ja, for
which e, ;, € H,. Obviously, for anyP, € Ar.{eqi,|L(p)leg,i,) = 0 for o # B and the
same is true for4(P)](x). So it is enough to evaluate tfig, iz, jz)th matrix elements of
both sides of equation (18):

<eﬁ,iﬂ | W Px Waoa |e/3,jﬂ)

(07103

Tr(Py Wy WS,

(o744

(epi, [AP)](@)lep.j,) = D TH(PWaga W)

aFog

— Y TP Waga Wi ep.is| Peles )

aFag

. 1 .
+<eﬂ,iﬂ|< - I[Holo’ Px] - Z{Px’ Z WD‘OE‘WQDO(}

aFag

+PTr <Px > Waoawgﬂoa))wﬂ,jﬂ) = (ep.iy Wi 5 Pc Wagplep.j,)

0(730(0

. 1 )
+80¢0ﬁ (eﬂ,if;'( - I[Hotov Px] - Z{PX’ Z WaodWaoa}>|eﬂ,jﬂ>' (19)

aFag

On the other hand, thgth component of..(P,)

. 1 )
(L(Py))g = Z(Vk)zoﬁpx(vk)aoﬂ + 840 — <|[Hao7 P+ Z{Px’ Z(Vk)ﬁa(vk)ﬁa}>

k k,a

. 1 N
= W} 4 PiWaos + 5a0ﬂ( —i[Hyy, P] — Z{Px, > W”"”W""""}) (20)
aFog
where the last equality holds owing to assumptions (a) and (b) above. Taki(g) the js)th
matrix element of (20) we see that it coincides with (19), thus, due to arbitrariness of
(B, ig, jg), we have proved equation (18).
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Let F denote the finite-dimensional space of functions generated-by (| P, |¢). It
is clear thatF = {f : f(x) =Tr(AP,), A € Ar}. So dimF = dim Ay. We show thatF
is the null space for ketr. Let f(x) = Zi,j(x/f,-|PX|1pj) and letug € ker r. Then

po(f) = f,uo(dX) fx) = Z(%I / wo(dx) Py |yr;) = 0.
i

Moreover, because€A (y;|P|y;))(x) = (¥;|L(Py)|¥;) we have thatd : F — F and so
S, : F — F. This implies thatl, : ker = — ker & sinceU,u(f) = (S, f). Let U, be the
guotient semigroup. Then

lim 2[0,(P,) — P.] = lim “[x(U,8,) — P
t'ﬂ});[ ((Py) — x]—tm;[ﬂ( 18x) — Pyl
1
= ll_r)rg)t(//P(t,z,dy)Sx(dZ) P, — Px) = (AP)(x) = L(Py)

so U, and T, have the same generator and thus coincide. By propositigni4 associated
with T;. O

A.2. Proof of theorem 4
At first we show the following lemma.

Lemma 1. (Vi)eae = 0 = Yo € {1,...,m}Vx,y € CP, such thatP, L P, the equality
Tr[P,L(P,)] = 0 is satisfied.

Proof. Letx,y e CP, and P, LP,. Then
TPy L(P)] = =i Tr(Py[Ha, P]) + Y THPy(V{ Py Vi)aal
k

1 ) )
-5 ijTr[Py{Px, VeVi)aal] = ijTr[mvk PeVi)aal.

But
(VEPVidaa = (Vi) gy Pr(Vidaa = 0
so the assertion follows. O
We are now in position to show that the diffusion part is hecessarily zero.
Lemma 2. T (x) = 0 for everyi, j.
Proof. Because
B[Tr(P,P)](x) = Tr[P,L(P,)]

so, by the above lemma, for evesyand everyx, y € CP, such thatP, L P, we have that
B[Tr(P,P)](x) = 0. Let us denote the function— Tr(P,P;) by fy(z). Then, becuse,
is a smooth function,

(Bofy)(x) = / po(e. dz) f,@) + > TU () @8 f,) () + Y V)@ ) ().
ij i

CP,

Becausef, possesses a minimum at potso Y, Vi(x)(9; fy)(x) = 0 and we arrive at

/«: | Hox. 60) () + 3 T @2 f) () = 0.
w ij
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But (9;9; fy(x)) and(T" (x)) are positive matrices so, by Schur’s lemni& (x)d;d; fy(x))
is also a positive matrix. It follows that

Z T (x)9;9; f,(x) = 0.
ij
Now let us introduce a chart at point say,x = [(1,0, ..., 0)], (Uo, ¢o) such that

Uo = {[(Zo, 21, .. zn-1] 1z € C, Z|Zi|2 =1z0# 0}

z Zn—
¢0[(ZO5 Z:L’ IO ) Zl’l—l)] = (15 LICEU ) . 1) = (x:l_, yla eeey xn—lv Yn—l)
20 20
where x; = Re&(z;/z0), i = Im(zi/z0). Thengo(x) = 0 € R**~V. Let us choose

y=1[00,10,...,0)]. Itis clear thatP, L P, and so

n—1 2 ] .

7(0) —o.
ax '8 x,ay] 0y; 0y,

ij=1
But for everyj > 2 we have

M(O)— Ilm {8(]6‘8%( sees X =h,0,...,0) = M(O):|

ox 12 h—oo h X; 0x;
In the same way we prove that for evefy> 2
(fyodyh)

T
By positivity of the matrix D?( fyody 1)(0) we obtain that
2 o _1
Txl,i(x)M(O) + 2T (x) Oy 0 (0) + TR (x )M(O) —0.

ax? 0x 8 dy?
Let » be an embedding : CP! — CP, given by

A (zo, z0)] = [(z0, 21,0, ..., 0)].

It is clear thatx = A(no) andy = A(n) for some uniqueng, n € CP = S2. Let o be a
chart atng given by

Yo:CP —{n} > C  o(m)=pogooi(m)
wherep = C" — C is the projection onto the first coordinate. So we may write that
0*(fno Yo" 0*(fao o' 0%(fn
(]07021’00) 0) + 2012(n0)M(0) + a22(no)w

dg? 991992 995

whereat(ng) = T (x), a¥(no) = T (x), a®*(no) = T (x) andgi(m) = x1(.(m)),
g2(m) = yi(A(m)). Let us change the chanty, onto spherical coordinate®, ¢),
0<06 <m0 ¢ < 2rinsuch away thab(ng) = /2, ¢(ng) =0, i.e.ng = (1,0, 0)
and@(n) =7/2,9(n) =m,ie.n=(-10,0). Because

fa(m) = Tr(PpPp) = 3(1+4 (n, m)) = 3(1 — sinf cosyp)

att(no)

0 =

SO

Pfn, 02 fn an
898<p(n0) =0 592 (M0) =

(o)—*
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which implies thatz'(ng) = a*?(ng) = @??(ng) = 0, wherea’/ are the coefficients in the
chart (@, ¢). But it is equivalent to

T = T =T = 0.
Changingy = [(0, 1,0, ..., 0] into y =[(0,0, 1,0, ..., 0)] we obtain that
TR0 = TE@ =T =0

and so on. Thus, by the positivitf;’/ (x) = 0 for everyi, j. Becausex was arbitrary the
assertion follows. O

From the above lemma we conclude that the genertiw the closure of

Bou(x) = V(x)u +/ po(x, dy) u(y) — mo(x, E)u(x).
E

Lemma 3. Let X be a tangent vector t@ P, at pointP,. ThenP, + X >0 < X =0.

Proof. BecauseX ¢ T,CP, so P,.X + XP, = X. This implies thatP,XP, = 0 and
PrxPl =0, whereP! = I — P,. Therefore, in a basi®,H & P*HX is of the form

(}3 )é ) So P, + X is a positive matrix if and only if¥ = 0. 0

Lemma 4. By = Alc~.

Proof. BecauseA and B are generators of semigroups which are associated Tyjtfor
everyx € E we have that(B — A)P](x) =0. Letx € CP,,. Then

Vx)P + Z[E 1w (x, dy) Py — po(x, EYPy — ) ca(X) Py, + c(x) Py —v(x)P =0
a=1 Py

aFog
where uo 4 (x, dy) denotes the restriction gfo(x, dy) onto CP,. It is an operator valued
equation so it has to be satisfied for evergeparately. So for any # ag we get

/ MO,a(xvdy) Py:Ca(x)an
CP,
which implies thatug  (x, dy) = ¢, (x)3(x,)(dy). Forag we have
/ 0,00 (X, dy) Py — po(x, E)Py + c(x) Py + V(x) —v(x) = 0.
CPyy

Let us introducez(x) = c(x) — puo(x, E) andw(x) = V(x) — v(x). Then taking the trace
of the above equation we obtair{x) < 0. Let us assume that(x) < 0. This implies that

(x).

Hoeo (X, dy) Py = Py — ———w
la()l Jep, T a)l

The left-hand side of the above equation gives a positive operatowande 7,CP,, So,
by lemma 3,w(x) = 0. Thus we arrive at the contradiction becawsg, (x, {x}) = 0. So
a(x) = 0 and we obtain that

/ roeo(x, dy) Py +w(x) = 0.
(CPC(O

Evaluating the trace we get thab ., (x, CP,,) = 0. Because it is a positive measure it
vanishes on every Borel subset©f,,. Sow(x) = 0 too and hencel|c~ = Bo. O

BecauseB is the closure ofBg andC*>°(E) is a core forA, D(A) = D(B) andA = B.
This ends the proof of theorem 4. O
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Burgers’ flows as Markovian diffusion processes
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We analyze the unforced and deterministically forced Burgers equation in the framework(difthgive)
interpolating dynamics that solves the so-called Sdimger boundary data problem for random matter trans-
port. This entails an exploration of the consistency conditions that allow one to interpret dispersion of passive
contaminants in Burgers flow as a Markovian diffusion process. In general, the usage of a continuity equation
ap=—V(vp), wherev =v(x,t) stands for the Burgers field andis the density of transported matter, is at
variance with the explicit diffusion scenario. Under these circumstances, we give a complete characterization
of the diffusive transport that is governed by Burgers velocity fields. The result extends both to the approxi-
mate description of the transport driven by an incompressible fluid and to motions in an infinitely compressible
medium. Also, in conjunction with the Born statistical postulate in quantum theory, it pertains to the proba-
bilistic (diffusive) counterpart of the Schdinger picture quantum dynamics. We give a generalization of this
dynamical problem to cases governed by nonconservative force fields when it appears indispensable to relax
the gradient velocity field assumption. The Hopf-Cole procedure has been appropriately generalized to yield
solutions in that cas¢S1063-651X97)04302-X]

PACS numbsdis): 02.50-r, 05.20-y, 03.65-w, 47.27—i

I. BURGERS VELOCITY FIELDS AND THE RELATED regard the stochastic diffusion process as a primary phenom-
STOCHASTIC TRANSPORT PROCESSES enon responsible for the emergence of Bg.and thus jus-
tifying the “nonlinear diffusion equation” phrase in this
The Burgers equatiofil,2] recently has acquired consid- context.
erable popularity in a variety of physical contekgs-20]. An Knowing the Burgers velocity fields, one is tempted to
exhaustive discussion of its role in acoustic turbulence andsk what is the particular dynami¢sf matter or probability
gravitational contexts, where the emergence of shock presiensity field$ that is consistent with the chosen Burgers ve-
sure fronts is crucial, can be found in REL7]. locity field evolution. The corresponding passive scalar
As is well known, the logarithmic Hopf-Cole transforma- (tracer or contaminant advection-in-a-flow problem
tion [2] allows one to replace the nonlinear problémonlin-  [14,11,14 is normally introduced through the parabolic dy-
ear diffusion equationl]) by a linear parabolic equation. namics:
Because of this equivalence all gradient-type solutions of the
Burgers equation are known exactly. OT+(v-V)T=vAT; 2)
At the moment we shall preserve the gradient form re-
striction for Burgers velocity fields, but consider a more gen-see, e.g.[21-23. For incompressible fluids, Eq2) coin-
eral form of the Burgers equation that accounts for an extereides with the conventional Fokker-Planck equation for the
nal force fie|dﬁ()z,t); diffusion process. This feature does not persist in the com-
pressible case.
While looking for the stochastic implementation of the
microscopic(moleculay dynamics, Eq(2) [11,16,23,24 it
is assumed that the “diffusing scalarftontaminant in the
Let us mention that many recent investigations were devotefbre of early statistical turbulence modetbeys an ltequa-
to the analysis of cusl=0 solutions that are statistically rel- tion:
evant in view of the random initial data choice and/or inclu-

dw+(v-Vv=vAv+F(Xt). 1)

sion of the random forcing teritthe random potential in the dX(t)=v(x,t)dt+ 2vdW(t), 3
related Parisi-Kardar equatigal]).
However, irrespective of whether we do or do not need X(0)=Xo—X(t) =X

the statistical input, an issue of matter transport driven by

those nonlinear velocity fields requires the knowledge of anhere the given forced Burgers velocity field is perturbed by

exact evolution of concentration and/or density fields, muchye noise term representing a molecular diffusion. In(the
in the_spmt of ear_Iy hydrodynamical studies of advgctlon andyow conventional Ito representation of diffusion-type ran-
diffusion of passive tracerl®1,22; see alsd23]. This par-

ticular issue is addressed in the present paper, under a sirﬂQm \{arlable ?((t) one epr|<.:|tIy refers to th% star_ldard
plifying assumption of nonrandom initial data and determin-Brownian motion(e.g., the Wiener process/2»W(t), in-
istic force fields. stead of the usually adopted formal white noise integral

Following the traditional motivatior{applicable both to [ gﬁ(s)ds, coming from the Langevin-type version of Egs.
incompressible and infinitely compressible liquidd), we  (3).

1063-651X/97/562)/1401(12)/$10.00 55 1401 © 1997 The American Physical Society
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Under these premises, while taking for granted thate  (b) there exists dforward) drift
is a diffusion process involved, we cannot view Egh—(3)
as completely independefdisjoint) problems: the velocity

field v cannot be quite arbitrarily inferred from E¢L) or
any other velocity-defining equation without verifying the
consistencyconditions, which would allow one to associate and (c) there exists a diffusion functiofin our case it is
Egs.(2) and (3) with a well defined random dynamics, and simply a diffusion coefficient)
Markovian diffusion in particulaf25,26.

In connection with the usage of Burgers velocity fields . 1 .. ..
(with or without external forcing which in Egs.(3) clearly a(x,s)=limg g EJ _ (y=x)%p(x,s,y,0)d%y,
are intended to replace the standdedward drift of the ly=xi=e
would-be involved Markov diffusion process, we have not . . . e
found in the literature any attempt to resolve apparent condre convent|onall_y mterpret_ed_to define a d_|ffu3|on process
tradictions arising if Eqs2) and/or(3) are defined by means 125,28 Under suitable restrictions the function
of Eq. (1). In particular, the usage of a continuity equation
ap=—V(vp), wherev =v(x,t) stands for the Burgers field g()?,s)zf p(x,s,y,Tg(y,T)d3 4
andp is the density of transported matter, is at variance with
the explicit diffusion scenario. Also, an issue of the neces- . _ e o .
sarycorrelation (cf. [16], Chap. 7.3, devoted to the turbulent sat|sf|_es the backw_ard d|ﬁu3|pn equ_atl[ulmtlce that the mi-
transport and the related dispersion of contaminabts ~ NUS Sign appears, in comparison with E2)]
tween the probabilistic Fokker-Planck dynamics of the dif- . . .. .
fusing tracer, and this of the passive tra¢eontaminant —d59(x,8)=vAg(x,8)+[b(x,8)-V]g(X,s). )
concentratiofEq. (2)], has been left aside in the literature.

Moreover, rather obvious hesitation could have been obLet us point out that the validity of E¢5) is known to be a
served in attempts to establish the most appropriate matterecessaryondition for the existence of a Markov diffusion
transport rule, if Eqs(1)—(3) are adopted. Depending on the process, whose probability densip(x,t) is to obey the
particular phenomenological departure point, one eithegokker-Planck equation. Here, the new velocity field, named
adqpts the §tandard continuity equa_t[Gm], that IS certgmly .. the forward drift of the procesﬁ(i,t), replaces the previ-
valid to a high degree of accuracy in the low viscosity limit . I
(we refer to the standard terminology that comes from vis2uSly utilized Burgers field (x,t):
cous fluid models; here; stands for the diffusion constant

b(x,s)=lim,s §L§;< (y=x)p(x,s,y,t)d%,

v|0 of Egs.(1)—(3), but incorrect on mathematical grounds ap(X,1)=vAp(X,t) = V-[b(X,t) p(X,1)]. (6)
if there is a diffusion involvednd simultaneously a solution
of Eq. (1) is interpreted as the respectigarrent velocity of The case of particular interest in the nonequilibrium sta-

the flow: &tp(i,t)= —ﬁ-[J()Z,t)p()?,t)]. Alternatively, fol- tistical physics literature appears Whp(ﬁ,s,i,t) is afun-
lowing the white noise calculus tradition telling that the sto-yamental solutiorof Eq. (5) with respect to variabley,s
chastic integral X(t) = [Lo(X(s),s)ds+ [{7(s)ds implies  [25,26,30; see, however[31] for an alternative situation.
the Fokker-Planck equation, one adof®4]: a,p(x,t)  Then, the transition probability densitglso satisfies the

=vAp()Z,t)—ﬁ[z?()?,t)p()?,t)], which is clearly problem- Fokker-Planck equation in the remaininxgt pair of vari-

atic in view of the classic McKean'’s discussion of the propa-ables. Let us emphasize that these two equations form an
gation of chaos for the Burgers equatif27—29 and the adjoint pair, referring to the slightly counterintuitive for
derivation of the stochastic “Burgers process” in this con- Physicists, although transparent for mathematic[&3s-37,

text: “the fun begins in trying to describe this Burgers mo- issue of time reversal of diffusion processes.

tion as the path of a tagged molecule in an infinite bath of After adjusting Egs. (3) to the present context,
like molecules”[27]. X(t)=f§)b(X(s),s)ds+ J2uW(t), we realize[35—3§ that

~ To put things on solid ground, let us consider a Markov-for any smooth functionf(x,t) of the random variable
ian d|ffl_J_S|on process, which is characterized by the tranS|t|or}z(t) the conditional expectation value

probability density(generally inhomogeneous in space and

time law of random displacememtp(ﬁ,s,i,t),0<s<tsT, 1 o ) )

and the probability density(x,t) of its random variable ”mﬂ[f POty t+ADf(y,t+At)d3y—f(x,t)
X(t),0<t<T. The process is completely determined by auo

these data. For clarity of discussion, we do not impose any :(D+f)(2(t),t)=[at+(6-ﬁ)+ vATf(X,1), (7)

spatial boundary restrictions, nor fix any concrete limiting
value of T which, in principle, can be moved to infinity. - R
The conditions valid for ang>0: (a) there holds X(t)=Xx,

determines the forward drifi(x,t) (if we set components of

im 1 f (» o x dx=0 X instead off) and allows one to introduce the local field of
Ust—s |y‘_;\>5p Yy.sX, ’ (forward) accelerations associated with the diffusion process,
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which we constrain by demandir(gee, e.g., Ref§35-3§
for prototypes of such dynamical constrajnts

(D2X)(t)=(D,b)(X(t),t)
=[ab+(b-V)b+vAbJ(X(t),t)
=F(X(1),1), (8)

where, at the moment arbitrary, functiéi(x,t) may be in-
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ab, +(b, -V)b, — vAb, =F. (13)
Here[32,35,36, in view of b, =b—2»V Inp, we deal with
F(x,t) previously introduced in Eq9). A notable conse-
guence is that the Fokker-Planck equatiéh can be trans-
formed to anequivalentform of

ap(X,0)=—vAp(X,t) = V[b, (x,Hp(x,0)], (14

terpreted as the external deterministic forcing applied to thd/hich, however, describes a density evolution in the reverse

diffusing systen{32]. In particular, if we assume that drifts
remain gradient fields, curk=0, under the forcing, then

those that are allowed by the prescribed choiceF (£,t)
mustfulfill the compatibility condition(notice the conspicu-

sense of time.

At this point let us recall that Eqg5) and (6) form a
natural adjoint pair of equations that determine the Markov-
ian diffusion process in the chosen time intery&,T].
Clearly, an adjoint of Eq(14) reads:

ous absence of the standard Newtonian minus sign in this

analog of Newton’s second law

F(x,1)=VQ(x,1), (9)

Q(x,t)=2v| o, + +V-b

2

22
2v

dsf(X,5)=vAf(X,5)—[b,(X,8)-VIf(X,s), (15

where

F(%,9)= f b, (5.0%,9)f (.0, (16

This establishes the connection of the forward driftto be compared with Eqg4), (5), and the previously men-

b(x,t)=2vV®d(x,t) with the (Feynman-Kac; cf[31,32)
potentiaIQ(f,t) of the chosen external force field. The latter
connection, without invoking the Feynman-Kac formula, is
frequently exploited in the theory of Smoluchowski-type dif-
fusion processes, when the Fokker-Planck equation is tran
formed into the associated generalized diffusion equation.
One of distinctive features of Markovian diffusion pro-

cesses with the positive denswi,t) is that the notion of
the backwardtransition probability densityo*(ﬁ,s,i,t) can

be consistently introduced on each finite time interval

0<s<t<T:
p(X,0) P4 (¥,8,X,1)=p(y,5,X,1)p(Y,S), (10)

so that [p(y,s)p(y,s,x,)d°y=p(x,t) and p(y,s)
=Ip, (V,s,x,t)p(x,t)d*x. This allows one to defindcf.

[32,38-40Q for a discussion of these concepts in the case o

the most traditional Brownian motion and Smoluchowski-
type diffusion processgs
i 1
im-—
Auom

i—f P, (y,t—At,x,t)yd3y

=(D_X)(t)=b, (X(t),1), (12)

(D_F)(X(1),t)=[d,+ (b, - V)= vATF(X(1),1).

Accordingly, the backward version of the dynamical con-
straint imposed on the local acceleration field reads
(D2X)(1)=(DIX)(H)=F(X(1),1), (12

where under the gradient-drift field assumption, leyrE O,
we have explicitly involved the forced Burgers equatich

Eq. (1)]:

tioned passive scalar dynamidsg. (2)]; see also, e.g[24].
Here, manifestly, the time evolution of the backward drift is
governed by the Burgers equation, and the diffusion equation
(15) is correlatedvia the definition(10)] with the probability
density evolution rulg14).

S” This paironly can be consistently utilized if the diffusion

process is to be driven by forcddr unforced Burgers ve-
locity fields. Certainly, the continuity equation postulated to
involve the Burgers field as the current velocity does not
hold true in this context.

Let us point out that the study of diffusion in the Burgers
flow may begin from first solving the Burgers equatidr2)
for a chosen external force field, next specifying the prob-
ability density evolutior(14), and eventually ending with the
corresponding “passive contaminant” concentration dynam-
ics (15) and (16). All that is in perfect agreement with the
heuristic discussion of the concentration dynamics given in
Ref. [16], Chap. 7.3, where the ‘“backward dispersion”
problem with “time running backwards” was found neces-
sary topredictthe concentration.

All that means that Eqg1)—(3) can be reconciled in the
framework set by Eq94)—(16). Then, the “nonlinear diffu-
sion equation” does indeed refer to consistent stochastic dif-
fusion processes.

We are now at the point where the Burgers equation and
the related matter transport can be consistently embedded in
the general probabilistic framework of the so-called Sdhro
inger's boundary data(stochastic interpolation problem
[31,32,36,37,40-41see alsq42,43. In this setting, the fa-
miliar Hopf-Cole transformatiof2,44] of the Burgers equa-
tion into the generalized diffusion equatigyielding explicit
solutions in the unforced caseeceives a useful generaliza-
tion.

Indeed, in that framewor[31,32, the problem of deduc-
ing a suitable Markovian diffusion process was reduced to
investigating the adjoint pairs of parabolic partial differential
equations, like, e.g., Eqé) and(6) or Egs.(14) and(15). In
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the case of gradient drift fields this amounts to checkthis
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By defining ®, =Inu, we immediately recover the tradi-

imposes limitations on the admissible force field potentialtional form of the Hopf-Cole transformation for Burgers ve-

cf. also formula(9)] whether the Feynman-Kac kernel

k(;?,s,i,t):f exp[—ftc(w(r),ﬂm dulyii(w) (A7)

is positive and continuous in the open space-time area 03
interest, and whether it gives rise to positive solutions of thet

adjoint pair of generalized heat equations:
AU(X,t)=vAu(x,t)—c(X,H)u(xt),
aw (X,t) = — vAv(X,t) +c(X,D)v(X,1),

wherec(x,t) = (1/2v)Q(x,t) follows from the previous for-

mulas. In the abovedug»’f’))(w) is the conditional Wiener

locity fields: 5* =—-2vVd, . In the special case of the stan-
dard free Brownian motion, there holdxx,t)=0 while
b, (X,t)=—2vV Inp(X).

Our discussion provides a complete identification of the
tochastic diffusion process underlyibgth the determinis-
cally forced Burgers velocity dynamics and the related mat-
er transport14), the latter in terms of suitable density fields.
The generalization of the Hopf-Cole procedure to this case
involves a powerful methodology of the Feynman-Kac ker-
nel functions and yields exact formulas for solutions for the
forced Burgers equation. Let us stress that the connection
between the Burgers equation and the generalifmward)
heat equation is not merely a formal trick that generates so-
lutions to the nonlinear problem. The forward equati8),
in fact, carries a complete information about the implicit
backward stochastic evolutiprthat is, a Markov diffusion

measure over sample paths of the standard Brownian mOt'OBrocess for which the Burgers-velocity driven transport is

Solutions of Egqs(18), upon suitable normalization, give

appropriate. Notice that the transition probability density

rise to the Markovian diffusion process with the factorized(21) obeys the familiar Chapman-Kolmogorov formula. If

probability densityp(i,t) = u(i,t)v(i,t), which interpolates
between the boundary density datéx,0) andp(i,T), with

we wish to analyze a concrete density field governed by this
process, any two boundary density da(x,0) andp(x,T)

the forward and backward drifts of the process defined agllow one to deduce the ultimate form of tiore tradi-

follows:
.. Vo(x,t)
b(x,t)=2v———, (19
v(X,t)
.. vu(x,t)
b, (x,t)=—-2y———,
u(x,t)

in the prescribed time interv@D,T]. The transition probabil-
ity density of this process reads:

L. . u(xb)
p(y,s,x,t)=k(y,s,x,t)

(20

> .

v(y,s

tional, forward diffusion process(20), by means of the
Schralinger boundary data problef31,36. Then, the ad-
joint pair of equationg18) gives all details of the dynamics,
with (19)—(21) as a necessary consequence. On the other
hand, the presented discussion implies a direct import of the
shock-type matter density profiles to the general nonequilib-
rium statistical physics of diffusion-type processes.

II. PROBLEM OF NONCONSERVATIVE FORCING
OF BURGERS VELOCITY FIELDS

By embedding the Burgers equation in the Sclimger
interpolation framework, we could consistently handle ran-
dom transport that is governed by gradient velocity fields and
gradient-type external conservative forces. The natural ques-

Here, neithek [Eq. (17)] nor p [Eg. (20)] needs to be the tion at this point is how to incorporate the nongradigt
fundamental solutions of appropriate parabolic equationstational, for examplevelocity fields and especially the non-
see, e.g., Ref31], where an issue of differentiability is ana- conservative forces. This question may be addressed without

lyzed.
The correspondinbsincep(f,t) is given| transition prob-
ability density(10) of the backward process has the form

0, (5,551 k(5% 1) 2L
u(x,t)

(21)

Obviously [31,3€], in the time interval Gs<t<T there
holds

u(x,t)= f Uo(y)k(y,s,x,t)d%

and

u(;?,s):f k(y,s,X, T)or(x)d3x.

reservations only in the context of the forced Burgers equa-
tion. Recall that the Hopf-Cole transformation is applicable
only in the case of gradient velocity fields. Moreover, the
involved Schrdinger interpolation framework extends the
issue to the domain of nonequilibrium random phenomena,
where standard Smoluchowski diffusiof2] are normally
discussed in the case of conservative force fi¢hasl drifts
in consequenge

Remark Strikingly, an investigation of typical nonconser-
vative, e.g., electromagnetically, forced diffusions has not
been much pursued in the literature, although an issue of
deriving the Smoluchowski-Kramers equati@nd possibly
its large friction limiy from the Langevin-type equation for
the charged Brownian particle in the general electromagnetic
field has been relegated in Rg45], Chap. 6.1, to the status
of the innocent-looking exercise. On the other hand, the dif-
fusion of realistic charges in dilute ionic solutions creates a
number of additional difficulties due to the apparent Hall
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mobility in terms of mean currents induced by the electrictween the Wiener measure corresponding to the standard

field (once assumed to act upon the systesee, e.9.[46—  Brownian motion withb(x,t)=0 and that for the diffusion
48]. In connection with the electromagnetic forcing of dif- rocess with a nonvanishing drlf)t(i t) curb=0

fusmg c.har.ges', the gradient field assumptlon IMPOSES & S€- 5yr main purpose is to general,izé B@2), so that the
vere limitation if we account for typicghonzero circulation ositive and continuougsemigroup kernel function can be

featu_{ﬁs otfttrr]]e clasdsmal mottlotr)l ‘1.“9 to the Lorerltz_lfﬁrce, W': ssociated with stochastic diffusion processes, whose drifts
or without the random perturbation component. The purely, .o longer gradient fields. In particular, the forcing is to
electric forcing is simpler to handle, since it has a deflnltebe nonconservative
gradient field realization; see, e.§49] for a recent discus- :

. f related i Th ior obstacle with it Since we have no particular hints towards Feynman-Kac-
sion of related ISsues. The major obstacle with respect to OL{glpe analysis of rotational motions, it seems instructive to
previous (Sec. ) discussion is that, if we wish to regard

. 4 SRR invoke the framework of the Onsager-Machlup approach to-
either the force~ [Egs.(8) and(12)] or drifts b, b, to have  wards an identification of most probable paths associated
an electromagnetic origin, then necessarily we need to pasgith the underlying diffusion proce§$2—54. In this con-
from conservative to nonconservative fields. This Subjectext, the nonconservative model System has been investi-
matter has not been significantly exploited so far in the nongated in Ref[55]. Namely, an effectively two-dimensional
equilibrium statistical physics literature. _ _ Brownian motion was analyzed, whose three-dimensional
With this additional(via the Burgers equatigrmotiva- forward drift 5()?),b3=0 in view of d,b;# d,b,, has curb

tion, If[e.t usf anal);;? how the tgradlent \t/)elomlty f'%ahd c;:on— #0. Then, by the standard variational argument with respect
servative force fieldassumption can be relaxed an none-,. ihe Wiener-Onsager-Machlup actif,55),

theless the exact solutions to the Burgers equation can be
obtained,both in the unforced and forced cases, while in- ..
volving the primoridal Markovian diffusion process scenario. ! {L(X,X,t);ty,t5}

It turns out that the crucial point of our previous discus-
sion lies in aproper choice of the strictly positive and con- 1ftefl ~ - 0 oo
tinuous (in an open space-time ajefunction k(y,s,x,t), =%, tl[z[x—b(x,t)] +vV-b(x,t) dt,
which, if we wish to construct a Markov process, has to (23)
satisfy the Chapman-Kolmogoragemigroup composition

equation. It has led us to consider a pair of adjoint partiakhe most probable trajectory, about which major contribu-
differential equations(18), as an alternative to eith€s) and  tjons from (weighted Brownian paths are concentrated, was
(6) or (14) and(19). found to be a solution of the Euler-Lagrange equations,

The Feynman-Kac integration is predominantly utilized inyhich are formally identical to the equations of motion
the quantally oriented literature dealing with Sddtirmer op-

erators and their spectral propertj&,51]. We shall exploit - = 5 o
some of results of this well developed theory. The pertinent dci=E+0QcxB (24)
Feynman-Kac potentia(x,t) in Egs.(17) and(18) is usu-
ally assumed to be a continuous and bounded-from-belowf a classical particle of unit mass and unit charge moving in
function, but these restrictions can be substantially relaxedn electric fieldE and the magnetic fielB. The electric field
(unbounded functions are allowed in principiewe wishto  [to be compared with Eq9)] is given by
consider general Markovian diffusion processes and disre-
gard an issue of the bound state spectrum and this of the E=—V, (25)
ground state of the(self-adjoin} semigroup generator
[25,30. Actually, what we need is merely that the properties 1
of c(i,t) allow for the kernelk, (17), that is, positive and d=— _(52+ 2,,6.5),
continuous. This property is crucial for the Sctirger 2
boundary-data problem analysis.

Taking for granted that suitable conditions are fulfilled While the magnetic field has the only nonvanishing compo-
[31,50, we can immediately associate with E¢s8) an in-  hent in thez direction ofR*:
tegral kernel of the time-dependent semigrtife exponen-
tial operator should be understood as a time-ordered expres- I§=curl5={0,0,axb2—aybl}. (26)

sion, since in generd (7) may not commute wittd (7') for
T# 7]

t

ex;{—f H(T)dT)
s One immediately realizes that the Fokker-Planck equation
in this case is incompatible with traditional intuitions under-

where H(7)=—vA+c(7) is the pertinent semigroup gen- lying the Smoluchowski-drift identification: the forward drift
erator. Then, by the Feynman-Kac form{i#8], we get an is notproportional to an external force, but to an electromag-
expression(17) for the kernel, which in turn yields Eqgs. netic potential. Nevertheless, the variational information
(19—(22); see, e.g.[31]. As mentioned before, Eq20) drawn from the Onsager-Machlup Lagrangian involves the
combined with Eq.(17) sets a probabilistic connection be- Lorentz force-driven trajectory. Hence, some principal ef-

Clearly,B=curlA, whereA=Db is the electromagnetic vector
potential. The simplest example is a notorious constant mag-

K(Y,S,%,t)= (y.%), (220  netic field defined by, (X) = — (B/2)xz,b,(X) = (B/2)x,.
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fects of the electromagnetic forcing are present in the diffuscoupling assumptio (A) = — 3(V —iA)2, is available(up

ing system, whose drifts display an “unphysicalgauge to irrelevant dimensional constants
dependentform.

On the other hand, if we accept this “unphysical” ran- L B 1\ 12
dom motion to yield the representation with the nongradientexr[—tH(A)](x,y)z_—l(m)
drift A: dX(t)=AX(t),H)dt+ y2rdVit), and consider the 4 sinf(3BY)
corresponding paif5) and(6) of adjoint diffusion equations 1 B B
with A(x,t) replacingb(x,t), then Eq.(8) tells us that X eXD[ - z(xg—ya)z— Zcotf(gt)
(D2X)(t)= gA+(A- V) A+ vAA X[(=y2)*+ (X1 =y1)’]
BZ .. . B
=2 aeO=-E®, @7 ~15 (X2 Xoya) ) 28)

.- ) ) Clearly, it isnot real (hencenonpositiveand directly at vari-
whereE(x) = (B/4){x;,x,,0}, if calculated from Eqs(25).  ance with the major demand in the Sétlirger interpolation

We thus arrive at the purely elec_tnc forcing with reVersedproblem, as outlined in Sec), lexcept for directiony that
sign [if compared with that coming from the Onsager-

Machlup argument25)] and, somewhat surprisingly, there is &€ parallel to a chosen _

no impact of the previously discussed magnetic motion on €onsequently, a bulk of the well developed mathematical

the level of dynamical constrainf&gs. (8) and (13)]. The theory is of no use for our purposes e_m(_j new techniques must

adopted recipe is thus incapable of producing the magnetpe _developed for_a consistent description of the electromag-

cally forced diffusion process that conforms with argumentghetically forced diffusion processes along the lines of Sec. |,

of Sec. I. Our toy model is inappropriate and a more sophis-€- Within the framework of Schdinger’s interpolation

ticated route must be adopted. problem. Also, another approach is necessary to generate so-
Below, we shall invoke the Feynman-Kac kernel id22) lutions of the Burgers equation that are not in the gradient

[31]. This approach has the clear advantage of elucidatinéorm-

the generic issues that hamper attempts to describe the dif-

fussion processes governed by nonconservdéad electro- IIl. FORCING VIA FEYNMAN-KAC SEMIGROUPS

magnetic in particularforce fields. The Burgers equation -

a_nd the problem of its nongradient solutions vyill appear re- The conditional Wiener measucmg'ts))(w) appearing in

sidually as a byproduct of the more general discussion.  the Feynman-Kac kernel definitiaf17), if unweighted[set
USL_JaIIy, the s_elf-adj_olnt semigroup generators attract th'%(<f)(r),r)=0], gives rise to the familiar heat kernel. This, in

attention of physicists in connection with the Feynman—Kactum, induces the Wiener meastPg, of the set of all sample

formula. Since electromagnetic fields provide the most con- hs. which oriai from at ti q . b
ventional examples of nonconservative forces, we shall corR@ths, which originate from at times and terminatécan be

; 3 i .

centrate on their impact on random dynamics. ocated in the Bpre[ set AcR® after time t-—s:
A ty?ical route tlowar_ds ?ncorporar;[ing _el_ectrlonlwagnetismPW[A]=fAd3xfdMg”f))(w)=fAd,u, where, for »simplicity

comes from quantal motivations via the minimal electromag- . notation, the §,t—s) labels are omitted aan(X'S)

netic coupling recipe which preserves the self-adjointness o;f the heat k | (1

the generatofHamiltonian of the systejm As such, it con- or e- ea e.rne. o - R

stitutes a part of the general theory of Salinger operators. Having defined an ltodiffusion X(t)=/ob(x,u)du

A rigorous study of operators of the formA+V has be-  +2uW(t), we are interested in the analogous path mea-

come a well developed mathematical disciplif#]. The sure:Pg[A]=fAdxfd,u(y'tS))(a3>z)=fAd,u(>Z).

. . . . i ;,
study of Schrdinger operators with magnetic fields, typi Under suitable(stochastic[32]) integrability conditions

S YVE . ,
cally of the form—(V—iA)“+V, is less advanced, although jmposed on the forward drift, we have granted the absolute
specialized chapters on the magnetic field issue can be founghntinyity P, <P,y of measures, which implies the existence
in monographs devoted to functional integration methodsyt 5 strictly positive Radon-Nikodym density. Its canonical

[50,56, mostly in reference to seminal pap¢&,58. Cameron-Martin-Girsanov forf82,50, reads:
From the mathematical point of view, it is desirable to

deal with magnetic fields that go to zero at infinity, which is
certainly acceptable on physical grounds as well. The con-
stant magnetic fieldsee, e.g., our previous consideratipns du
does not meet this requirement, and its notorious usage in the
literature makes ugat the momentdecline the asymptotic _ Eft[ﬁ(i(u) u)]2du
assumption and inevitably fall into a number of serious com- 2)s '
plications. R

One obvious obstacle can be seen immediately by taking If we assume that drifts are gradient fields, bufl0, then
advantage of the existing result§7]. Namely, an explicit the Ito formula allows one to reduce otherwise troublesome
expression for the Feynman-Kac kernel in a constant magstochastic integration in the exponent of Eg9) [50,5€ to
netic field, introduced through the minimal electromagneticordinary Lebesgue integrals:

stands

du(X) . . 1
(y,s,x,t)—expz—v

jtﬁ(i(u),u)d)?(u)

. (29
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1 (t. . R R . Let us consider a gradient drift-field diffusion problem
Z—Vf b(X(u),u)dX(u)=d(X(t),t)—P(X(s),s) according to Sec. |, with Eqg17) and (30) involved and
S thus an adjoint paif18) of parabolic equations completely
defining the Markovian diffusion process. Furthermore, let

t 1. ) .
- Ldu( o ® + EV‘b> (X(u),u). A(x) be the time-independent vector potential for the Max-
wellian magnetic field8= curlA. We pass from the gradient
(30 realization of drifts to the new one, generalizing ELp), for

After inserting Eq.(30) into Eq. (29) and next integrating which the foI_Iowing c_iecomposition into the gradient and
with respect to the conditional Wiener measure, on accourfionconservative part is valid:

of Eq.(9) we arrive at the standard form of the Feynman-Kac

kernel (17). Notice that Eq.(30) establishes a probabilistic . . ..

basis for logarithmic transformationd9) of forward and b(x,1)=2vVO(x,t) —A(X). (31
backward drifts: b=2vV Inv=2,V®, b,= —2vV Inu

=—2_VV9<I>*_ . The forward ver§ion is commonly used in con- e denote@(f,t)'zexml)(i,t)] and admit that Eq(31) is a
nection with the transformation of the Fokker-Planck equatforward drift of an Ifo diffusion process with a stochastic

tion into the generalized heat equatid82,59. The back- differential  dX(t)=[2v(V 6/ 6) — A]dt+ V2rdW(t). On
ward version is the Hopf-Cole transformati_on, mentioned in urely formal grounds, we deal here with an example of the
Sec. |, gsed to map thg Burge_rs equation into the very sa ameron-Martin-Girsanov transformation of the forward
generalized heat equation as n the previous fase) . drift of a given Markovian diffusion process and we are en-
However, p[esently we are interested in nonconsenVativiyeq o ask for a corresponding measure transformation
drift fields, curb#0, and in that case the stochastic integral(29),
in Eq. (29) is the major source of computational difficulties
[35,50,58, for nontrivial vector potential field configura-
tions. It explains the virtual absence of magnetically force
diffusion problems in the nonequilibrium statistical physics
literature. ..
At this point, some steps of the analysis performed in Ref. df=— ”( V- ZA(X)
[60] in the context of the “Euclidean qguantum mechanics”
(cf. also[37]) are extremely useful. Let us emphasize that the _ _
electromagnetic fields we utilize are always meant to be orwith the notationc(x,t) =(1/2v)Q(x,t) patterned after Eq.
dinary Maxwell fields withno Euclidean connotationésee, (9). Then, by using the Ito calculus and E¢31) and(32) on
e.g., Chap. 9 of Ref56] for the Euclidean version of Max- the way (see, e.g., Ref[60]), we can rewrite Eq(29) as
well theory). follows:

To this end, let us furthermorassumethat 0(>Z,t)=6
dsolves a partial differential equation

2
6+c(x,t)6 (32

du(X) - . 1
T( ,S,X,t)—eXpZ

tf ve o\ . .1 Ve _\*.
L 2v7—A (X(u),u)dX(u)—EJ'S ZVT—A (X(u),u)du
_6X(1),1)

-7 ex : (33
0(X(s),s)

p[ - %ft[’x(”)di(uﬁ (V- A)(X(u)du+Q(X(u),u)du]

whereX(s) =y, X(t) =x.
More significant observation is that the Radon-Nikodym dend8), if integrated with respect to the conditional Wiener
measure, gives rise to the Feynman-Kac ke(B8) of the non-self-adjointsemigroup(suitable integrability conditions need

to be respected here as w@D]), with the generatol ;= — [ V — (1/2v) A(x) ]2+ c(x,t) defined by the right-hand side of Eq.
(32):

0(X,)=HZ0(X,t)=| —vA+A(X)-V +%(€ : A(i))—%[ﬂ(i)]%r c(x,t)| 6(x,t)

=—vAO(X, 1) +A(X)-VO(X,t)+Ca(X,t) O(X,1). (34)
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Here Consequently, a correct expression for the magnetically
implemented Lorentz force has appeared on the right-hand

- - T . . 1 .. side of the forward acceleration formula7), with the for-
cax,)=c(x,t)+ 5 (VA)(x)~ 4—[A(X)]2- (35 _ _ _ " _ >
v ward drift (31) replacing the classical particle velocity of
the classical formul#24).
The above discussion implicitly involves quite sophisti-

cated mathematics; hence it is instructive to see that we can

An adjoint parabolic partner of Eq34) reads

IOy = —Hiﬁ* =vAf, +V-[AX) 0, ] calx,1) b, bypass the apparent complications by directly invoking the
1 2 universal definitiong7) and (11) of conditional gxpectation
= V+ ——AX)| 6, —c(X,1)6, . (36)  Values, which are based on exploitation of the flblomula
2v only. Obviously, we assume that the Markovian diffusion

process with well defined transition probability densities
p(y,s,x,t) andp, (y,s,x,t), does exist.

We shall utilize an obvious generalization of canonical
definitions (19) of both forward and backward drifts of the
diffusion process defined by the adjoint parabolic [§aB),

as suggested by E(31) with A=A(X):

Consequently, our assumptiofiEgs. (31) and (32)] in-
volve a generalization of the adjoint parabolic syst@®) to
a new adjoint one comprising Eq&2) and(36). Obviously,
the original form of Eq(18) is immediately restored by set-

ting A=0, and executing obvious replacemenis — u,

f—uv.

Let us emphasize again that, in contrast to Hég], v v
where the non-Hermitian generatow2;, Eq. (32), has 5:21/—0—,& b.=—2p Os —A (39)
been introduced as “the Euclidean version of the Hamil- 0 B 0

*
tonian” H=—2v4V—(i/2v)A]?+Q, our electromagnetic . . .
fields stand for solutions of the usual Maxwell equations and’V€ @lS0 demand that the corresponding adjoint equations
are notEuclidean at all. (34) and(36) are solved by# and 6, , respectively. )

As long as the coefficient functionoth additive and Taking for granted that identities D( X)(t)
multiplicative) of the adjoint parabolic syste34) and(36)  =b(x,t),X(t)=x, and O_X)(t)=b,(x,t) hold true, we
are not specified, we remain within a general theory of posican easily evaluate the forward and backward accelerations
tive solutions for parabolic equations with unbounded coef{substitute Eq(38), and exploit Eqs(34) and (36)]:
ficients (of particular importance, if we do not impose any

asymptotic falloff restrictions[30,61—-63. The fundamental (D, b)(X(t),t)=3,b+(b-V)b+ vAb
solutions, if their existence can be granted, usually exist on o oL
space-time strips, and generally do not admit unbounded =bXB+ v curB+V(Q (39

time intervals. We shall disregard these issues at the mo-
ment, and assume the existence of fundamental solutiorend
without any reservations.

By exploiting the rules of functiona(Malliavin, varia- (D_b,)(X(t),t)=4,b, +(b, - V)b, — vAb,
tional) calculus, under an assumption that we deal with a . R
diffusion (in fact, Bernsteih process associated with an ad- =b, XB—vcurB+VQ. (40)

joint pair (34) and(35), it has been shown in R€60] thatif
the forward conditonal derivatives of the process exist, then Let us notice that the forward and backward acceleration

(D, X)(t)=2v(V 0/ 6)—A=b(x,t), Eq.(32), and formulasdo notcoincide as was the case befgoé. Egs.(8)
and (12)]. There is a definite time asymmetry in the local
(D2X)(t)= (D, X)(t) X curlA(x) + VQ(X,1) description of the diffusion process in the presence of gen-
+ ] >
! eral magnetic fields, unless cBe- 0. The quantity which is
+v curl[ curlA(x)], (37)  explicitly time-reversal invariant can be easily introduced:
whereX(0)=0, X(t)=X, X denotes the vector product in v(X,t)=3(b+b,)(X,1) (41)
R3 and 2c=Q.
SinceB = curlA= uoH, we identify in the above the stan- =1(D2+D2)(X(t))=vXB+VQ.

dard Maxwell equation for cud comprising magnetic ef-
: As yet there is no trace of Lorentzian electric forces, unless

fects of electric currents in the system: @& uo[D > OrH =, Ul
extracted from the ternVQ(x,t). We shall accomplish this

+ 0 oE+J.,.], whereD = ,E while J. represents external )
ToE + Joxil €0 ext feP step in Sec. IV.

electric currents. In case &= 0, the external currents only For a probability density, 6=p of the related Markov-
*

would be relevant. A demand curl cBrkV(VA)—AA=0  jan diffusion proces§31,36, we would have fulfilled both
corresponds to a total absence of such currents, and the Core  Fokker-Planck and the continuity equations:

lomb gauge choic& - A=0 would leave us with harmonic 4,p=vAp—V (Bp)=—V(0p)=—rAp—V(b, p), as before
functionsA(X). (cf. Sec. ).
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In the above, Eq(40) can be regarded as the Burgers “simplest” choice), the situation becomes rather compli-
equation with a general external magndtus other exter- cated. Namely, an expression for

nal force contributions if necessarforcing, and its defini- ,

tion is an outcome of the underlying mathematical structure T (o ) B_ 2.2
related to the adjoint paif32) and (36) of parabolic equa- CAX.)=c(x.1) 16v(X1+X2) (42)
tions.

Our construction shows that solutions of the magneticallyincludes arepulsiveharmonic oscillator contribution.
forced Burgers equatiof0) are given in the form(38). In For the existence of a well defined Markovian diffusion

reverse, the mere assumption about the decomposition HFOcess it appears necessary that a nonvanishing contribution
drifts (38) into the gradient and nongradient part implies thatfrom an unbounded from abowgx,t) would counterbalance

the corresponding evolution equatidd0) is the Burgers the harmonic repulsion. To see that thisist bethe case, let
equation with the nonconservative forcing. The force termys formally constrairg(x,t) = exd ®(xt)] to yield [in accor-

has a specific Lorentz form. Although we invoke electromagdance with Eq(9)] the identity:

netism, the decompositiai38) can be regarded to refer to an

abstract nongradient component. In analogy to the previous c(x,t)=a,®+ [VP ]2+ vAD=0. (43
Onsager-Machlup example, Eq&4)—(28), the fictituous
Lorentz force term would arise anyway. Then, we deal with the simplest version of the adjoint system

(34) and (36) where, in view ofV.A=0=c, there holds:

2

" , . 1. S - 1 .
IV. SCHRODINGER’S INTERPOLATION 90=—v|V— —A| 9=—vA0+A-Vo——[A]%,
IN A CONSTANT MAGNETIC FIELD 2v 4v

AND QUANTALLY INSPIRED GENERALIZATIONS (44)

Presently, we shall confine our attention to the simplest . 1.7 .. 1 .,
case of a constant magnetic field, defined by the vector po- %0x =¥/ V+ 5-A| 0, =vA0, +A-VO, +7-[A]%0, .
tential A={—(B/2)x,,+(B/2)x;,0}. Here, B={0,0B}, A
V.A=0, and cufB=0, which significantly simplifies for- With our choice, cuh={0,0B}, Egs.(44) do notpossess
mulas(31)—(41). a fundamental solution, which would be well defined &ir

As emphasized before, most of our discussion was base(d?,t) e R®XR": everything because of the harmonic repul-
on the existence assumption for fundamental solutions of theion term in the forward parabolic equation. We can prove
(adjoiny parabolic equation$32) and (36). For magnetic (this purely mathematical argument is not reproduced in the
fields, which do not vanish at spatial infinitidsence for our  present paperthat the function

) ) 1 1/2
k =
s 0= sir[%B(t—s)](z’T(“s))

1 ) B B ) ’ B 45
X ex —m(x3_)’3) —2¢0 E(t_s) [(X2—Y2)“+(X1—Y1) ]_E(lez_xzh) (45)

only when restricted to times—s</B is an acceptable Notice that the transformatiom—iw® would replace repul-
example of auniquepositive (actually, positivity extends to sion in Egs.(46) by harmonic attraction. On the other hand,
timest—s<2/B) fundamental solution of the syste@#3), @ we can get rid of the repulsive term by assuming that
(rescaled to yieldv—3). Here, formally, Eq.(45) can be c(x,t) [Eq. (42)] does not identically vanish. For example,
obtained from the expressiof28) by the replacement we can formally demand that, instead of E43),
A——iA. c(x,t) =+ (B?/8v)(x?+x3) plays the role of an electric po-

An immediate insight into a harmonic repulsion obstacletential. Then, harmonic attraction replaces repulsion in the
can be achieved after ax-y plane rotation of Cartesian final form of Eqs.(34) and (36).

coordinates: X1 =X1C0S(t) —X;Sin(wt), X, =X, Sin(wt) Asa byprlodu.ct, we are given a transition probapility den-
+X,COS(t), X5 =Xg,t' =t, with w=B/4\/v. Then, Eqs(44) get sity of the diffusion process governed by the adjoint system
transformed into an adjoint pair: [cf. Eq.(27)]:

0y 0=— VA" — 0?(X}?+x52) 0, (46) a0=—vAO+A-V, (47)

at’e*:VA,G*_F“’Z(X:;.Z_‘_XEZ)&*- 5t(9*=VAO*+/&-€0*.
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with A= (B/2){—x,,%;,0}. Namely, by means of the previ-
ousx-y plane rotation, Eq947) are transformed into a pair
of time adjoint heat equations:
r9tu9=—VA'6’, (')]tra*:VA,e* y (48)

whose fundamental solution is the standard heat kernel.

Finding explicit analytic solutions of rather involved
equations(34) and (36) is a formidable task on its own, in
contrast to much simpler unforced or conservatively force

GARBACZEWSKI, KONDRAT, AND OLKIEWICZ

55

solutions of adjoint parabolic equations, which we recognize
to be characteristic for probabilistic solutiofidarkov diffu-
sion processesof the Schrdinger boundary data problem
(cf. Sec. ) [31,32,36,4Q It is easy to verify the validity of
the Fokker-Planck equation whose forward drift has the form
(38). Also, Egs.(39) and(40) do follow with Q=2Q— ¢.

By defining E=—V¢ [with ¢ utilized instead of
(e/m)¢], we immediately arrive at the complete Lorentz

rce contribution in all acceleration formuldbefore, we

C{,O
dynamics issue. ave used cud=0):

Interestingly, we can produce a number of examples by
invoking the guantum Schdinger dynamics. This quantum
inspiration has been proved to be very useful in the past
[36,37]. At this point, we shall follow the idea of Reff31],
where the strategy developed for solving the Sdhrger
38gggargtgﬁgsﬁgoﬂirgceh;seé?ge‘ n ﬁggi?],éo g#figtlf(i)lrllys InI'\/IoreoverL the Yeltzcity field named the current velocity of
[35,38). They were considered as a particular case of théhe flow,v=3(b+b,), enters the familiar local conserva-
general theory appropriate for nonequilibrium statisticaltion laws (see alsd32] for a discussion of how the “quan-
physics processes as governed by the adjoint @38y, and tum potential” Q affects such laws in case of the standard
exclusively in conjunction with Born'’s statistical postulate in Brownian motion and Smoluchowski-type diffusion pro-
quantum theory. cessep

The Schrdinger picture quantum evolution is then con-
sistently representable as a Markovian diffusion process. All
that follows from the previously outlined Feynman-Kac ker-
nel route[31,32,35,36,38,40,41based on exploiting the ad-
joint pairs of parabolic equations. However, the respective
semigroup theory has been developed for pure gradient drift A comparison with Eqs(33)—(43) shows that Eq950)—
fields, hence without reference to any impact of electromag¢53) can be regarded as the specialized version of the general
netism on the pertinent diffusion process, and electromagnexternal forcing problem with an explicit electromagnetic
tism is definitely ubiquitous in the world of quantum phe- (Lorentz force-inducingcontribution and an arbitrary term
nomena. of nonelectromagnetic origin, which we denote bgx,t)

Let us start from an ordinary Schiimger equation for a again. Obviously, ¢ is represented in Eq.(50), by
charged particle in an arbitrary external eIectromagnetic(llv)Q(; t)

field, in its standard dimensional form. To conform with the " \y/2",ave therefore arrived at the following ultimate gen-

previous notation let us absorb the chag@nd massn  gp4ji7ation of the adjoint parabolic systeit8), that encom-
parameters in the definition oA(x) and the potential passes the nonequilibrium statistical physics and essentially
¢>(>?), e.g., we consideB instead of &m)B and ¢ instead quantum evolutions on an equal footitgith no clear-cut
¢/m. Additionally, we setv instead of i/2m). Then, we discrimination between these options, as in Ré&fl]) and

T

a0+ (b-V)b+vAb=bXxB+E+v curlB+2VQ,

(51)

ab, + (b, - V)b, —vAb, =b, X B+E— v curlB+2VQ.

ap=—V(vp), (52)

o+ (v-VYo=0XB+E+VQ.

have gives rise to an externdlorent? electromagnetic forcing:
_ﬁ_vaiezﬁleé 9_€1ﬁ21ﬁﬁﬁ
19X, ) == v| V=—A] (X, + o= () d(X1). (49 RO =| 1| V=R | =2 d(x)+e(x.t) | 8(x.1),
(53
The standard Madelung substitutiofi=expR+iS) al-
lows one to introduce the real functios=expR+S) and - .o1.\% 1 . - -
0, =expR—9 instead of complex ones, 4. They are solu-  9t0x (X D= V| VAZZAT + 52 d(X) — (X, 1) | 04 (X, 1).

tions of an adjoint parabolic syste(84) and(36), where the
impact of Eq.(49) is encoded in a specific functional form of

the otherwise arbitrary potentialX,t):

A subsequent generalization encompassing time-dependent
electromagnetic fields is immediate.

The adjoint parabolic pair of equationiS3) can thus be
regarded to determine a Markovian diffusion process in ex-
actly the same way as E@L8) did. If only a suitable choice
of vector and scalar potentials in Eq&3) guarrantees a
continuity and positivity of the involved semigroup kernel

= = 2v{AR(X,) +[VR(X,1) ]2} [take the Radon-Nikodym density of the for(83), with
praxt Q——¢+Q , and integrate with respect to the conditional
Wiener measurg then the mere knowledge of such integral
kernel suffices for the implementation of stefi8)—(22),
with u— 6, , v— 6. To this end it is not at all necessary that

- 1 - 1 - -
CXD)= 5o QXD =5 [2Q(X D~ $(X)], (50

Q(x t)=2u2Apl/2()Z't)

The quantum probability density(x,t) = (X, t) (X,t)
= 6(x,t) 6, (x,t) displays a factorizatiop= 66, in terms of
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k(x,s,y,t) be a fundamental solution of Eqg3). A suffi- ~ ent to the Burgers equatiphas been imported to the non-
cient condition is that the semigroup kernel is a continuougquilibrium statistical physics of random phenomena by ex-
(and positive function. The kernel may not even be differ- ploring the idea of Schutinger’s interpolation problem and
entiab|e; see, e.g., ReIf31:| for a discussion of that issue revealing its connection with the BUrgerS dynamiCS. That has
which is typical for quantal situations. been the subject of Sec. I.

After adopting Eqs(53) as the principal dynamical ingre- The next important resula preliminary discussion of ro-
dient of the electromagnetically forced Sctiiger interpo-  tational Burgers fields can be found in REZ3]) amounts to
lation, we must slightly adjust the emerging acceleration forrelaxing the gradient-field assumptidihat is crucial for the
mulas. Name|y, they have the for(ﬁl), but we need to Val|d|ty of the HOpf-COIe tranSformation!n Secs. Il and 1l
replace D(x,t) by, from now an arbitrary, potential we have analyzed the ways to generalize the Feynman-Kac

Sy - L kernel strategy so that the involvedrifts) velocity fields
Q(x,t)=2vc(x,t). The second equation in EQES3) also  5qmit the nongradient form. Our analysis was perfomed with
takes a new form:

rather explicit electromagnetic connotations. Equati(@7
and (36) generalize the adjoint paiil8) to diffusion pro-
cesses with nongradient drift88).

see, e.g., Ref32] for more detailed explanation of this step.  AS follows from Eq.(40), the very presence of the non-

. . = gradient term in the decompositid88) implies that the cor-
The presence in Eqs53) of the density-dependent VQ responding evolution equation for the velocity figlack-

term finds its origin in the identith—b, =2vVp(x,t) and  \yard drift of the procegsis the Burgers equation with the
is a necessary consequence of the involvedced in the specific Lorentz-type forcing.
present cageBrownian motion; see, e.9.39,64,63. Section IV extends the discussion to quantally imple-
Finally, the second of equatior(§1) with Q1 replacing  mented diffusion processes, where the minimal electromag-
2Q is the most general form of the Burgers equation with ametic coupling is a celebrated recipe. This quantal motivation
external forcing, where the electromagnefiorentz force  gjlows to arrive at the adjoint syste(B3), that incorporates
contribution has been extracted for convenience. Solutions ¢, electric contribution and allows one to define and solve
this equation must be sought for in the for88), which  the Burgers equation with the combined conservative and
generalizes the logarithmic Hopf-Cole transformation tononconservativéelectromagnetic, in particulaforcing. Let
nongradient drift fields. Equation(3) are the associated ys emphasize again that a transformation of the Burgers
parabolic partial differential(generalized heatequations, equation(whatever the force term)isnto a generalized dif-
which completely determine probabilistic solutidiMarkov-  fysion equation is not merely a formal linearization trick.
ian diffusion processgsof the Schrdinger boundary data Thjs[1] “nonlinear diffusion equation” does indeed refer to
(interpolation problem. In turn, for this particular random 4 well defined stochastic diffusion process, but a complete

transport, the forced Burgers velocity fields play the role ofinformation about its features is encoded in the involved
backward drifts of the process. parabolic equations.

o0+ (0-V)o=vXB+E+V(Q—0Q); (54)
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We explore a connection of the unforced and deterministically forced
Burgers equation for local velocity fields with probabilistic solutions (here,
Markovian diffusion processes) of the so-called Schrodinger boundary data
problem. An issue of deducing the most likely interpolating dynamics from
the given initial and terminal probability density data is investigated to
give account of the perturbation by external electromagnetic fields. A suit-
able modification of the Hopf-Cole logarithmic transformation extends the
standard framework, both in the Burgers and Schrédinger’s interpolation
cases, to non-gradient drift fields and forces.

PACS numbers: 02.50. -1, 05.20. +j, 03.65. -w, 47.27. -1

1. The Burgers equation in Schrédinger’s interpolation problem

The Schrodinger problem of deducing the detailed microscopic dynamics
from the given input-output statistics data is known to admit a particular
class of solutions in terms of Markov diffusion processes, [1-8]. That espe-
cially pertains to an explicit modelling of any unknown in detail physical
process solely on the basis of the available statistics (conditional probabili-
ties and averages, invariant measures, time-dependent probability densities,
density boundary-data) presumed to refer to random motions with a given
finite time of duration.

At this point, let us invoke a probabilistic problem, originally due to
Schridinger: given two strictly positive (usually on an open space-interval)
boundary probability densities po(z), pr(z) for a process with the time of du-
ration 7 > 0. Can we uniquely identify the stochastic process interpolating
between them?

* Presented by P. Garbaczewski at the IX Symposium on Statistical Physics, Zakopane,
Poland, September 23-28, 1996.
(1731)
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The answer is known to be affirmative, if we assume the interpolating
process to be Markovian. In particular, we can get here a unique Markovian
diffusion process which is specified by the joint probability distribution

m1(A4,B) = [ @z [@ymr(,9), (1)
B

A

where
mr(F, §) = uo(¥) k(z,0,y,T) vr(Y) (2)

and the two unknown functions uo(Z), vr(§) come out as solutions of the
same sign of the integral identities (1). Provided, we have at our disposal
a continuous bounded strictly positive (ways to relax this assumption were
discussed in Ref. [4]) integral kernel k(Z,s,7,t),0 <s <t <T.

We shall confine further attention to cases governed by the familiar
Feynman-Kac kernels. Then, the solution of the Schrédinger boundary-
data problem in terms of the interpolating Markovian diffusion process is
found to rely on the adjoint pairs of parabolic equations. In case of gradient
forward drift fields, the process can be determined by checking (this imposes
limitations on the admissible potential) whether the Feynman-Kac kernel

4

K75, 5,0 = [exp |- [ e(@(r), 1)dr| dufls) ) 3)

8

is positive and continuous in the open space-time area of interest (then,
additional limitations on the path measure need to be introduced, [3]), and
whether it gives rise to positive solutions of the adjoint pair of generalized
heat equations:

Oru(T,t) = vAu(d,t) — o, u(, t),
Hv(T,t) = —vDu(Z, t) + (&, t)v(a,t) . (4)

Here, a function ¢(Z,t) is restricted only by the positivity and continuity
demand for the kernel (3), see e.g. [2]. In the above, d,ugf)) (w) is the condi-
tional Wiener measure over sample paths of the standard Brownian motion.

Solutions of (4), upon suitable normalization give rise to the \Iarkm ian
diffusion process with the factorized probability density p(&,t) = u(:L tyo(Z,t)
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which, while evolving in time, interpolates between the boundary density
data p(Z,0) and p(&,T). The interpolation admits a realization in terms
of Markovian diffusion processes with the respective forward and backward
drifts defined as follows:

Vou(Z,t)

(1'3'

S

(Z,t) =20————

)’
g - ( t)
b (%, t) = —2v—=
u(@ )
in the prescribed time interval [0, 7.

The related transport equations for the densities easily follow. For the

forward interpolation, the familiar Fokker-Planck equation holds true:
p(.1) = vp(, 1) = VIB(E, )p(7,1)], (6)
while for the backward interpolation we have:
Oip(Z,t) = —vAp(E,t) — V[ba(Z, t)p(7, )] . (7)

We have assumed that drifts are gradient fields, curl b= 0. As a conse-
quence, those that are allowed by the prescribed choice of ¢(Z,t) must fulfill
the compatibility condition

) b2
(&)= 0P + 1 (-ﬂ + vz;) (8)

which establishes the Girsanov-type connection of the forward drift 5(9?, t) =
2uVP(Z, t) with the Feynman-Kac, c.f. [2,3], potential ¢(Z,t). In the con-
sidered Schrédinger’s interpolation framework, the forward and backward
drift fields are connected by the identity b, = b — 20V In p.

One of the distinctive features of Markovian diffusion processes with the
positive density p(Z,t) is that, given the transition probability density of the
(forward) process, the notion of the backward transition probability density
P« (7. 8, T,t) can be consistently introduced on each finite time interval, say
0<s <t LT

P(E, t)pu(F, 5, 5, 1) = p(7, 5, Z, t)p(F, 5) , (9)

so that

and
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The transport (density evolution) equations (6) and (7) refer to processes
running in opposite directions in a fixed, common for both, time-duration
period. The forward one, (6), executes an interpolation from the Borel set
A to B, while the backward one, (7), executes an interpolation from B to
A, compare e.g. the defining identities (1).

The knowledge of the Feynman-Kac kernel (3) implies that the transition
probability density of the forward process reads:

o

(7, ¢
v(y,s

St

2)(§7S’;§7t):k(gvs’fvt) (10)

5)
while the corresponding (derivable from (10), since p(Z, t) is given) transition
probability density of the backward process has the form:

(s 7.0 = k(7,5 50 5. (1)

Obviously. [2.6]. in the time interval 0 < s < t < T there holds:

w(F ) = /uo(g')k(g,s,f,e)dffy
o(d,s) = /k 7,5, 7 T)op(@)dz (12)

Now, we are at the point, where a connection of the previous probabilistic
formalism with an issue of the Burgers velocity-driven matter transport, [5],
can be disclosed.

The prototype nonlinear field equation named the Burgers or “nonlinear
diffusion” equation (typically without, [9,10], the forcing term F(Z,1)):

9T + (TsV) g = vATE + F(,t) (13)

recently has acquired a considerable popularity in the variety of physical
contexts, [5].

Burgers velocity fields can be analysed on their own with different (in-
cluding random) choices of the initial data and/or force fields. However,
we are interested in the possible diffusive matter transport that is locally
governed by Burgers flows. ¢.f. [5]. In this particular connection, let us point
out a conspicuous hesitation that could have been observed in attempts to
establish the most appropriate matter transport rule, if any diffusion-type
microscopic dynamics assumption is adopted to underlie the “nonlinear dif-
fusion™ (13).

Depending on the particular phenomenological departure point, one eij-
ther adopts the standard continuity equation, [11,12], that is certainly valid
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to a high degree of accuracy in the so-called low viscosity limit v | 0, but
incorrect on mathematical grounds if there is a genuine Markovian diffu-
sion process involved and simultaneously a solution of (13) stands for the
respective current velocity of the flow: 9,p(Z.t) = —VI[#(Z, t)p(F.1)] .

Alternatively, following the white noise calculus tradition telling that the
stochastic integral

1 t

X = [ oS s).0)ds+ [ A()ds
0 4]

necessarily implies the Fokker—Planck equation, one is tempted to adopt:
Op(Z,1) = vQAp(&,t) — V[Tp(Z, t)p(Z, t)] which is clearly problematic in view
of the classic Mc Kean’s discussion of the propagation of chaos for the Burg-
ers equation, [13-15} and the derivation of the stochastic “Burgers process”
in this context: “the fun begins in tryving to describe this Burgers motion as
the path of a tagged molecule in an infinite bath of like molecules”, [13].

To put things on the solid ground, let us consider a Markovian diffu-
sion process, which is characterized by the transition probability density
(generally inhomogeneous in space and time law of random displacements)
p(7.s.7.t). 0 < s <t <T. and the probability density p(Z.t) of its random
variable .f(t) .0 <t <T. The process is completely determined by these
data. For clarity of discussion, we do not impose any spatial boundary re-
strictions, nor fix any concrete limiting value of T which, in principle, can
be moved to infinity.

Let us confine attention to processes defined by the standard backward
diffusion equation. Under suitable restrictions (boundedness of involved
functions. their continuous differentiability) the function:

9(F,5) = E{g(X(T))

X(s)=Fs<T)= /'p(f-, 5. 7. T)g(7. TPy . (14)
satisfies the equation
—D5g(T,8) = vAG(F.s) + [b(£. 5)V]g(Z. 5) . (15)

Let us point out that the validity of (14) is known to be a necessary condition
for the existence of a Markov diffusion process, whose probability density
p(Z.t) is to obey the Fokker-Planck equation (the forward drift (.)'(f.[) re-
places the previously utilized Burgers velocity (T, 1)).

The case of particular interest, in the traditional nonequilibrium statisti-
cal physics literature. appears when p(g, s, Z,t) is a fundamental solution of
(15) with respect to variables g, s. [16-18], see however [2] for an analysis of
alternative situations. Then. the transition probability density satisfies also
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the second Kolmogorov (e.g. the Fokker-Planck) equation in the remaining
Z,t pair of variables. Let us emphasize that these two equations form an
adjoint pair of partial differential equations, referring to the slightly counter-
intuitive for physicists, though transparent for mathema,tlcna,nb [6,7.19-22],
issue of time reversal of diffusions.

We can consistently introduce the random variable of the process in the
form

- / b(X(s),5) ds+ V2OW (1)
0

Then, in view of the standard rules of the 1t6 stochastic calculus. [6,7,22,23],

we realize that for any smooth function f(Z.t) of the random variable )Z(t)
the conditional expectation value:

leltl},loA_ [/p? t, gt + A (7t + At)d>y — f(T, t)]
= (D4 )(X(t),1) = (8, + bV + vD) f(Z,1), (16)

where X (¢) = &, determines the forward drift l;(:z':', t) of the process (if we set
components of X instead of f) and, moreover. allows to introduce the local
field of (forward) accelerations associated with the diffusion process, which
we constrain by demanding (see e.g. Refs [6,7.22,23] for prototypes of such
dynamical constraints):

(D2X) (1) = (DyB) (X (1), 1) = (0 + (BV)b + vAB)(&,£) = F(&.1). (17)

where {(1) = 7 and, at the moment arbitrary, function F(&,t) may be
interpreted as an external forcing applied to the diffusing system, [3].

By invoking (9), we can also define the backward derivative of the process
in the conditional mean (c.f. [3.24,25] for a discussion of these concepts
in case of the most traditional Brownian motion and Smoluchowski-type
diffusion processes)

1 = ' = = 13 _ hd . 2 N
kg}@ N, [z, /])*(y.t - AL Z gyl = (D-X)(t) = b.(X(t),t) (18)

(D_)(X(1),1) = (0 + 5,V — vD) F(X(2),1) -

Accordingly, the backward version of the acceleration field reads

(D2X)(t) = (DFX)(t) = F(X(t),1), (19)
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where in view of b, = b — 2vV In p we have explicitly fulfilled the forced
Burgers equation:
0tby + (b.V)by — vAb. = F (20)

and, [3,6,22], under the gradient-drift field assumption. curl b, = 0. we deal
with f(i’ t) = 2vVe(Z, t) where the Feynman—Kac potential (3) is explicitly
involved.

Let us notice that the familiar (linearization of the nonlinear problem)
Hopf-Cole transformation, [10, 26], of the Burgers equation into the gener-
alized diffusion equation (yielding explicit solutions in the unforced case)
has been explicitly used before (the second formula (4)) in the framework of
the Schrédinger interpolation problem. In fact, by defining ., = log u, we
immediately recover the traditional form of the Hopf-Cole transformation
for Burgers velocity fields: b, = —2vV®,. In the standard considerations
that allows to map a nonlinear (unforced Burgers) equation into a linear,
heat, equation. In the special case of the standard free Brownian motion,
there holds b(&,t) = 0 while b,(&,t) = —2vV log p(&,1).

2. The problem of electromagnetic forcing in the Schrédinger
interpolating dynamics

It turns out the crucial point of our previous discussion lies in a proper
choice of the strictly positive and continuous, in an open space-time area,
function k(7,s, &, t) which, if we wish to construct a Markov process, has
to satisfy the Chapman—Kolmogorov (semigroup composition) equation. It
has led us to consider a pair of adjoint parabolic differential equations, as an
alternative to more familiar Fookker—Planck and backward diffusion equa-
tions.

In the quantally oriented literature dealing with Schrédinger operators
and their spectral properties, [27-29], the potential ¢(z, t) is usually assumed
to be a continuous and bounded from below function, but these restrictions
can be substantially relaxed (unbounded functions are allowed in principle)
if we wish to consider general Markovian diffusion processes and disregard
an issue of the hound state spectrum and this of the ground state of the (self-
adjoint) semigroup generator, [16,17]. Actually, what we need is merely that
properties of ¢(&,t) allow for the kernel £ which is positive and continuous
function. By taking for granted that suitable conditions are fulfilled, (2,27],
we can immediately associate with equations (4) an integral kernel of the
time-dependent semigroup (the exponential operator should be understood
as time-ordered expression. since in general H(7) may not commute with
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H(r") for 7 # 7'):

i
k(7. s, 7, ) = exp(—/H(T)dT) 7, 7), (21)
where H(7) = —v/A + ¢(7) is the pertinent semigroup generator. Then, by

the Feynman—-Kac formula, [30], we get a standard path integral expression
(3) for the kernel, which in turn yields (5)—(8), see e.g. [2]. The above formal-
ism is known, [3], to encompass the standard Smoluchowski-type diffusions
in conservative force fields.

Strikingly, an investigation of electromagnetically forced diffusions has
not been much pursued in the literature, although an issue of deriving the
Smoluchowski-Kramers equation (and possibly its large friction limit) from
the Langevin-type equation for the charged Brownian particle in the general
electromagnetic field has been relegated in Ref. [31], Chap. 6.1 to the status
of the innocent-looking exercise. On the other hand, the diffusion of realistic
charges in dilute ionic solutions creates a number of additional difficulties
due to the apparent Hall mobility in terms of mean currents induced by the
electric field (once assumed to act upon the system), see e.g. [32,33] and [34].

In connection with the electromagnetic forcing of diffusing charges, the
gradient field assumption imposes a severe limitation if we account for typi-
cal (nonzero circulation) features of the classical motion due to the Lorentz
force, with or without the random perturbation component. The purely
electric forcing is simpler to handle, since it has a definite gradient field re-
alization, see e.g. [35] for a recent discussion of related issues. The major
obstacle with respect to our previous (Section 1) discussion'is that, if we
wish to regard either the force F, or drifts b, b, to have an electromagnetic
provenience, then necessarily we need to pass from conservative to non-
conservative fields. This subject matter has not been significantly exploited
so far in the nonequilibrium statistical physics literature.

Usually, the selfadjoint semigroup generators attract the attention of
physicists in connection with the Feynman—Kac formula. A typical route to-
wards incorporating electromagnetism comes from quantal motivations via
the minimal electromagnetic coupling recipe which preserves the selfadjoint-
ness of the generator (Hamiltonian of the system). As such, it constitutes
a part of the general theory of Schrodinger operators. A rigorous study of
operators of the form —A + V has become a well developed mathematical
discipline, [27]. The study of Schrodinger operators with magnetic fields,
typically of the form —(V — 'iff)z + V', is less advanced, although specialized
chapters on the magnetic field issue can be found in monographs devoted
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to functional integration methods, [27,36], mostly in reference to seminal
papers [37,38].

From the mathematical point of view, it is desirable to deal with mag-
netic fields that go to zero at infinity, which is certainly acceptable on physi-
cal grounds as well. The constant magnetic field does not meet this require-
ment, and its notorious usage in the literature makes us (at the moment)
to decline the asymptotic assumption and inevitably fall into a number of
serious complications.

One obvious obstacle can be seen immediately by taking advantage of
the existing results, [37]. Namely, an explicit expression for the Feynman-
Kac kernel in a constant magnetic field, introduced through the minimal
electromagnetic coupling recipe H(A) = —%(V — iA4)2, is available (up to
irrelevant dimensional constants):

o 8] .0 = i) (am)

x exp{—%(—ts —y3)?— g coth <§*t>{(l‘2—y2)2+($1 —y1)2}—,5§(&‘1y'3—$391 )} :
(22)

Clearly, it is not real (hence non-positive and directly at variance with
the major demand in the Schrédinger interpolation problem, as outlined in
Section 1), except for directions g that are parallel to a chosen 7.

Consequently, a bulk of the well developed mathematical theory is of no
use for our purposes and new techniques must be developed for a consistent
description of the electromagnetically forced diffusion processes along the
lines of Section 1, i.e. within the framework of Schrédinger’s interpolation
problem.

3. Forcing via Feynman-Kac semigroups

(9:5)

The conditional Wiener measure du( t)( &), appearing in the Feynman-—

Kac kernel definition (3), if unweighed (set ¢(&(7), 7) = 0) gives rise to the
familiar heat kernel. This, in turn, induces the Wiener measure Pw of the
set of all sample paths,which originate from ¥ at time s and terminate (can
be located) in the Borel set A € R> after time t — s

Pw[A /d3 /du( (3) = /du

where, for simplicity of notation, the (7,t — s) labels are omitted and ,u(
stands for the heat kernel.

()
#)
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Having defined an [t6 diffusion
t
‘;(t) = /1;(5, u)du + \/QVW’(l)
0

we are interested in the analogous path measure:
g S)
/ dx / (lu(x 0 (@ /

Under suitable (stochastic, [3]) integrability conditions imposed on the
forward drift. we have granted the absolute continuity Py <« Pw of mea-
sures, which implies the existence of a strictly positive Radon-Nikodvm
density. Its canonical C('ameron-Martin-Girsanov form, [3,27], reads:

(7,5, &,t) = exp 5 /1) {(u), )d,/‘?(u) — % [5(‘2(11), u)]du

k3

du(X)
du

(23)

If we assume that drifts are gradient fields, curld = 0. then the It6

formula allows to reduce, otherwise troublesome, stochastic integration in
the exponent of (23), [27,36], to ordinary Lebesgue integrals:

:21—/13‘ X(u), w)dX () = S(X(t),t) — B(X(s). s)

¢
- /du [0:P + %\“E}(‘Z(u) u. (24)

After inserting (24) to (23) and next integrating with respect to the condi-
tional Wiener measure, on account of (10) we arrive at the standard form
of the Fevnman-Kac kernel (3). Notice that (24) establishes a probabilistic
basis for logarithmic transformations (5) of forward and backward drifts:
b=2vVinev=20V®, b. = -2vVIn u = -2vVP,. The forward version is
commonly used in connection with the transformation of the Fokker—Planck
equation into the generalized heat equation, [3,39,40]. The backward version
is just the Hopf-Cole transformation, mentioned in Section 1, used to map
the Burgers equation into the very same generalized heat equation, [10].
However, presently we are interested in non-conservative drift fields.
curl b # 0, and in that case the stochastic integral in (23) is the major source
of computational difficulties, [22,27.36], for nontrivial vector potential field
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configurations. It explains the virtual absence of magnetically forced diffu-
sion problems in the nonequilibrium statistical physics literature.
At this point, some steps of the analysis performed in Ref. [41] in the

—

context of the “Euclidean quantum mechanics”, c.f. also [7], are extremely
useful. Let us emphasize that electromagnetic fields we utilize, are always
meant to be ordinary Maxwell fields with no Euclidean connotations (see
e.g. Chap. 9 of Ref. [36] for the Euclidean version of Maxwell theory).

Let us consider a gradient drift-field diffusion problem according to Sec-
tion 1, with (2), (24) involved and thus an adjoint pair (4) of parabolic
equations completely defining the Markovian diffusion process. Further-
more, let A(Z) be the time-independent vector potential for the Maxwellian
magnetic field B = curl A. We pass from the gradient realization of drifts
to the new one, generalizing (5), for which the following decomposition into
the gradient and nonconservative part is valid:

b(T. 1) = 2wV B(F,t) — A(F), (25)

We denote 0(Z,t)=exp [@(Z,t)] and admit that (25) is a forward drift of an
[t6 diffusion process with a stochastic differential

0

On purely formal grounds, we deal here with an example of the Cameron—
Martin-Girsanov transformation of the forward drift of a given Markovian
diffusion process and we are entitled to ask for a corresponding measure
transformation, (23).

To this end, let us furthermore assume that 8(Z,t) = 8 solves a partial
differential equation

dX (1) = Pyy_e - fi} dt +V2wdW (t).

1 - 2
08 = —v [v - 5;.4(:1?)} 6 + c(7, )8 (26)

with the notation ¢(Z, t) patterned after (8). Then, by using the It6 calculus
and (25), (26) on the way, see e.g. Ref. [41], we can rewrite (23) as follows:

dp(X) -
(4,s. %, t)
du
R T . F V0 o -
= exp% {f(b/% - A (X (u),v)dX(u) — %/(21/% — A) (‘X(u),u)du}
IO (O IR ST (. u)d
= 72 0o). o) exp { 5 s/[A(u)(LX(u) + v(VA) (X (u))du + 2(X (u), u)du]:] ,

(27)
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where X(s) = 7, X(t) = & and 2(Z.t) = 2ve(d, t).

More significant observation is that the Radon-Nikodym density (27), if
integrated with respect to the conditional Wiener measure, gives rise to the
Feynman-Kac kernel (21) of the non-selfadjoint semigroup (suitable integra-
bility conditions need to be respected here as well, [41}), with the generator
Hzp=-v[V - %;,/I(f)]'z + ¢(Z,t) defined by the right-hand-side of (26):

QO(%,t) = H 18(Z,1)

_ [ VA + A7)V +%(v4( ) - 4%[/1‘(5)]2“(5,0 0(3,1)
= —v(F,t) + AZ)VO(Z,t) + c 4(T,1)0(&, 1) . (28)
Here: ]
caldt) = c(@t) + 5 (VA)(:F) 47{1(5)12- (29)

An adjoint parabolic partner of (28) reads:
Ob. = —HH. = v2b, + V[A(£)6.] — cal(Z, 1)0.

. 2

Consequently, our assumptions (25), (26) involve a generalization of the
adjoint parabolic system (14) to a new adjoint one comprising (26), (30).
Obviously. the original form of (14) is immediately restored by setting A=0.
and executing obvious replacements . — u, § — v.

Let us emphasize again, that in contrast to Ref. [41], where the non-
Hermitean generator 2vH 3, (26), has been introduced as “the Euclidean

version of the Hamiltonian” H = —2v%(V — 2%5)2 + 2, our electromag-
netic fields stand for solutions of the usual Maxwell equations and are not
Euclidean at all.

As Jong as the coeficient functions (both additive and multiplicative) of
the adjoint parabolic system (28), (30) are not specified, we remain within a
general theory of positive solutions for parabolic equations with unbounded
coefficients (of particular importance, if we do not impose any asymptotic
fall off restrictions), [16,43-45]. The fundamental solutions, if their existence
can be granted, usually live on space-time strips, and generally do not admit
unbounded time intervals. We shall disregard these issues at the moment.
and assume the existence of fundamental solutions without any reservations.

By exploiting the rules of functional (Malliavin, variational) calculus,
under an assumption that we deal with a diffusion (in fact, Bernstein) pro-
cess associated with an adjoint pair (28), (30), it has been shown in Ref. [41]



Burgers Velocity Fields and Electromagnetic Forcing 1743

that if the forward conditional derivatives of the process exist, then
(D1 X)(t) =202 — A=b(%,t), (32) and:

(D2 X)(t) = (D4 X)(#) x curl A(Z) + VQ(F,t) + veurl (curl A(%)), (31)

where ’?(O) =0, X(t) = 7, X denotes the vector product in R3 and 2vc = £2.

Since B = curl _‘/i’ = ltoﬁ , we identify in the above the standard Maxwell
equation for curl H comprising magnetic effects of electric currents in the

system: curl B = ugiD + 0oE + Jext} where D = eoF while j;xc represents
external electric currents. In case of E = 0, the external currents only would
be relevant. A demand curlcurl A = V(VA) AA = 0 corresponds to a
total absence of such currents, and the Coulomb gauge choice VA = 0 would
leave us with harmonic functions A(Z).

Consequently, a correct expression for the magnetically implemented
Lorentz force has appeared on the right-hand-side of the forward accelera-
tion formula (31), with the forward drift (25) replacing the classical particle
velocity ¢ of the normal classical formula.

The above discussion implicitly involves quite sophisticated mathemat-
ics, hence it is instructive to see that we can bypass the apparent compli-
cations by directly invoking the universal definitions (16) and (18) of condi-
tional expectation values, that are based on exploitation of the Ité formula
only. Obviously, under an assumption that the Markovian diffusion process
with well defined transition probability densities p(¥, s, Z,t) and p.(¥, s, Z, 1),
does exist.

We shall utilize an obvious generalization of canonical definitions (5) of
both forward and backward drifts of the diffusion process defined by the
adjoint parabolic pair (4), as suggested by (25) with A= A( )

V.
0.

We also demand that the corresponding adjoint equations (28), (30) are
solved by 6 and 8. respectively.

b=2w—— A, b.=-2w - A. (32)

—

Taking for granted that identities (D4 X)(t) = b(&,t), X(t) = & and
(D_X)(t) = b,(Z,t) hold true, we can easily evaluate the forward and back-
ward accelerations (substitute (32), and exploit the equations (28), (30)):
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(D4b)(X(1).1) = db+ (BV)b+ vAb
—bxB+vcul B+ VR (33)

and

Il

O¢b + (5 V )by — D,
by x B—vecurl B+ V0. (34)

(D-b.)(X (1), t)

Let us notice that the forward and backward acceleration formulas do
not coincide as was the case before (c.f. Eq. (17)). There is a definite time-
asymmetry in the local description of the diffusion process in the presence of
general magnetic fields, unless curl B = 0. The quantity which is explicitly
time-reversal invariant can be easily introduced:

F(&t) = 10+ 0.) (@) 22D+ D)X (1) =Tx B+VR. (35

As yet there is no trace of Lorentzian electric forces, unless extracted from
the term V (%, 1).

For a probability density 6,68 = p of the related Markovian diffusion pro-
cess, [2,6], we would have fulfilled both the Fokker—Planck and the continuity
equations: dip = vAp — V(bp) = —V(8p) = —vAp — V(b.p), as before (c.f.
Section 1).

In the above, the equation (34) can be regarded as the Burgers equation
with a general external magnetic (plus other external force contributions if
necessary) forcing, and its definition is an outcome of the underlying mathe-
matical structure related to the adjoint pair (26), (30) of parabolic equations.
Our construction shows that the solution of the magnetically forced Burgers
equation needs to be sought in the form (32).
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Ahstract—We discuss a connection (and a proper place in this framework) of the unforced and
deterministically forced Burgers equation for local velocity fields of certain flows, with probabilistic
solutions of the so-called Schridinger interpolation problem. The latter allows us to reconstruct the
microscopic dynamics of the system from the available probability density data, or the input-output
statistics in the phenomenological situations. An issue of deducing the most likely dynamics (and
matter transport) scenario from the given initial and terminal probability density data, appropriate e.g.
for studying chaos in terms of density. is here exemplified in conjunction with Born's stalistical
interpretation postulate in quantum theory, that yields stochastic processes which are compatible with
the Schridinger picture of free quantum evolution. €) 1998 Elsevier Science Lid. All rights reserved

1. THE SCHRODINGER RECONSTRUCTION PROBLEM: MOST LIKELY MICROSCOPIC
DYNAMICS FROM THE INPUT-OUTPUT STATISTICS DATA

Probability measures, both invariant and non-trivially time-dependenl, often on different
levels of abstraction, are ubiquitous in diverse areas of physics. According to pedestrian
intuition [1], one normally expects that any kind of time development (dynamics, be they
deterministic or random) analysable in terms ol probability under suitable mathematical
restrictions may give rise to a well-defined stochastic process. Non-Markovian implementa-
tions are regarded as close to reality, but the corresponding Markovian approximations
(when appropriate) are easier to handle analytically.

Given a dynamicat law of motion (for a particle as an example), in many cases one can
associate with it (compute or approximate the observed frequency data) a probability
distribution and various mean values. In fact, it is well known that inequivalent finite
difference random motion problems may give rise to the same continuous approximant (like,
for cxample, in the case of the diffusion equation representation of discrete processes). Also,
in the study of nonlinear dynamical systems, specifically those exhibiting the so-called
deterministic chaos [2-4], given almost anv (basically onc-dimensional in the cited
references) probability density, it is possible to construct an infinite number of deterministic
finite difference equations, whose iterates are chaotic and which give rise to this a priori
prescribed density.

Studying dynamics in terms of densities of probability measures instead of individual paths
(trajectories) of a physical system is a respectable tool [3], even if we know exactly the
pertinent microscopic dynamics.

Under general circumstances, the main task of a physicist is o fit a concrete dynamical
model (through a clever guess or otherwise) to available phenomenological data. Then, the

1 Presented by P. Garbaczewski at the International Conference on Applied Chaotic Systems, Inowiodz, Poland,
September 26-30, 1996.
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distinction between the chaotic (nonlinear, deterministic) and purely stochastic implementa-
tions may not be sharp enough to allow for a clean discrimination between those options: the
intrinsic interplay between the stochastic and deterministic modelling of physical phenomena
[4] blurs access to reality and cerlainly prectudes a definitive choice of one type of modelling
against another.

An inverse operation of deducing the detailed (possibly individual, microscopic) dynamics,
which are either compatible with a given probability measurc (we shall mostly be interested
in those admitting densities) or induce their own time cvolution, cannot have a unique
solution. However, the level of ambiguity can be substantially reduced, if we invoke the
so-called Schridinger problem of reconstructing the microscopic dynamics from the given
input—output statistics data and/or from the @ priori known time development of a given
probability density. The problem is known to give rise to a particular class of solution (most
likely intcrpolations), in terms of Markov diffusion processes [5-8].

In its original formulation, due (o Schridinger [5-9], one seeks the answer to the following
question: given two strictly positive (usually on an open space-interval) boundary probability
densities p(¥), p(¥) for a process with duration 7 =0, can we wniquely identify the
stochastic process interpolating between them?

Another version of the same problem [5] departs from a given (Fokker-Planck-type)
probability density evolution and investigates the circumstances allowing us to deduce a
unique random process from these dynamics. We shall pay some attention (o this issuc in
Scction 3.

The answer 1o the above Schridinger’s question is known to be affirmative, if we assume
the interpolating proccss to be Markovian. In particular, we can get here a unique
Markovian diffusion process which is specified by the joint probability distribution

m (4.8)= [ @ [ dymni)
A #
Jd3.$’P?I;‘(-fnf):Pt)(f) ()

J &xm(£3) = pr(y¥)
where
n1 (X, 7) — uolk(E0.5, Tivp(y) (2)

and the two unknown functions 1,(£), v,(¥) come out as solutions of the same sign of the
integral identitics (1). Provided we have at our disposal a continuous bounded strictly
positive (ways to relax this assumption were discussed in Ref. [10]) integral keenel &(%.5,V.2),
O=s=T.

We shall confine further attention to cases governed by the familiar Feynman-Kac
kernels. Then, the solution of the Schridinger boundary-data problem in terms of the
interpolating Markovian diffusion process is found to be completely specified by the adjoint
pair of parabolic equations. In case of gradient forward drift fields, the pertinent process can
be determincd by checking (this imposes limitations on the admissible potential) whether the
Feynman-Kac kernel

k(_}T,s,f.r)ffexp{—lec((ﬁ(r),r)dr]du{&;)’(_&}) (3)

k)

is positive and continuous in the open space—time area of interest (then, additional
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limitations on the path measure nced to be introduced [11]), and whether it gives rise Lo
positive solutions of the adjoint pair of generalised heat equations:

du(X,t) = vAu(X,t) — c(X,0)u(x,0) )

du(X,1) = —vAvu(x,t) + c(X,)v(X1).

Here, a function ¢(x,7) is restricted only by the positivity and continuity demand for the
kernel (3), see e.g. Ref. [12]. In the above, du'¥s) is the conditional Wiener measure over
sample paths of the standard Brownian motion.

Solutions of (4), upon suitable normalisation, give rise to the Markovian diffusion process
with the factorised probability density p(¥.t) = u(f,t)v(%,t) which, while evolving in time,
interpolates between the boundary density data p(X,0) and p(x,T). The interpolation admits
a realisation in terms of Markovian diffusion processes with the respective forward and
backward drifts defined as follows:

()
b(%t) = 2V—v(f_.t) “
B (54)=~2v ——z“g;;)

in the prescribed time interval {0,7].
The related transport equations for the densities follow easily. For the forward
interpolation, the familiar Fokker-Planck equation holds true:

3,p(E,1) = vAp(%,1) — V[b(Z.0)p(F,1)] (6)
while for the backward interpolation we have:
a.p(E.1) = —vAp(E.1) — V[b (£0p(EN]. (7)

We have assumed that drifts are gradient fields, curlb =0. As a consequence, those that
are allowed by the prescribed choice of ¢(x,¢) must fulfil the compatibility condition:

c(ft)=a¢+1(b—2+v5) (8)
’ o2 \2y

which establishes the Girsanov-type connection of the forward drift b(%,t) = 2vVd(E,1) with
the Feynman-Kac, cf. Refs [11,12], potential ¢(f). In the considered Schrédinger’s
interpolation framework, the forward and backward drift ficlds are connected by the identity
5* =b—2vVinp.

One of the distinctive features of Markovian diffusion processes with positive density
p(x,¢) is that, given the transition probability density of the (forward) process, the notion of
the backward transition probability density p,(¥,s,X.r) can be consistently introduced on
each finite time interval, say 0=s<r=T"

PEDPFSL0) = pFsT0p(F.s) )
s0 that

[ 0,50 & = ptz0
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and

p(F.s) = [ P (FsEp (T Ay

The transport (density evolution) eqns (6) and (7) refer to processes running in opposite
directions in a fixed, common Lo both, time duration. The forward one (egn {6)) execules an
interpolation from the Borel set A to B, while the backward one (eqn (7)) executes an
interpolation from B to A, compare e.g. the defining identities (1).

The knowledge of the Feynman-Kac kernel (3) implies that the transition probability
density of the forward process reads:

s

HEN
PV X o) = k(V.8,57)- (x.1)

viv.s)

{1

while the corresponding (derivable from cgn (10) since p{X.f) is given) transition probability
density of the backward process has the form:

Vs -
PLTSEN = k(ESED) (£:5) (11)
‘ 1(¥.r)
Obviously [7.12]. in the time interval 0 =5 <2r < 7" therc holds:
H(.f,f) . J ll“(f)k()‘?“\r‘f-!) d‘;_"
(12

u(v.s) = J kiv.s & v, (D) d'x

Consequently, the system (4} fully determines the underlying random motions, forward
and backward, respectively.

2. THE BURGERS EQUATION IN SCHRODINGER'S INTERPOLATION

The prototype nonlinear field cquation named the Burgers or ‘nonlincar diffusion’
equation {tymcally without [13, 14] the forcing term F{3.1)):

iy + (0, V)0 = v\, + F(.0) (13)

has recently acquired considerable popularity in a varicty of physical contexts [ 13].

By dropping the force term in eqn (13), we arc left with a commonly used form of
the ‘nonlinear diffusion equation” whose solutions arc known exactly. in view of the Hopf-
Cole linearising transformation mapping (13} into the heat equation. Here. &, +
(T,V)Uy = vAT, s mapped into 40 — vAf by means of the substitution v, = — 2vVin 8.
This lincarisation of the Burgers equation is normally regarded as devoid of any deeper
physical mcaning. and specifically the link with stochastic processes determined by the heat
equation has not received proper attention. Our previous analvsis shows that  the
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intrinsic interplay between the deterministic and random evolution, appropriate for a large
class of classically chaotic systems, cxtends to a much wider framework.

Burgers velocity ficlds can be analysed on their own with different (including random)
choices of the initial data and/or force fields. However, we are interested in the possible
diffusive matter transport that is locally governed by Burgers flows, cf. Ref. [15]. In this
particular connection, let us peint out a conspicuous hesitation that could have been
observed in attempts to establish the most appropriate matter transport rule, if any
diffusion-type microscopic dynamics assumption is adopted to underlie the ‘nonlinear
diffusion’ eqn (13).

Depending on the parlicular phenomenological departure point, one either adopts the
standard continuity equation [16, 17], that is certainly valid to a high degree of accuracy in
the so-called low viscosity limit v | 0, but incorrect on mathematical grounds if therc is a
genuine Markovian diffusion process involved and simultaneously a solution of eqn (13)
stands for the respective current velocity of the flow: d,p(%,1) = —V[U(X,1)p(X,1)].

Alternatively, following the white noise calculus tradition telling us that the stochastic
integral X (1) = [4 35(X(s),5)ds + [§7(s)ds necessarily implies the Fokker—Planck equation,
one is tempted to adopt &,p(¥,1) = vAp(¥,t) — V[U4(%.1)p(X,1)]. which is clearly problematic
in view of the classic McKean’s discussion of the propagation of chaos f[or the Burgers
equation [18-20], and the derivation of the stochastic ‘Burgers process’ in this context: “the
fun begins in trying to describe this Burgers motion as the path of a tagged molecule in an
infinite bath of like molecules™ [18].

To put things on solid ground, let us consider a Markovian diffusion proccss, which is
characterised by the transition probability density (generally inhomogeneous in space and
time law of random displacements) p(¥,5,%.¢), 0=s=tr=T, and the probability density
p(x.1) of its random variable X (), 0=¢ = T. The process is completely determined by these
data. For clarity of discussion, we do not impose any spatial boundary restrictions, nor fix
any concrete limiting value of T, which, in principle, can be moved to infinity.

Let us confine our attention to processes defined by the standard backward diffusion
equation. Under suitable restrictions (boundedness of involved functions, their continuous
differentiability) the function:

8(59) = [ pEsF TG (14)

satisfies the equalion
—a,8(%,5) = vAg(Z,s) + [B(%,)V]g(%.5). (15)

Let us point out that the validity of eqn (14) is known to be a necessary condition for the
existence of a Markov diffusion process, whose probability density p(%,r) is to obey the
Fokker—Planck cquation (the forward drift b(x,t) replaces the previously utilized Burgers
velocity U,{X,1).

The case of particular interest, in the traditional non-equilibrium statistical physics
literature, appears when p(¥,s,%,t) is a fundamental solution of eqn (15) with rcspect to
variables ¥, s |21-23], see, however, Ref. [12] for an analysis of altcrnative situations.
Then, the transition probability density satisfies alse the second Kolmogorov (e.g. the
Fokker—Planck) equation in the remaining ¥, ¢ pair of variables. Let us emphasize that these
wo equations form an adjoint pair of partial differential equations, referring to the
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slightly counter-intuitive for physicists, though transparent for mathematicians [7, 24-27],
issue of time reversal of diffusions.

We can consistently introduce the random variable of the process in the form
)?(!) = 1 5(1\7(_5:),3) ds + \/Z_JW(I)A Then, i view of the standard rules of the ta
stochastic caiculus [7,27,28], we realise that for any smooth function f(¥,#) of the random
variable X (¢) the conditional expectation valtue:

ruln;j [ f PELY.L+ ADF(V. + An dPy —f(f,r)] = (D, X)) = (4, + BY + vAY (50 (16)

where X (1) = ¥ determines the forward drift E(.f,r) of the process (il we set components of X
instead of f) and. moreover, allows us to introduce the local field of (forward) accelerations
associated with the diffusion process, which we constrain by demanding (see e.g. Refs [7].
[27] and 28] for prototypes of such dynamical constraints):

(D2 XMW = (D_BYX().0) = (6,5 + (BVY + vAB)(E, 1)

F(&.0) (17

where X’(t) = X and the, at the moment arbitrary, function F“(.i".f) may be interpreted as an
external force applied to the diffusing system [11].

By invoking eqn (9}, we can also define the backward derivative of the process in the
conditional mean (cl. Rels [11], [29] and [30] for a discussion of these concepts in the case of
the most traditional Brownian motion and Smoluchowski-type diffusion processes):

iimi[f ‘J’p*(ﬁf—Ar,f.r)fd}y] =(D E)0) =B, (X0,

arjo At
(18)
(DX = (3, + b,V — vA(X(0).0)
Accordingly, the backward version of the acceleration field reads
(D2X)(0)= (D X)) = F(X(1).0) (19)

where, in view of f;* =h—2vVIn p, we have explicitly fulfilled the forced Burgers equation:
Abh,+ (b Vb, —vAb,=F (20)

and [7,11,27] under the gradient-drift field assumption curl 5* ={), we deal with F({,()=
2vVe(X,r) where the Feynman—Kac potential (3) is explicitly involved.

Let us notice that the famibar (linearisation of the nonlinear problem) Hopf-Cole
transformation [14,31] of the Burgers equation into the gencralised diffusion equation
{viclding explicit solutions in the unforced case) has been explicitly used before (the second
formula in eqn (4})) in the framework of the Schriddinger interpolation problem. In fact, by
defining &, =logu, we immediately recover the traditional form of the Hopl-Cole
transformation for Burgers velocity fields b, = - 2vVd,. With the standard considerations
that allow us to map a nonlinear (unforced Burgers) equation into a hinear, heat cquation.
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In the special case of the standard free Brownian motion, there holds h(%,) =0 while
b (Zt)= —2vVlog p(¥.0).

Let us point out that cqn {7) is, in fact, the only transport equation where the Burgers
velocity field is allowed to be indisputably present, under the diffusive scenario assumption
[15]. The standard continuity equation is certainly inappropriate for non-zero values of the
diffusion constant v.

3. RECONSTRUCTION OF THE MICROSCOPIC DYNAMICS FROM THE PROBABILITY
DENSITY DATA: OBSTACLES EXEMPLIFIED

We have mentioned before that another version ol the Schrodinger boundary data
problem [5] departs directly from a given (Fokker—Planck-type) probability density
evolution and investigates the circumstances allowing us to deduce a unique random process
from these dynamics. Surely solutions of the Fokker—Planck equation itself do not yet
determine the underlying stochastic process. Additional assumptions are always necessary
and a number of traps must be avoided.

As a particular guide to these obstacles, we shall refer to the familiar free quantum
evolution that is regarded as the time adjoint parabolic problem, exactly in the spirit of our
previous discussion.

In our previous paper {30], the major conclusion was that in order to give a definitive
probabilistic description of the quantum dynamics as a urique diffusion process solving
Schrodinger’s interpolation problem, a suitable Feynman-Kac semigroup must be singled
out. Let us point out that the measure preserving dynamics, permitted in the presence of
conservative force fields, was investigated in Ref. [11].

The present analysis was performed quite generally and extends to the dynamics affected
by time dependent external potentials, with no clear-cut discrimination between the
non-equilibrium statistical physics and essentially quantum evolutions. The formalism of
Section 1 encompasses hoth groups of problems. Nevertheless, it is quite illuminating to see
directly how sensitive, even in the simplest cases, the formalism is with respect (o any
attempt to relax our previous assumptions and the Schrédinger interpolation problem
rules-of-the-game. Specifically in the guantum domain, where the seemingly trivial case of
the free evolution, which is non-stationary, needs the general parabolic system (4) to be
considered. Even worse, then the system (4) displays a non-trivial nonlinearity: the parabolic
equations are coupled by the effective, solution dependent potential. At first glance, this
feature might scem to cxclude the existence of any conceivable Feynman-Kac (dynamical
semigroup) kernel, and in consequence any common-sense law of random displacements (i.e.
the transition probability density) governing the pertinent stochastic evolution. Certainly, the
existence of fundamental solutions in this case is far from obvious.

At this point, let us emphasize that our principal goal is to take seriously the Schrodinger
picture of quantum dynamics under the premises of the Born statistical postulate. Hence,
once we select as appropriate a concrete quantal interpolation between the prescribed
(phenomenologically supported in particular) input—output statistics data py(x) and pr(x) in
terms of p(x,t) = d(x,)(x,1), t € [0,T], where r(x,1) solves the Schrodinger equation then,
on exactly the same footing, we are entitled to look for an alternative probabilistic
explanation {or appropriate description) of the very same interpolation, in terms of a
well-defined Markov stochastic (eventually diffusion) process.

We shall proceed in the spirit of Section 1, while restricting our discussion to the free
Schrisdinger dynamics. Following Ref. [30] we shall discuss the rescaled problem so as to
eliminate all dimensional constants.
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The free Schrodinger cvolution id,4 = — Ay implies the following propagation of a specific
Gaussian wave packet:

2 sy 14 X
W(x,0) = (27) " exp(-e) di(xr) = (}) (2 +2i0) " Zexp| - 4(17”)]. 21
So that
2 142 (3 2
po(x) = |l 0) = (27)~ €Xp[ 7J — plx,) = [ge.n)”
= 2r(1+ )" CxplA ZT(TE:?;] (22)

and the Fokker-Planck equation (casily derivable from the standard continuity equation
d,p = —V{vp), v(x.r)=xt/(1+ ")) holds true:

11—t .
ap=Ap —Vibp), bx)= - I_IT X, (23)

The Madelung factorization i = exp(R + i§) implies (notice that v = 2V5 and b = 2V(R +
5)) that the related real functions 8(x.0) = cxp(R + §) and 8,(x.7) = exp (R — §) read:

, ST
8(x,0) =[2n(1 + 7] cxp( Sl T aretan 1)

41+ 2
, (24)
2t 1) x> 1+¢ 1
8, (x,0) = [2r(1 + 5] ™ exp( TATaie + > arctan r)
They solve a suitable version of the general parabolic eqn (4), namely:
1
7.8=—A0+ 5529
(25)
1
3.8, =A8, — 5 Q4.
with
1 x* 1 Ap'”?
__g = 2 - = /X, 0) 26
M) =5 et e - Q) (26)

By setting ¢t = 7T wc associate with the above dynamics the terminal density py(x), and
then the concrete Schridinger boundary data problem for the stochastic interpolation
po(x)— pylx), eqn (1).

To capture the spirit of our previous discussion, we shall replace eqn (25) by the more
general eqn (4), where only the potential ¢(x,f) will be identified with the above $Q(xv,r).
Then, we shall look for solutions u(x 1), v(x,r) of these parabolic equations, and in particular
we shall identify the quantally implemented functions 8, (x.r). 8(x.z), eqn (24). among them.
Effectively. this amounts to the previously mentioned linearisation of the nonlinear parabolic
system.

In view of the relatively simple forn: of the probability density p{x./), eqn (22), one might
be tempted to guess (more or less fortunately) the transition probabitity density, consistent
with the propagation eqn {22). However, it is well known that there are many stochastic
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processes implying eqn (22) for all ¢ e [0,T], which will not necessarily have much in
common with the original wavefunction dynamics, eqgn (21}. In general they are incompatible
with the corresponding parabolic system (cf. eqns (4) and (25)). If it happens otherwise, the
reason for this proliferation of would-be consistent stochastic processes is rooted in
exploiting the particular functional form of solutions, instead of relying on the form-
independent arguments, e.g. cqn {4).

Let us consider some simple examples which, albeit coming under very special circum-
stances (free dynamics with a specific initial wave packet choice, and no zeros admitted in
the course of the propagation), clearly indicate how important is the proper choice of the
Feynman-Kac kernel. The virtue of a parabolic system (4) is that its form is universal for the
Schridinger dynamics, and thus does not depend on a particular functional form of solutions
nor of external potentials. It appears that the system (4) sets a very rigid framework for the
probabilistic manifestations {e.g. stochastic processes) of the quantum Schrodinger dynamics.

Example 1. We shall demonstrate that an improper (nor through eqn (4) or eqn (25)), but
fortunate, choice of the kernel might lead to an alternative stochastic represcntation of the
quantum dynamics of eqn (22).

Let us begin by directly introducing the transition probability density:

_ (x —yy
p(y.sxn) =2a( - 5%)] mexp[—m] @7
which for all intermediate times O0=<s<r=<7T execules a desired propagation p(x,)=
[plysxpp(ys)dy, eqn (22). Clearly, the Chapman-Kolmogorov identity
{p(y.s,2,0p(z,1,x,0) dz = p(y.5,x,1) holds truc, and the properties (the first one for all
€>0)

1
lim —-J p{yv.txt+Afdx =0
arLoAf S yioe

1 =
lim —f (x—v)p(yext+AnNde=0 (28)
arjoAFt_.

1 7= ‘
lim —f (x —y)p(¥.4,x,1 +Ar)dx =2
alodAEd .

tell us that the law of random displacements p{y,s.x,r), eqn (27), can be atiributed to a
Markov diffusion process associated with the parabolic (Fokker—Planck) equation:

dip = th.p. 29

Tn fact, our p(y,s.x,¢) is a fundamental solution of this equation with respect to x, ¢
vatiables, while obeying thc time adjoint parabolic equation in the remaining (e.g. y, 5) pair
of variables:

Asp(y,s,x,1) = —sA, p(y,5,%,1). (30)

This diffusion has a vanishing forward drift and the quadratic in time variance (the
diffusion cocfficient equals 1), hence its local characteristics are completely divorced from
those of the Nelson process [30] derivable from the solution eqn (21) of the Schrédinger
equation.

Interestingly, since p(y,s,x,t) itself is a perfect, strictly positive and continuous in all
variables (Markov) semigroup kernel, nothing prevents us from performing the Schrodinger
problem analysis eyn (1) with the boundary densities py(x) and pr(x) defined by the above
free evolution problem. However, we shall proceed otherwise and, having given explicit
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solutions of the parabolic system (25), introduce another strictly positive and continuous in
all variables function:

8(y.5) oy LHEY (e =y)”
kl(y,s.x,t) = p{y,5,%,1) —éﬁ = [2%({2 - S")] 1‘2( ljr_s_q)l 4 exp[ - 2([2__‘2)]

. yzl-werxz'l—t
R B IRy

1
]expt; (arctan ¢ — arctan s)] 3

and observe that the Schrodinger system (1) in the present situation is involved as well, since
trivially there holds:

polx) = 6,(x,0) f ki(x,0,v,7Y0(v, T) dy
(32)

prix)=86(x,T) f ki(v,0,x, 70, (v.0) dy.

Disregarding the derivation which has led us to eqn (22), we can simply consider eqn (22)
as the Schrodinger system of cquations with a fixed kernel and boundary density data. Then,
we immediately infer that by Jamison's theorem [6], its unique (up to a coefficicnt} solution
is constituted by the pair 8,(x,0), 8(x./) of functions, already determined by eqn (24).
Morcover, k,(y.5.x.t) obeys the Chapman-Kolmogoerov composition rule:

f(y,s a(z, 1)
fkl(_y,s,z,f)k,(.:.r,x.r) dz :fp(y,s.z.r)Bg,rzp(z,rwr,r) Hixjda
2(v,s, ;
=p{y.5.x.0) ﬁ\%:k,(y,s,_x,t). (33)
In view of [p(y,s.x,0)dx =1 for all s <r, we have:
jk}(x,s,y,t) B{y,t) dy = 6(x,s) (34)

and, since 88, = p, we get:

8( v, | ,
J ki(y.,%,0)8,(y.s5) dy = f 0.(y.5.)p(y.5.2.0) ag :)) Y= en f PLySIp(y,s.x.) dy
_plen) .
= o.0) =0,(x,1). (35)

Thus, undoubtedly, we have in hand a complete solution of the Schridinger boundary
data problem (1): for the once-chosen kernel &, this solution is unique, and compatible with
the dynamics of the corresponding Schrodinger wavefunction. But, the constructed stochastic
process is completely incongruent with the standard wisdom about Nelson's diffusion
processes [7,27,28,30]. The reason is clear: our analysis was performed [or a particular
solution, whose functional form allows for an alternative stachastic representation. But. let
us stress the point, if we look for the functional-form-independent construction, it is the
parabolic system (4) from which one should depart.

Anyway, cven the inappropriate choice of the integral kernel k, does allow us to derive
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the quantum mechanically implemented dynamics of eqn (22) from, respectively, 8(x,7) and
0,.(x.0) by means of thc propagation formulas (4). The probability density evolves in time
correctly, but the vanishing drift and the linear-in-time diffusion coefficient situate this
stochastic process outside the scope set by eqns (25) and (4).

Example 2. We shall demonstrate that another choice of the kernel, still with no reference
to the system (4), will allow us to reproduce the stochastic propagation with the probability
density, drifts and diffusion coefficient of Nelson’s stochastic mechanics, which however is
not Nelson’s process for the quantum evolution (22). We are inspired by our previous paper
[30], where an intcresting stochastic propagation, compatible with eqn (22), was introduced
by means of the transition probability density:

py.(x0) = [4(t — )] " exp| - %(_TC_%)}
py__‘(x.s)=6(x—y), O=s<r=T (36)
_[d-nt+ 2]
Crs = [ 1 +52 ] .

Here, the density p(y,s), eqn (22), is propagated into the corresponding p(x,t) according
to the rule p(x,t) = [ p, (x.0)p(y.5) dy, for all intermediate times 0 =s <z =<T. As noticed in
Ref. [30], this propagation is somewhat pathological since it does not obey the Chapman-
Kolmogorov composition rule: [p, . (z,7)p, {x,)dz #p,.(x,t) and thus p cannot be
interpreted as a transition density of the Markov process.

However, if we were to naively proceed like in Example 1 and define the strictly positive
continucus function:

8(y.5)
=p,xt)——— 37
kE(y:Ssxst) py,\(r;t) G(X,f) ( )
where 0<s <t =T and 6(x,?} is given by eqn (24), then the Schrodinger system (32), with &,
replacing &, trivially appears. Indeed, because [ p, .(x.r) dx =1 for s <t, there holds:

0,(60) [ Koa(x.0.9, 700y, T) dy = 8,(5.0) [ peolv.TIBK0) dy = 6,(:.0)0(5,0) = potx)
0, 7) [ ka1, 05.716,000) dy = | pro(x. TIO.008,(%.0) (38)

B f Pyo(x. T)p(,0)dy = prlx).

As a consequence, if we analyse the above Schrodinger system with the boundary data
po(x) and pr(x) fixed by eqn (22) (as before) but with the new kernel k-, then somewhat
unexpectedly the same pair as before, 8(x,0), 8,(x,T), necessarily comes out as a solution.
Let us emphasize that the solution is unique for the chosen kernel £, albeit it coincides with
the unique (as well) solution previously associated with the kernel &, (cf. Example 1).

The meaning of the uniqueness of solution of the Schriidinger system [6] becomes clear: il
we have prescribed the boundary density data the solution is unique for a chosen kernel, but
there are many kernels which may give rise to the very same solution.

The pathology (non-Markovian density) of p,.(x,) extends to ky(y.,s.x,r) and the
scmigroup composition rule is invalid in this case. Nevertheless, we can blindly repeat the
step (32), with k, instead of k,, so reproducing the evolution (22). Moreover, in the present
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case [30], we can exploit the standurd recipe to evaluate the forward drill of a conventional
diffusion:

-1t
L+e”

lim L U oo (vt + A dy —;} ~h{aa)y= - (39)

ar Lo AF
Clearly, it is the forward drift of the Nelson diffusion [27. 30] associated with eqn (24), and
it consistently appears in the corresponding Fokker—Planck egn (6).
Let us observe that p, (x.f) solves the first Kolmogorov equation with respect to x./:

H!py.\('x.'{) = AL!)‘.S("",_) - t’\',\(r)v\[)\‘,\'(’[!!)
2. (40)

b 1)=y

As such, it can be exploited to construct a genuine Markov process, albeit disconnected
from the quantal dynamics (22). Namely, we can define another solution of egn (40). in
variables x.t;:

e | L__ﬂ[}

pr\-'“s(ixl JiaXont) = [4m( — 1) CXp| — —4(:‘ 0

(41)

CECL, T, U=l =T

with ¢, given by eqn (36). It is casy to verify that the transition density {(41) actually iy a
fundamental solution, and as such satisfies the second Kolmogorov equation with respect to
X1, Iy for each fixed y, s label, 05 <7, </, = T, Consequently, we have in hand the (v.s)
family of well-defined Markovian transition probability densities g, for random propagation
scenarios. Indeed, o this end one needs to check the {apparent) compatibility conditions: {a}
Pl xed)=8(x; —x): (b) Pelxn o dp dxr ) dyy = py (vaas): and in addition (o)
S pe et xo=)p o, x ) dey = py (X0 ), where 0= <0 <l <= Toand py (xd)
plays the role of the density of the Markov process. The identity (¢) in the above is the
Chapman-Kelmogorov formula.

To avoid the above obstacles. the only how-to-proceed procedure is provided by the route
outlined before, e.g. that leading from the Feynman-Kac keenel to the associated Markov
diffusion process via Schrédinger’s boundary-data problem. A complete solution to this
particular issue. in the quantum dynamics context, has been given clsewhere [8. 12,29, 30,

Acknowledgement—P. G.oand R QL received Financial support from KBN Rescarch Grant Na. 0 P30T 057 17

REFERENCES

1. Kac. M. and Logan, J.. In Flucrration Phenomena, eds Fo W, Montroll and | L. Lebowitz. North-Holland.
Amsterdam. 1876,

2. Mackey, M. C.and Glass, L.. From Clocks o Chaos: Rhyvthms of Life. Princeton University Press, Princeton,
1988,

3 Lasota, A, and Mackey, M. C.. Chaos, Fractals, and Nobe. Springer-Verlag, Berlin, 1994,

4. Beck. C.. In Chaos—The Inerplay Between Stochastie aid Determinstic Behaviour, LNP Vol 457, ods P,
Garbaczewski, M. Woll and A. Weron. Springer-Verlag, Berlin, 1995, p. A,

5. Mikami, 'T.. Conmun. Math. Phys.. 1990, 135, 19,

6. Jamison, B. and Wahrsch, Z., Verw. Geh., 1974, 30, 65,

7. Zambunni, 1 Co /0 Math, Phys. 1986, 27, 3207,

8. Garbaczewski, P., Klauder. J. R, and Olkicwicy, R., Pihys, Rev. L. 1995, 81, 4114,

Y. Schrisdinger, B Ann. st Henri Poincare. 1932, 20269,

10, Garbaczewski. P Acta Phys, Poton. B 1996, 27, 617,



Schrédinger’s interpolation and Burgers’ flows 41

. Blanchard, Ph. and Garbaczewski, P., Phys. Rev. E, 1994, 49, 3815.

. Grarbaczewski, P. and Olkiewicz, R., J. Math. Phys., 1996, 37, 732,

. Burgers, I. M., The Nonlinear Diffusion Equation. Reidel, Dordrecht, 1974.

. Hopt, E., Cormmun, Pure Appl. Maih., 1950, 3, 201.

. Garbaczewski, P. and Kondrat, G., Phys. Rev. Lest., 1996, 77, 2608,

. Shandarin, §. F. and Zeldovich, B. Z., Rev. Mod. Phys.. 1989, 61, 185.

. Albeverio, 8., Molchanov, A. A. and Surgailis, D., Prob. Theory Relai. Fields, 1994, 100, 457.

. McKean, H. P, In Lecture Series in Differential Equations, Vol. 11, ed. A. K. Aziz. Van Nostrand, Amsterdam,

1969, p. 177.

. Calderoni, P. and Pulvirenti, M., Ann. Insi. Henri Poincaré, 1983, 39, 85.

. Osada, H. and Kotani, 8., J. Marth. Soc. Jpn., 1983, 37, 275.

. Krzyzafiski, M. and Szybiak, A., Lincei-Rend. Sc. fis. mat. e nat., 1959, 28, 26,

. Friedman, A., Partial Differential Equations of Pareholic Type. Prentice-Hall, Englewood Cliffs, NJ, 1964,

. Horsthemke, W. and Lefever, R., Noise-Induced Transitions. Springer-Verlag, Berlin, 1484,

. Haussmann, U. G. and Pardoux, E., Ann. Prob., 1986, 14, 1188.

. Fillmer, H., In Srochastic Processes—Mathematics and Physics, LNP Vol. 1138, eds 8. Albeverio, Ph.

Blanchard and L. Streit. Springer-Verlag, Berlin, 1985, p. 119.

. Hasegawa, H.. Progr. Theor. Phys., 1976, 5§85, 90.

. Nelson, E., Quantum Fluctuations. Princeton University Press. Princeton., NJ, 1983.

. Nelsen, E., Dynamical Theories of the Brownien Motion. Princeton University Press, Princeton, NJ, 1967.

. Garbaczewski, P. and Vigier, J. P., PAys. Rev. A, 1992, 46, 4634.

. Garbaczewski, P. and Olkiewicz, R., Phys. Rev. A, 1995, 52, 3445.

. Fleming, W. H. and Soner, H. M., Controiled Markov Processes and Viscosity Solutions. Springer-Verlag,

Berlin, 1993,



J. Phys. A: Math. Gen. 33 (2000) 5901-5912. Printed in the UK PII: S0305-4470(00)07137-7

Ergodicity for generalized Kawasaki dynamics

G Kondratt, S Peszat} and B Zegarlinski
Department of Mathematics, Imperial College, London SW7 2BZ, UK

E-mail: gkon@ift.uni.wroc.pl, napeszat@cyf-kr.edu.pl and
b.zegarlinski@ic.ac.uk

Received 23 August 1999, in final form 20 April 2000

Abstract. We give anecessary and sufficient condition for a Gibbs measure y on the product space

Q=(S I)Zd to satisfy the spectral gap or the logarithmic Sobolev inequality with the following
quadratic form:

2

HK(f) = / > ( > a,-N,-f) dp fecE@
kezd \jek+Y

where Y is a finite set and g; are integers. As a consequence we prove that the generalized Kawasaki

dynamics decays exponentially to equilibrium in the supremum norm in a strong mixing region.

1. Introduction

It is well known that the Kawasaki dynamics for discrete spin systems exhibits a different
behaviour from the Glauber dynamics and even at high temperatures the decay to equilibrium
is very slow (cf [De, BZ1,BZ2,JLQY, LY, CM]). Naturally one can ask what happens in the
case of generalized Kawasaki dynamics [ZZ] with a continuous single spin space, where the
generator L is formally given as follows:

WL = Y wVif =V, fF (1.1)
li—jl=1
with p being an equilibrium measure and the summation on the right-hand side is extending
over the nearest-neighbour sites of an integer lattice. As indicated in [ZZ] such a model is of
interest for describing a ferroelectric gas.

We show that, in contrast to the discrete case, if the single spin space is given by a unit
circle, due to an additional ‘gauge’ symmetry, at high temperatures the generalized Kawasaki
dynamics is hypercontractive. We also show that such a dynamics has the property of a
finite speed of propagation of information, that is it can be strongly approximated by finite-
dimensional dynamics. This together with the hypercontractivity property implies a strong
exponential decay to equilibrium in the supremum norm.

It is now well known that the above-mentioned features are present in the models of
dynamics with a generator defined by the following standard Dirichlet form:

o= [ Y Vista fecr@ (1.2)

kezA
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in the mixing region (see, e.g., [HS2, GZ1, GZ2]) for some earlier study of the models with
continuous symmetry see [F, HS1] (for existence, uniqueness and some regularity properties
of the corresponding processes) and [W] (including ergodicity in the uniform norm but at very
high temperatures). Despite this similarity, even in our simple setting with a single spin space
given by a circle, these two dynamics can by no means be considered to be equivalent. To
indicate an example we mention that (by a simple choice of trial functions), one can easily see
that the corresponding quadratic forms (1.1) and (1.2) are not equivalent. (Although naturally
the latter one multiplied by a positive constant dominates the former.) One could also have a
different critical behaviour of both dynamics.

In the special case of a rotator system with spins taking values in a circle, we show that
there is a transformation of a potential which allows one to transform some ‘gauge’-invariant
dynamics corresponding to a non-diagonal quadratic form (such as the generalized Kawasaki
dynamics) to one given in (1.2), but with a properly transformed measure. In this restricted
sense one can talk about a correspondence between two dynamics related to quadratic forms
having an a priori different form.

The organization of the paper is as follows. After a preliminary section 2, we consider
in section 3 the spin systems with a single spin space given by the unit circle and a smooth
finite-range potential. For such systems we formulate a necessary and sufficient condition for a
spectral gap and logarithmic Sobolev inequality to be true with some general class of Dirichlet
forms, which we will call ‘the square of the field forms’. The proof of this result based on an
appropriate change of integration variables and a mixing property for a transformed potential
is given in section 4. Section 5 contains a general example of a system with a small potential
for which the required conditions are satisfied. In section 6 we discuss the construction of a
Markov semigroup with generator corresponding to a general square of the field form. Finally,
in section 7 we explain how to apply our general results to prove the exponential decay to
equilibrium in the uniform norm for the generalized Kawasaki dynamics.

2. Preliminaries

Let Z? be the d-dimensional integer lattice with the norm |k| = maxi<i<d |k'|. We write
k ~ jiff |k — j| = 1. We use F to denote the set of all non-empty A C Z¢ with the cardinality
|A] < oo.

As a single spin space we consider the unit circle S, and our configuration space is the
space € = (S")%" endowed with the product topology.

Given a non-empty A C 7% we denote by Ba(£2), Ca(S2) and C°(R2) the spaces
of bounded measurable, continuous and infinitely differentiable real-valued functions on €2
depending only on the variables w;, k € A. We say that a function is local iff it belongs
to BA(R2) for some A € F. We use By(R2), Co(£2) and C§°(£2) to denote the classes of
bounded measurable, continuous and infinitely differentiable local functions on 2. For a
bounded function f on £, we denote by || f ||, the supremum norm of f. Let A C Z, and let
n, w € Q. We denote by n e, w the element of 2 determined by (1 ep w)r = i, k € A and
(nepwi =w, kg A Given A C 74, f: Q2 — R, and w € Q we denote by f,(-|w) the
function fx(n|w) = f(n e w), n € Q2. For a (Borel) probability measure p on €2 we use the
following notation for the corresponding expectation:

u«f=/9f(w)u«(dw).

Let Cg"(Q)2 > (f, 8) = K(f, g) € C5°(£2) be a non-negative definite quadratic form which
vanishes if f or g is a constant function. We set K(f) = K(f, f).
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Definition 2.1. A probability measure p on 2 satisfies the spectral gap inequality with respect
to IC, in short © € SG(K), if there is a constant C < oo such that

u(f — ,uf)2 < Cuk(f) forevery f € C3°(2).

We say that u satisfies the logarithmic Sobolev inequality with respect to KC, in short © € LS(K),
if there is a constant C < oo such that

2
wf? log# < Cuk(f) for every f € C;°(£2).

Remark 2.1. It is well known (see, e.g., [S]) that if u € LS(K), then u € SG(K).

In the present paper we denote by v the normalized Lebesgue measure on S', and by 119
the corresponding product measure on 2. For A € Z¢, w € Q and f € B(Q) we set

(fla(@) = pofal-lw) and Inf(@) = (fla(@) — f(w).

If A = {k}, then we will write 0; instead of dy,. Finally, by V; we denote the gradient operator
with respect to the kth variable.

A potential is by definition a family ® = {®y : X € F} of functions @y € Cx(2) such
that

I®l=sup > [ Pxllu < oo.

€2 XeF: Xai
The corresponding local energy functional is defined by

Up=— Z by A e F.
XeF: XNA£D

By £(®) we denote the local specification corresponding to @, that is the following family of
operators

(f exp{—Uax}),
(exp{—Ua}),

If A = {k} for some point k € Z?, we simplify the notation writing Uy = Uy, and E; = Ey,.
We say that a probability measure p on 2 is a Gibbs measure for £(®) iff

UEA f=nuf forall A € F and [ € Cy(R2).
We denote by G(®) the set of all Gibbs measures for £(P).

Remark 2.2. Note that as €2 is a compact Polish space and the local specification maps the set
of continuous functions into itself, G(P) # @ for any potential on 2.

Exf = feB() AeF.

We say that a potential ® has finite range if there is an R € Z, such that ®y = 0 for all
X withdiam X > R.
Let us denote by A, the cube [—n, n]?NZ¢. Fora potential ® and a set I' € F such that
0 € I, we introduce a potential @™ with a cut-off as follows:
by if X+I'CA,
oW =
0 otherwise.

Let

U ==y of.

XeF
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Then, as @ = 0if X Z A,,
exp{=U" (0)}
{exp(-=U™}),

is the unique Gibbs measure for £(®™). The following lemma will be useful in the next
section.

pw® (dw) = 1o(dw)

Lemma 2.1. Let ® be a finite-range potential, let T" € F, 0 € I'. Then there is a subsequence
{n;} and a Gibbs measure . € G(®) such that

lim p®) f = pf for every f € C(Q). .1
J—>00

Under our assumptions, the proof follows from the fact that for any given finite set X € F
there is an N such that for all # > N one has

HOExf =p® f
and one can choose a convergent subsequence to a Gibbs measure.

We use Gr (®) to denote the class of all Gibbs measures © € G(®) such that (2.1) holds
true for some sequence {n;}. Lemma 2.1 ensures that Gr (P) # .

3. Spectral gap and logarithmic Sobolev inequality for non-diagonal forms

LetY € F,Y #@and a = (a;)icy € (Z )\ {0})Y be such that
0cY  Ogconvexhullof (Y\{0})  and  ape{—1,1}. @.1)

Later on we will use 6 to denote a pair (Y, a) satisfying (3.1). Let

2
Ko (f) (@) = Z( > a,»_kvjf(w)) f € CF ). (3.2)

kezd Njek+Y
In our considerations an important role is played by the following transformation of variables
& Q—> Q
(& (), = > ajkox jeZ weQ.
kej—Y
For X € F we set
AX)={XeF: X-Y =X)}.
Given a potential ® we introduce a transformed potential 7 = {®% : X € F} as follows:
0 if AX)=9
Pi=1 3 @zos  if AX) A0 3.3)
XeA(X)
Let us denote by D the following (diagonal) square of the field
D(f)@) =Y IVif@  feCQ).
keZd
We will prove the following equivalence theorem

Theorem 3.1. Suppose that ® is a finite-range potential such that there is a unique Gibbs
measure 1 € G(®). Let ®° be the corresponding transformed potential given by (3.3). Then:
(a) 1 € SG(Ky) if and only if for any i € G_y(®?) one has i € SG(D).
(b) u € LS(Ky) if and only if for any i € G_y(®?) one has i € LS(D).
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4. Proof of theorem 3.1
Let £(®) = {E} : A € F} be the local specification corresponding to @7, that is

(fexp{=UL}),

EY f = where Uf=- >  @f.
0 A X
(eXP{_UA})A XeF:XNAAD
Since
CD?(: Z q)f(OSg: Z CDXOS(;
XeF:XNA#) XeF(X=Y)NA#D XeF:XN(A+Y)A)
we have
Ul =Uny o0& AeF .1)

and consequently

(f exp{=Uny 0 &),

ES f =
rf (exp{—Unsy 0 &),

feCEQ) AcF.

Note that if ® has a finite range, the same is true for ®°.

Lemma 4.1. Assume (3.1). Then for all cubes A, = [—n,nl* NZ¢ and A; = [—1,11 N Z¢
satisfying Aj —Y C A, and for every f € Cp,(R2) one has

(r 05@),\” ={(f)a, = (-
Proof. Let A,, A; be such that A; —Y € A,,. The proof will be completed as soon as we can
show that the following transformation of variables:

(0] if kGAn\(A[—Y)

"l @), it kea—v

preserves the measure 1o on Q, = (S')A". To this end we introduce a lexicographic order
{k;}, i =1,...,]A,]in A, satisfying

(ki i=1,. 00\ (A =D} =AM\ (A =)
andfori > |A, \ (A; — YY),

ki =Y)N (N =Y) =tk o A\ (A =Y <r <}

The existence of such an order is guaranteed by (3.1). Now consider the Jacobian matrix

Ik
A:{ﬂ} =1, A
8a)kj

Clearly, A is an upper-triangular matrix. Since ap € {—1, 1}, the elements on its diagonal are
from {—1, 1}. Thus | det A| = 1, which completes the proof. O

Lemma 4.2. Assume that the hypothesis of theorem 3.1 is fulfilled. Let i € G_y(®%). Then
R f oy = uf forevery f € Co(S).
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Proof. Let i € G_y(®?). Then there is a sequence {n ;) such that

<f eXP{_ﬁ("’)HA”_
: S € Co(2)

of = li =
2 Jggo <exp{—U("/‘)})Anv

where
o= 3 @
XeF: X—YCA,
Since u is a unique Gibbs measure for £(®), lemma 2.1 yields that there is a subsequence
{m} of {n;} such that

(f exp{-=U™}),

m

= lim / e Cop(R2
uf i=oo (exp{—U™D}) f &Gl
mj
where
U™ =— > Dy.
XeF: X—Y—YCA,
Now note that
U™ = — Z 4 = — Z Do =U"ok.
XeF: X-YCA, XeF: X—Y-YCA,

Thus, for any f € Cy(2), we have

((f expl=U™}) 0 &),

nLfok = jli)n;o <exp{—U(’"1)} o §9>Am‘ f € Co(R2).

Combining this with (4.1) and lemma 4.1 we obtain the desired conclusion. O

Proof of theorem 3.1. Let us observe that

Vi(f 0 &) = ( > ajkvjf) o0& for feCFQ) kezd

jek+Y
Thus

D(f o&y) =Ko(f)o& for f e CP(R) kezd
Now assume that . € G(®) satisfies SG(Ky). Let it € G_y(®?). Then, by lemma 4.2 for any
f € C5°(2) we have

A(f ot —if o&) = u(f —uf)’ < Cuko(f) = Ciko(f) o &

S CaD(f o &).

Since f + fo&isabijection on C{°(Q), fi satisfies SG(D). Assume now that it € G_y (®Y)
satisfies SG(D). Then for all f we have

w(f —uf) = i(f ot —iif o&)’ < CAD(f o&) < Cuky(f).

Thus p satisfies SG(Ky), and the proof of the first part of the theorem is completed. The
same arguments can be applied in a proof of the second part concerning logarithmic Sobolev
inequalities. g
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5. Dobrushin—Shlosman mixing and logarithmic Sobolev inequalities

Definition 5.1. We say that the local specification £(®P) satisfies the Dobrushin—Shlosman
mixing condition iff there is an X € F with 0 € X, and a family of non-negative numbers o ;
for! ¢ X and j € X such that

1

B= aj >0 3.1

X1 1¢X,jeX

andforalll ¢ X, k € 74, f € CP () and Z C X one has

10+t Esz [ — Eraz O fllu < Zal,j”aj+kf||u- (5.2)

jeXx

Remark 5.1. Note that if the potential family is shift-invariant, then it satisfies the Dobrushin—
Shlosman condition iff (5.1) holds and if (5.2) is satisfied for £ = 0.

Remark 5.2. The Dobrushin—Shlosman condition ensures the uniqueness of the Gibbs
measure u for £(P) (see, e.g., [S]).

For further references we recall the following result of Stroock and Zegarlinski (see, e.g.,
[S,SZ1], or [SZ2]).

Theorem 5.1. Assume that ® is a C? potential of finite range, and that the local specification
E(D) satisfies the Dobrushin—Shlosman mixing condition. Then the unique Gibbs measure [u

satisfies LS(D).
As a direct consequence of theorems 3.1 and 5.1 we have;

Corollary 5.1. Let ® be a C? potential of finite range. If E(®) and E(P?) satisfy the
Dobrushin—Shlosman mixing condition, then the unique Gibbs measure (1 € G(®) satisfies
LS(KCy).

In the next result we show that there always exists a high-temperature region where our
conditions are satisfied.

Proposition 5.1 (Small potential case). Let ® be a C? potential of a finite range R. Assume
that

sup [[Upsyyllu < §log (1+ (R +diamY)™")
keZd

sup [|Uxllu < log (1+R7").
keZd

(5.3)

Then there is a unique Gibbs measure u for E(P), and u satisfies LS(ICy).

Proof. Note that the range of ®? is less than or equal to R+diam Y. According to corollary 5.1
it is enough to show that (5.3) implies that £(®?) and £(®P) satisfy the Dobrushin—Shlosman
mixing condition with X = {0}. To do this we have to prove that there are positive constants
o and « satisfying (R + diam Y)o < 1 and R@ < 1 such that

10, f —Eporflle < alloeflle  forallk#1 and f € CF(R) (5.4)
and

9By f — By fllu < @l fllu forallk #1 and f e CF(). (5.5
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Letk,l € Z¢, k # . Note that for all f and « we have
[0, B | f (@) = (AL f — ERO, f) ()

= L/SZ(Pk(X o (y o ®) — pr(y o @) f(x & (y o ®)(dx)p(dy)

where the density p; of Ez is given by

ey — SRV @)
(exp{—U{} ()
Using (4.1) we obtain

(@) = exp{—Uysy 0 &g(w)}
(exp{—Ussy 0 &} (@)

Since
/ka(x o (y o w)po(dy) =1= /ka(y o @) o(dy)
we have
[0, B! @) = — /Q fﬂ (Pi(x o (y o ) — Py o ) ) o1 (3 o ) pto(dn)pio(dy).

Thus (5.4) holds true with

<,0k(x o (yorw) 1)

< sup sup Pr(©) —1
Pr(y o w)

a =sup sup
k wven Pr(V)

k x,y,0eQ
< supexp{4||Ursy llu} — 1
k

having the desired property. In the same way one can show that (5.3) yields (5.5) with Ra < 1.
O

6. A class of infinite-volume stochastic dynamics

In this section we briefly describe the construction of an infinite-volume Markov semigroup
corresponding to a general square of the field form C. We consider a configuration space given
by a product space Q = M Zd, where M is a smooth compact and connected Riemannian
manifold. Let W = {W,;};cz« be a collection of C* vector fields defined as a following lift of
the given smooth vector fields w; on M:

Wi f(w) = w; f(w;|w).

Given a finite set Y we define the following vector fields on €2:

Wy =) W,

jey
With this notation we introduce the following square of the field forms:

K(f) =D Wiy f)?

keZd
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with a domain including smooth cylinder functions f € C§°(€2). Given a local specification
E(®) corresponding to a smooth potential of finite range, we can now introduce the following
elementary Markov operators on C2():

Lyf=Wif+By Wyf
where we have set

ﬁy = div Wy + Wy Uy
with

div Wy = > "div; W;

jey

and div; W; is defined by the corresponding lift of divw; on the manifold M. With this
notation one can see that

Ey(Wy f)* = Ey(f (—Ly f)).
For later purposes we introduce the following free Markov generator:
L0=> W2y f.
keZd
We note that £° is local, that is for any f € C 2 dependent only on w;, j € A, one has

Lof = Z W(21(+Y)mAff

kezd
and therefore Aoy C Ay. This property allows us to easily define a Markov semigroup
Pto =e'f" on Cy(£2). For any finite set A € F we introduce a finite-volume generator

Laf =L+ Buwrnn - W f
X

with a convention that By = 0. We note that £, is again local and therefore it is easy to
construct the corresponding Markov semigroup P,(A) = e'“2 on Cy(Q).
With the above assumptions and notation the following result is true.

Theorem 6.1. Suppose that

sup || Brexllu < 00
keZd, XCY

and

D= sup Wz (Basryna)llu < oo.
kezd, Z,AeF:| ZI<|Y]

Then for any f € C(} (R2) the following limit exists:
P f=lim PNV f
A—o0
with the generator L satisfying

n(f(=Lf) =K(f).

Moreover, the following exponential approximation property is true: for any A € (0, 00) there
is B € (0, 00) such that

1P f = PV fllu < e C(f)
with some constant C(f) € (0, 0o) dependent only on f and the field VW, provided that
dist(A 7, Z¢ \ A) > Bt.
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Proof. For Ay € F and A, = A; U {i}, we have
t d t
P f— PN f = / ds PP f = / ds PO (La, = La) P f. ©.1)
0 0

Next we note that

(Lp, = LADF = Z [Bisrina Waerinas — Baeryna, Wkarna, | (6.2)
fedist (e ¥,1) <R

where R is the range of the interaction. Hence taking into the account that we consider Markov
semigroups here, we obtain

t
1P F = PR Fllu < sup 1 Braxl > / ds Wz P fllu. (6.3)
kezd, Xy Z: 3k dist(k+Y,i)<R,ZCk+Y Y0

Thus to complete the proof it is sufficient to obtain a bound for [|[Wz P22 f ||, for Z C k+7Y,
k € Z*. To this end we note that

Wy PAD f = pAIw, f 4 / de P2 [Wy, L, 1P f. (6.4)

0

Noting that [W, £°] = 0 we have

[Wz, L]l = |:Wz, Z Bk+ryna, W(k+Y)mA2]
%

= Z Wz (Bk+yyna) Wisr)na, - (6.5)
kedist(Z, (k+7)NA2) <R

From (6.4) and (6.5) we conclude that
N
Wz P flly < Wz fllu+ D > f At [ Weeerynn, PO f Ll (6.6)
k:dist(Z, (k+Y)NA2)KR YO
with

D= sup Wz (B+ryna)llu-
keZd,Z, AeF:|Z|<|Y|

Given the inequality (6.6) the rest of the proof goes in a standard way (see, e.g., [GZ1]). U

7. Exponential decay to equilibrium for Kawasaki dynamics

Let the single spin space be given by S'. We choose Y to be a set consisting of the origin
and one of its nearest neighbours i; and a = {—1, +1}. Then by theorem 3.1 a unique Gibbs
measure (Lo related to a finite-range potential & satisfies SG or LS with the corresponding
form

K(F) = 1(Visi, = VO £
k

provided these inequalities remain true for a unique Gibbs measure g0 With the diagonal
form. This naturally implies that SG, respectively, LS, is true for the form

K= D 1(Ve=VpfP

Jk:|j—kl=1
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which is not smaller than K. As we have indicated in section 5 such a situation is true for
any potential of finite range, provided the temperature of the system is sufficiently high (cf
proposition 5.1). In particular, if LS(K) is satisfied, then the corresponding semigroup is
hypercontractive. This together with the strong approximation property (theorem 6.1) allows
one to apply the general strategy of Holley and Stroock (see, e.g., [SZ1]) to prove the uniform
exponential decay to equilibrium. Thus we conclude with the following result.

Theorem 7.1. Suppose for a finite-range potential ®, the local specification £(®Y) satisfies
the mixing condition. Then the Kawasaki dynamics P, = e'* is strongly exponentially ergodic,
that is for any function f € Cé (2) we have

1P f = 1o fll < Cae™™ Y " IVifllu
k

withm = gapy,(,,,(—£) and any a € (0, 1) with a constant Cy = Cy (A y) dependent only on
A ¢ and the choice of a.

We stress that our mixing requirement involves the transformed potential. We note that
the conditions are always satisfied in one dimension (as our transformation £ transforms
finite-range potentials into finite-range potentials). Clearly, in higher dimensions the domain
of strong mixing may depend on the potential (but in any case there always exists a non-trivial
high-temperature region where the required mixing is true).
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Three types of outflow dynamics on square and triangular lattices and universal scaling
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In this paper we propose a generalization of the one-dimensional outflow dynamics (KD). The rule is

introduced as a simplification of Galam dynamics (GD) proposed in an earlier paper. We simulate three types
of outflow dynamics, GD, Stauffer ez al. dynamics, and KD, both on the square and triangular lattices and show
whether the outflow dynamics is sensitive to the lattice structure. Moreover, we took into account several types
of initial configuration—random, “stripes,” and ‘“circle.” We investigate the dependence between the mean
relaxation time and the initial density p of up-spins for each type of initial conditions, as well as dependence

between the mean relaxation time and the size of the system. As a result, we show differences and similarities

between three types of the outflow dynamics.

DOI: 10.1103/PhysRevE.77.021127

I. INTRODUCTION

The outflow dynamics was introduced to describe the
opinion change in society. The idea was based on the funda-
mental social phenomenon called “social validation.”

Under the outflow dynamics a system eventually always
reaches consensus, like in the famous voter model [1-3].
Several other models describing opinion dynamics were in-
troduced by Deffuant [4], Hegselmann and Krause [5],
Krapivsky and Redner [6], and Galam [7].

In this paper, however, we do not focus on social appli-
cations of our model (for those interested, reviews can be
found in Refs. [8—11]). On the contrary, we investigate here
the dynamics from the theoretical point of view.

In this paper we pay particular attention to a generaliza-
tion of the one-dimensional outflow dynamics to higher di-
mensions. Several possibilities of such a generalization to the
square lattice were proposed by Stauffer e al. [12] (see Sec.
IT) but only some of them were used in the later literature
[8—11]. In Ref. [13] we presented comparative studies of the
two most interesting generalizations out of all proposed in
Ref. [12]. Only slight quantitative differences have been
found between these two generalizations.

The outflow dynamics on the triangular lattice were con-
sidered only in one paper [14]. In this paper the author stud-
ied the generalization of the Sznajd model to the triangular
lattice with spreading of mixed opinion and with the pure
antiferromagnetic opinion—a pair of two neighboring spins
on a triangular lattice influenced its eight neighbors.

Up till now no studies on the influence of the lattice ge-
ometry, in the case of regular lattices, for spins endowed with
the outflow dynamics were provided. However, the influence
of the topology for the relaxation under the outflow dynam-
ics in a case of complex networks has been investigated in
Refs. [15-18]. In Ref. [15] the time evolution of the system
was studied using different network topologies, starting from
different initial opinion densities. A transition from consen-
sus in one opinion to the other was found at the same per-

*kweron@ ift.uni.wroc.pl; URL:
kweron

http://www.ift.uni.wroc.pl/

1539-3755/2008/77(2)/021127(8)

021127-1
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centage of initial distribution no matter which type of com-
plex network was used. On the other hand, results presented
in Ref. [19] suggest that lattice geometry may influence the
network dynamics.

In a broad sense the notion of consensus in a network is a
particular case of what can be called coherence or full syn-
chronization between sets of coupled elements, subject to
some sort of local dynamics or updating rule [19,20]. In the
paper [19] the influence of lattice geometry in network dy-
namics, using a binary cellular automaton with nearest-
neighbor interactions, has been studied. It was shown that
geometric structures are more cohesive than others, tending
to keep a given initial configuration.

The first general question we pose in this paper is the
following: Is the outflow dynamics sensitive to the lattice
topology (like in the case of binary cellular automaton on
regular networks [19]) or not (as suggested in the case of
complex networks [15])? To answer this question we present
results for several types of the outflow dynamics on the
square and triangular lattices coming from regular studies on
the mean relaxation time.

The second question we pose in this paper is connected to
the differences between particular forms of the outflow dy-
namics. As mentioned above, several generalizations
[12,14-18] from one to higher dimensions were proposed,
but no regular comparative studies were provided. In Ref.
[13] we presented comparative studies of two types of the
outflow dynamics on the square lattice and we found no
qualitative differences. However, we did not check how the
results would change with a lattice topology or with the type
of initial conditions. To complete this approach we decided
here to treat the matter systematically. Moreover, we intro-
duce in this paper one more type of generalization of one-
dimensional outflow dynamics into two dimensions, which is
a simplification of one of the dynamics studied in Ref. [13].
All three dynamics are simulated both on square and trian-
gular lattices. We start from different initial densities of up-
spins in several types of initial conditions. We measure the
mean relaxation time as a function of initial densities of up-
spins as well as the dependence between the mean relaxation
time and the lattice size. We show that in some cases univer-
sal scaling laws exist, while in others they do not.

©2008 The American Physical Society
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FIG. 1. Stauffer et al. dynamical rules of SM on the square
(upper panel) and triangular (bottom) lattice. On the square lattice a
2 X2 panel of four neighbors (elementary cell) leaves its eight
neighbors unchanged, if all four center spins are not parallel. On the
triangular lattice a panel of three spins (elementary cell) influences
six neighbors along three chains of four spins each, centered about
the panel.

II. MODEL

In this paper we consider the generalizations of the one-
dimensional outflow dynamics to higher dimensions. Let us
begin with recalling the one-dimensional outflow dynamics,
described in detail in Ref. [21]. In the original model [22] the
pair of neighboring spins S; and S;,; have been chosen and if
S.:S;.1=1 the two neighbors of the pair followed its direction,
ie, S;_;—8(=S;;) and S;,—S;.(=S;). Such a rule has
been used also in all later papers dealing with the one-
dimensional case of the model. However, the case in which
S:Six1=—1 was noted as far less obvious. Several possibilities
has been proposed up till now and in general one-
dimensional outflow dynamics can be written as [21]:

Si(t+1)
1 if Sip1(7) +Sia(7) >0,
=\—S;(7) with prob W, if S;(7)+S;»(7) =0,
-1 if Siq(7)+S,,(7) <0.

(1)

The most known case is for Wy=0 and also this case has
been generalized into two dimensions. Several possibilities
of such a generalization to the square lattice were proposed
by Stauffer er al. [12]. Six different rules were introduced,
but only the following two have been used in later publica-
tions: A 2 X2 panel of four neighbors leaves its eight neigh-
bors unchanged, if all four center spins are not parallel (see
Fig. 1); a neighboring pair persuades its six neighbors to
follow the pair orientation if and only if the two pair spins
are parallel.

With both these rules complete consensus is always
reached as a steady state. Moreover, a phase transition is
observed—initial densities below 1/2 of up-spins lead to all
spins down and densities above 1/2 to all spins up for large
enough systems [12].

PHYSICAL REVIEW E 77, 021127 (2008)
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FIG. 2. Galam’s dynamical rules of SM on the square (upper
panel) and triangular (bottom) lattice. The one-dimensional rule is
applied to each of the four (on the square lattice) or three (on the
triangular lattice) chains of four spins each, centered about the el-
ementary cell.

Galam (see Stauffer [12]) showed that the updating rule of
the one-dimensional SM can be transformed exactly into two
dimensions in the following way (see Fig. 2): The one-
dimensional rule is applied to each of the four chains of four
spins each, centered about two horizontal and two vertical
pairs.

In Ref. [13] we compared two rules in which a panel of
four spins influenced eight nearest neighbors, i.e., Galam
[Galam dynamics (GD)] and the first of Stauffer er al. rules
[Stauffer et al. dynamics (SD)] on the square lattice. This
comparison seems to be quite important, since Stauffer ef al.
generalization is more attractive from a social point of view,
while the Galam rule is much easier for generalization to
other systems (in particular, it was used in the so-called TC
model [23,24]). No qualitative difference has been found be-
tween these two dynamics.

Here we propose further simplification of the GD—the
one-dimensional rule is applied not to each but only one
randomly selected chain of four spins (see Fig. 3). The one
invented by one of us (G.K.) and introduced here is the dy-
namics we call KD.

X X X X X X X X
X @ @ X e o o o
—

X O @ X X O © X
X X X X X X X X
X X X X X [ ] X X
X @ X x @ X
X O @ x X O @ X
X X X X X @

FIG. 3. K dynamics of SM on the square and triangular lattice.
The one-dimensional rule is applied to only one, randomly selected
chain of four spins, centered about elementary cell.

021127-2
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FIG. 4. Comparison of mean relaxation times under three rules
(SD, GD, and KD) from a random initial state consisting of p up-
spins for two types of two-dimensional lattices—square (upper
panel) and triangular (bottom). In each plot results for several lat-
tice sizes, from L=50 (O) to L=100 (+), are presented. It is clearly
seen that KD for p=0.5 is the slowest dynamics on both lattices.
Results are averaged over 103 samples.

We compare all three dynamics (SD, GD, and KD) on the
square and triangular lattices. As in the previous paper [13]
we measure the mean relaxation time from an initial state
consisting of p up-spins. However, in this paper we consider
not only random initial configuration but also two types of
ordered initial conditions.

III. RELAXATION TIME FROM RANDOM INITIAL
CONDITIONS

We have measured the mean relaxation time from a ran-
dom initial state consisting of p up-spins for all three types
of the outflow dynamics on the square and triangular lattices
L X L using Monte Carlo simulations (we adopted here peri-
odic boundary conditions). We have averaged the relaxation
time over 10° samples. It should be noticed that in SD (Fig.
1) and GD (Fig. 2) fmax=38 spins (on the square lattice) and
fmax=0 spins (on the triangular lattice) can be changed at
maximum in elementary time step, while only two spins can
be changed within KD (on both lattices), i.e., fi.=2 (see
Fig. 3). To compare relaxation times properly we have di-
vided them by f...

We have found the phase transition for all dynamics—for
p<<0.5 the “all spins up” state is never reached, while for
p>0.5 this state is obtained with probability 1 (the same
result was obtained previously in Ref. [12,13] on the square
lattice). Moreover, critical slowing down is observed at p
=0.5 (see Fig. 4). For L— we expect the §(0.5) function.

It is seen (Fig. 4) that for p=0.5, i.e., in the critical point,
GD is the fastest dynamics on both lattices, while KD is
definitely the slowest one:

76p(0.5) < 7p(0.5) < 7¢p(0.5). (2)

However from Fig. 4 this is not visible if the relation (4) is
valid also outside the critical point. If we look at Fig. 5 we
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FIG. 5. Comparison of mean relaxation times under three rules
(SD, GD, and KD) from a random initial state consisting of p
< 0.5 up-spins for a two-dimensional triangular lattice of 10* nodes.
It can be seen that KD for p <0.5 is the fastest dynamics among all
three dynamics. The same result was obtained also for the square
lattice. All results are averaged over 10° samples.

see that for p<0.5 the situation is completely reversed and,
in general,

ﬂSD(p #:0.5):> TSD(P #:0.5) > TKD(p #:0.5). (3)

We should now address a very intriguing question—why is
the dynamics which is the slowest in the critical point the
fastest outside this point and vice versa? Is it connected
somehow to a spatial structure which is created for a differ-
ent initial concentration p of up-spins? It can be observed
that for p<<0.5 a concentration c(f) of up-spins decreases
very fast and after a short time (50-200 MCS) small compact
clusters of up-spins are created (Fig. 6). On the contrary, for
p=0.5 initially concentration of up-spins does not change
significantly and only fluctuates around ¢(0)=p but the sys-
tem orders and after a short time (50-200 MCS) a large
cluster of up-spins is created (Fig. 6)

To check this hypothesis, in the next two sections (i.e., in
Secs. IV and V) we investigate the evolution of the system
under three outflow dynamics from the following two types
of ordered initial conditions. (1) “Stripes:” Initially, the sys-
tem is divided by the straight border into two horizontal

i

FIG. 6. Configurations of the system under outflow dynamics
(type KD) after 200 MCS from a random initial state consisting of
p=0.45 (left panel, present density of up-spins is 0.2513) and p
=0.5 (right panel, present density of up-spins is 0.5225) up-spins
for a two-dimensional square lattice of 10* nodes. The same results
are observed for all three dynamics.
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FIG. 7. Mean relaxation times under three rules (SD, GD, and
KD) for a two-dimensional L X L square lattice (L=100, i.e., 10
nodes). Initially the system is divided by the straight border into
two horizontal stripes: pL-width stripe of up-spins and
(1-p)L-width stripe of down-spins. Results are averaged over 10°
samples.

stripes—pL-width stripe of up-spins and (1-p)L-width
stripe of down-spins, i.e., p is again the initial density of
up-spins. (2) “Circle:” Initially, a single compact round clus-
ter of up-spins in the middle of the lattice consists of down-
spins; p is again the initial density of up-spins.

IV. RELAXATION TIME FROM “STRIPES”

In this section we investigate the relaxation of the system
under three types of outflow dynamics from the ordered ini-
tial conditions which we call “stripes”—initially the system
is divided by the straight border into two horizontal stripes:
pL-width stripe of up-spins and (1-p)L-width stripe of
down-spins, i.e., p is again the initial density of up-spins. For
“stripes” no phase transition is observed. Moreover, relax-
ation under GD is the fastest, while under KD it is the slow-
est among all three dynamics for all values of initial density
of up-spins p (Fig. 7). The same result was obtained for
random initial conditions with p=0.5, i.e., in the critical
point (Fig. 4):

76D < Tsp < TKD- 4)

As we have seen in the previous section for random initial
conditions and p=0.5 after a short time a large cluster of
up-spins is created (Fig. 6) for all three dynamics. Here we
can see that large clusters (stripes) are most unstable under
GD and most stable under KD. These results may explain
why relaxation from random initial conditions for p=0.5 is
fastest under GD and slowest under KD.

The second interesting result connected with the relax-
ation from “stripes” is the lack of the phase transition. How-
ever, this could be understood looking at the evolution of the
system’s configuration. In Fig. 8 snapshots of the sample
relaxation under SD on a two-dimensional square lattice is
presented. It is seen that relaxation from “stripes” is quasi-
one-dimensional in a sense that the structure of the stripes is
conserved, although the border between them is no longer
straight but rough. Evolution consists of movement of the

PHYSICAL REVIEW E 77, 021127 (2008)

- §
3

after 10° MCS after 17 x 10° MCS

| et |
after 47 x 10° MCS

»

after 7 < 10° MCS

R {
1

after 27 < 10° MCS after 37 x 10° MCS

1
K

after 48 x 10° MCS after 49 » 10” MCS after 50 x 10° MCS
FIG. 8. Snapshots of the sample relaxation under SD on a two-

dimensional L X L square lattice (L=100, i.e., 10* nodes). Initially

the system is divided by the straight border into two equal horizon-

tal stripes. Here p=0.5.

stripes, roughening the border between them and changing
the width of the stripes. Eventually, one of the stripes breaks
at one point to form a simply connected cluster and from this
moment the evolution leads the system very fast to the final
state with all spins in the same state. The same scenario was
observed for all three dynamics and for all values of p. It
should be mentioned here that “stripes” configuration is the
steady state of zero-temperature Glauber dynamics. Several
years ago the following question was raised by Spirin et al.
[28,29]: “What happens when an Ising ferromagnet, with
spins endowed with Glauber dynamics, is suddenly cooled
from a high temperature to zero temperature?” The first ex-
pectation was that the system should eventually reach the
ground state. However, this is true only for a one-
dimensional system. On the square lattice there exist many
metastable states that consist of alternating vertical (or hori-
zontal) stripes of widths =2. These arise because a straight
boundary between up and down phases is stable in zero-
temperature Glauber dynamics. As we see this is not the case
of the outflow dynamics under which the system eventually
always reaches the ground state. This result is certainly also
a contribution to the discussion about differences between
inflow (zero-temperature Glauber) and outflow dynamics
(see [21] and references therein).

Thus the lack of the phase transition from “stripes” can
probably be explained by the absence of the phase transition
in one-dimensional outflow dynamics described by the for-
mula (1) (see also [21]). In Fig. 9 the mean relaxation times
from a random initial state consisting of p up-spins for out-
flow dynamics in one dimension with W,=0 is presented for
several lattice sizes. The case of W, is consistent with defi-
nitions of our two-dimensional dynamics, i.e., under one-
dimensional outflow dynamics the pair of neighboring spins
S; and S;;; is chosen and if §;S;,;=1 then the two nearest
neighbors of the pair follow its direction. It is seen that no
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FIG. 9. Mean relaxation times from a random initial state con-
sisting of p up-spins for outflow dynamics in one dimension are
presented for several lattice sizes. Under one-dimensional outflow
dynamics the pair of neighboring spins S; and S, is chosen and if
S.:S;.1=1, then the two nearest neighbors of the pair follow its di-
rection. It is clearly visible that in this case the mean relaxation time
scales with the lattice size as ~L? analogous to the voter model
[1-3]. The results presented on the plot are averaged over 10*
samples.

phase transition is observed. Moreover, the mean relaxation
time 7 perfectly scales with the size of the system L as 7
~L? for all p. The same scaling law has been obtained al-
ready for other one-dimensional consensus dynamics like
zero-temperature Glauber dynamics or voter model and can
be calculated analytically [1-3].

The similarity between relaxation under one-dimensional
dynamics and relaxation under outflow dynamics from
“stripes” in two dimensions suggests the existence of a simi-
lar scaling law between the mean relaxation time (7) and the
size N=L XL of the system also in two dimensions. The
mean relaxation times from “stripes” consisting of p up-spins
for several lattice sizes are presented in Fig. 10. It was ob-
tained that the relaxation time can be scaled with the sys-
tem’s size for all three dynamics with the same scaling ex-
ponent 7~ L%, a=3.5 (see Fig. 10).
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FIG. 11. Mean relaxation times under three rules (SD, GD, and
KD) for a small two-dimensional L X L triangular lattice (L=25,
i.e., 625 nodes). Initially there is a single compact round cluster of
up-spins of radius R %Lv“p/—ﬂ' (the value of p=0.1 corresponds here
to the radius R= \J“T9~4.36). The results are averaged over 10°
samples.

V. RELAXATION TIME FROM “CIRCLE”

In this section we briefly present the results for the relax-
ation of the system under three types of outflow dynamics
from the ordered initial conditions which we call “circle”—
initially there is a single compact round cluster of up-spins in
the middle of the lattice consisting of down-spins. As we
have seen in Fig. 6 starting from random initial conditions
the evolution after short times creates small compact isolated
clusters. On the other hand, it was observed that for random
initial conditions and p # 0.5 relaxation under KD is fastest,
while under GD it is slowest among all three dynamics.
Simulations from the “circle” type of initial conditions can
help in understanding this relation [see Eq. (3)].

In Fig. 11 we present the mean relaxation times under
three rules (SD, GD, and KD) for small two-dimensional L
X L triangular lattice (L=25, i.e., 625 nodes) in the case of
“circle” initial conditions consisting of pL* up-spins (i.e., p
is again density of up-spins). It can be seen that in this case
we have
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FIG. 10. Mean relaxation times for a two-dimensional L X L triangular lattice under SD (left panel) and KD (right panel). Initially the
system is divided by the straight border into two horizontal stripes: pL-width stripe of up-spins and (1 —p)L-width stripe of down-spins. In
this case the relaxation time scales as ~L> for all three dynamics. The results are averaged over 10 samples.
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Tkp < Tsp ~ TGD- (5)

This behavior is similar to the case of random initial condi-
tions with p # 0.5, where KD was also the fastest one.

This result shows that small round clusters are more
stable under GD, contrary to infinite clusters (like stripes)
which are most stable for KD. Summarizing results for ran-
dom, “stripes,” and “circle” initial conditions, we obtain the
following:

TKD = TSD = TGD
“stripes” for all p and random initial conditions for p=0.5,
Tkp < TSD < TGD
random initial conditions for p=0.5, and
TkD < TSD ~ TGD
“circle” for p investigated.
VL. IS THE SCALING UNIVERSAL?

It has been found both analytically and numerically that
dependence between the mean relaxation time 7 and the size
of the system L can be expressed by a simple scaling law
7~L? in the case of a one-dimensional voter model [1-3].
The same scaling is valid also for relaxation in one dimen-
sion under zero-temperature Glauber (inflow) dynamics as
well as outflow dynamics (see Fig. 9).

In two dimensions a situation is much more complicated.
It was found that for a two-dimensional voter model from
random initial conditions and p=0.5 the following scaling
law is valid: 7~ N log N [1-3]. However, this scaling law is
valid neither for two-dimensional inflow nor outflow dynam-
ics. It was observed [27-31] that for the Ising ferromagnet
with spins endowed with zero-temperature Glauber dynam-
ics there exist many metastable states that consist of alternat-
ing vertical (or horizontal) stripes of widths =2. If we start
from random initial conditions and let the system evolve
under inflow dynamics, we eventually reach the final
“stripes” configuration in 1/3 of the simulations [28]. Be-
cause a straight boundary between up and down phases is
stable in zero-temperature Glauber dynamics we will never
leave such a “stripe” state—for this reason the mean relax-
ation time is infinite. As we have seen in previous sections
(Secs. IIT and IV), this is not the case for outflow dynamics
under which the system eventually always reaches the
ground state.

The question is whether the scaling law obtained for the
two-dimensional voter model is valid in the case of outflow
dynamics. Up till now we have found the scaling law for
systems endowed with outflow dynamics initially ordered in
“stripes” configuration (see Fig. 7). In this case the mean
relaxation time 7 scales with the system size N=LXL as 7
~1.33 for all three outflow dynamics both on the square and
triangular lattice. However, this scaling is not valid in a case
of random initial conditions. It occurs that for random initial
conditions with the density p of up-spins we can find
p-dependent scaling laws: 7~ L°?) (see Fig. 12).

As we see for consensus dynamics with binary variables,
scaling laws are universal in one dimension. It should be
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p=0.1 o p=0.1

FIG. 12. Scaling of the mean relaxation time with the system
size for the Stauffer et al. rule. Initial state consists of p randomly
distributed up-spins for two types of two-dimensional LXL
lattices—square (left panel) and triangular (right panel). Similar
scaling is observed also for GD and KD. It is visible that the scaling
exponent for random initial conditions is p-dependent. Results are
averaged over 10 samples and the largest simulated lattice consists
of N=10%X 103=10° nodes.

mentioned here that all these results have been obtained in
the case of random sequential updating. It would be interest-
ing for future work to check whether the same scaling is
obtained for other types of updating such as, e.g., synchro-
nous or c-synchronous updating [21].

Contrary to one dimension, even within the outflow dy-
namics no single scaling law can be found in two
dimensions—it depends strongly on the initial configuration
of the system. However, a very intriguing result connected
with scaling can be obtained if we look at the distribution of
relaxation times instead of mean relaxation time alone.

VIIL. DISTRIBUTION OF RELAXATION TIMES

In the mean field approach [25] and in a one-dimensional
system it has been found that the distribution of waiting
times has an exponential tail with a p-independent exponent.
Results for the square lattice for SD and GD were presented
in Ref. [13]. Under both dynamics the distribution of relax-
ation times has an exponential tail, but the exponent is
p-dependent. Interestingly, the dependence between the ex-
ponent and the initial number of up-spins is identical for both
dynamics. It should be mentioned here that in Ref. [12] it
was shown that for p=0.5 the distribution of relaxation times
deviates from the log-normal distribution for SD. However,
they plotted a histogram (i.e., an estimate of the probability
distribution function) instead of the cumulative distribution
function (CDF) and presented it in the log-log scale. In Ref.
[13] to compare our results with the results obtained in Ref.
[12] we calculated both the cumulative distribution function
(in fact, the tail 1-CDF) and the histogram of relaxation
times. It occurs that our results agree with those presented in
Ref. [12]. Already in Ref. [13] the deviation from single
exponential decay has been visible. However, for large relax-
ation times exponential decay for both the histogram and the
cumulative distribution function tail was observed in agree-
ment with the results obtained by Slanina and Lavicka for
the complete graph [25] and with Schulze [26] who got an
exponential decay on the square lattice by introducing both
local and global interactions.

In this paper we will not present the histogram of the
relaxation times. Instead we focus only on the tail of the
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FIG. 13. Tail of the cumulative distribution function of the re-
laxation time 1—F (where F denotes CDF) vs 7/L?* from a random
initial state consisting of p=0.5 up-spins for SD (top panels) and
KD (bottom panels) in a semilog scale are presented. The lattice
size runs from L=50 (lowest curve) to L=100 (uppermost curve).
Two regimes—short and long time—are visible for both dynamics
in the case of square and triangular lattices. For the short time
regime all curves collapse to a single line if we divide the relaxation
time by the lattice size N=L?. Analogous results are obtained for
GD.

cumulative distribution function 1-CDF. We would like to
explain here our choice and persuade that such a choice gives
much more reliable results in estimating distributions. Usu-
ally, a histogram is used, because such a representation is
much more intuitive. However, such a representation, con-
trary to CDF, is not one-valued because we are free to choose
the number of intervals to which we divide all results. It can
be seen very often that the same results look different just
because of this not one-valued choice. Moreover, a statistics
(i.e., number of results that are represented by one point) in a
case of histogram is worse than in a case of CDF, which is
clearly visible on plots—in a case of CDF the plot is much
smoother. The last reason for which we choose CDF is the
following: The histogram is only an estimation of the prob-
ability distribution function. For all these reasons we decided
to focus on CDF.

In all three dynamics short and long time regimes are
observed. These two time regimes are much more visible if
we divide relaxation times by the lattice size (see Fig. 13),
i.e., we plot the tail the cumulative distribution function of
relaxation time 1-CDF versus 7/L? instead of . Interest-
ingly, results for the short time regime scale with the lattice
size with a simple exponent 2. The same exponent is valid
for all three dynamics on both square and triangular lattices.
It should be mentioned here that for one-dimensional outflow
(as well as inflow) dynamics curves for all lattice sizes col-
lapse to a single line if we divide the relaxation time by L?;
this result agrees with the scaling of the mean relaxation time
with lattice size 7~ L?.

The result obtained from the distribution for the relaxation
time is very intriguing and certainly needs deeper investiga-
tion which we leave for a future work.
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VIII. CONCLUSIONS

In this paper we proposed a generalization of the one-
dimensional outflow dynamics (KD). The rule was intro-
duced as a simplification of Galam dynamics (GD) proposed
in Ref. [12]. In a previous paper [13] we compared the re-
laxation from a random initial state consisting of p up-spins
under two outflow dynamics on the square lattice [Stauffer er
al. (SD) [12] and GD]. Here, similar to the previous paper,
we have investigated the mean relaxation time from an initial
state consisting of p up-spins. However, in this paper we
simulated all three types of outflow dynamics, GD, SD, and
KD, both on the square and triangular lattices. Moreover, we
took into account several types of initial configuration—
random, “stripes,” and “circle.”

Simulation results showed that the relaxations on both
lattices (square and triangular) are identical for all three out-
flow dynamics contrary to results obtained for two-states cel-
lular automaton [19] but in agreement with the results for
outflow dynamics on various complex networks [15].

We have found the phase transition for all dynamics—for
p<<0.5 the “all spins up” state is never reached, while for
p>0.5 this state is obtained with probability 1 (the same
result was obtained previously in Refs. [12,13] on the square
lattice). Interestingly, in the critical point, GD is the fastest
dynamics and KD is definitely the slowest, while outside of
the critical point the situation is reversed. We have addressed
a very intriguing question—why is the dynamics which is the
slowest one in the critical point the fastest one outside this
point and vice versa? We connected this behavior with a
spatial structure which is created for different initial concen-
trations p of up-spins—for p<<0.5 small compact isolated
clusters are created, while for p=0.5 an infinite cluster is
occurring. Starting from two types of ordered states, we have
shown that small round clusters are most stable under GD
contrary to infinite clusters (like stripes) which are most
stable for KD. Summarizing results for random, “stripes,”
and “circle” initial conditions, we have obtained the follow-
ing:

TKD = Tsp = TGD
“stripes” for all p and random initial conditions for p=0.5,
Tkp < Tsp < TGD

random initial conditions for p=0.5, and

Tkp < Tsp =~ TGD

“circle” for p investigated.

Another interesting result has been obtained while look-
ing at the scaling laws. Both the analytic and numerical ap-
proaches in the case of the one-dimensional voter model
[1-3] lead to the conclusion that dependence between the
mean relaxation time 7 and the size of the system L can be
expressed by a simple scaling law 7~ L?. The same scaling
is also valid for relaxation in one dimension under zero-
temperature Glauber (inflow) dynamics as well as outflow
dynamics. On the contrary, for two dimensions even within
the outflow dynamics no single scaling law can be found—it
depends strongly on the initial configuration of the system.
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Probably the most intriguing, yet still preliminary, result
presented in this paper is connected with the distribution of
relaxation times. For one-dimensional outflow (as well as
inflow) dynamics curves for all lattice sizes collapse to a
single line if we divide the relaxation time by L?%; this result
agrees with the scaling of the mean relaxation time with
lattice size 7~ L. In the case of a two-dimensional system in
all three dynamics a short and a long time regime in the
distribution of relaxation times are observed. These two time
regimes are much more visible if we divide relaxation times
by the lattice size, i.e., we plot the tail of the cumulative

PHYSICAL REVIEW E 77, 021127 (2008)

distribution function of relaxation time 1—CDF versus 7/L?
instead of 7. Interestingly, the results for the short time re-
gime scale with the lattice size with the same simple expo-
nent 2 as obtained for one-dimensional systems. These inter-
esting results certainly require further investigation.
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We introduce a framework based on the percolation idea to investigate the relaxation under zero-temperature
Glauber and outflow dynamics on L X L square and triangular lattices. This helps us to understand the appear-
ance of a double time regime in the survival probability. We show that the first, short-time, regime corresponds
to relaxation through droplets and the second, long-time, regime corresponds to relaxation through stripes. For
both dynamics the probability that the system becomes ordered through droplets (which indicates fast relax-

ation) is about 2/3.

DOI: 10.1103/PhysRevE.79.011119

Systems quenched from a disordered into an ordered
phase (such as the Ising model quenched from initial tem-
perature Ty= to final Tp=0) in the thermodynamic limit
never reach the final ferromagnetic steady state. This is one
of the reasons why the theory of phase ordering kinetics has
remained a challenge for more than four decades (for a re-
view, read [1]). Moreover, Spirin et al. [2] showed that even
a simple two-dimensional Ising ferromagnet has a large num-
ber of metastable states with respect to zero-temperature
Glauber dynamics [3] and, therefore, at zero temperature the
system could get stuck forever in one of the metastable states
that consists of alternating vertical or horizontal stripes—
from now on we call it the stripe configuration (S). This is
understood on the basis of the definition of zero-temperature
Glauber dynamics, which involves picking a spin at random
and flipping it according to the direction of a majority of its
nearest neighbors. If there is no majority, the spin is flipped
with probability 1/2. Thus a straight interface does not
evolve. A slight difference between square and triangular lat-
tices in the probability Pg.() that the system eventually
reaches a stripe state was found in [4]: Pg(0)=0.315 and
0.344 on the square and triangular lattices, respectively.
Moreover, in the case of the square lattice in about 0.04 of all
simulations a diagonal stripe (DS) configuration appears [2].

Very interesting behavior is exhibited by the survival
probability S(¢) that the system has not yet reached its final
state by time 7. On a semilogarithmic plot S(¢) lies on a
straight line with a large negative slope and then crosses over
to another line with smaller negative slope [2]. Recently,
similar behavior of S(r) was observed for Ising spins under
outflow dynamics [5], which originally was introduced to
describe opinion change in a society [6].

A number of social experiments have shown that, when
faced with a strong group consensus, people often conform
even if they believe that the group may be in error. However,
even a single visible dissenter from the group’s position em-
boldens others to resist conformity [7]. This observation was
recently expressed in a simple one-dimensional “united we
stand, divided we fall” model of opinion formation [6]. The
model was later renamed the Sznajd model by Stauffer ef al.
[8] and generalized to a two-dimensional square lattice. In its
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two-dimensional version the model has found a number of
social applications (for reviews, see [9—13]), but in this paper
we investigate it from the theoretical point of view. The cru-
cial difference between the Sznajd model and zero-
temperature Glauber dynamics [3] is that information flows
outward from the center nodes to the surrounding neighbor-
hood and not the other way around—hence the name outflow
dynamics. It should be mentioned that, although one-
dimensional outflow dynamics obeys detailed balance, no
finite-temperature version of the outflow rule has been pro-
posed up till now. It seems that the temperature cannot be
introduced into our dynamics without breaking the detailed
balance condition, but further studies concerning this issue
are definitely needed. Moreover, in contrast to Glauber dy-
namics, generalization of the one-dimensional rule to higher
dimensions is neither straightforward nor unambiguous. Sev-
eral types of two-dimensional outflow dynamics have been
already introduced [5,8,9], and recently three of them have
been investigated from the theoretical point of view [5]. For
all three investigated outflow dynamics, a short- and a long-
time regime have been observed. The short-time regime (fast
relaxation) was observed for about 2/3 of all trials [5].

In this paper, we introduce a framework based on the
percolation idea to investigate the evolution of the configu-
ration under zero-temperature Glauber and outflow dynamics
on two-dimensional square and triangular lattices (sugges-
tions that percolation phenomena can influence zero-
temperature dynamics have appeared already in [14]). This
helps us to understand the appearance of two time regimes in
the survival probability S(r). We focus here only on one type
of outflow dynamics defined below, but the same results
could be obtained for other types of two-dimensional outflow
dynamics investigated in [5]. Let us begin with the definition
of the dynamics. The system consists of L X L Ising spins
S;=*1 (i=1,...,L* placed on a two-dimensional lattice
with periodic boundary conditions. In the case of the square
lattice, in each update a 2 X2 panel of four neighbors is
selected randomly. If all four spins in a panel are parallel
then the panel flips its eight nearest neighbors to the unani-
mous direction of the four spins in the panel. In other cases,
these eight neighbors are left unchanged. Similarly we define
the dynamics on a triangular lattice (for details see [5]). Un-
der outflow dynamics the system eventually always reaches a
ferromagnetic steady state, in contrast to zero-temperature
Glauber dynamics. For this reason outflow dynamics is sim-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.011119

GRZEGORZ KONDRAT AND KATARZYNA SZNAJD-WERON

(d)

: |
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FIG. 1. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100X 100 square lattice from a ran-
dom initial state consisting of 50% up spins after (a) 100, (b) 300,
(c) 400, (d) 1000, (e) 1500, and (f) 2300 Monte Carlo steps (MCS).
In this trial, after a relatively short time (about 300 MCS) a simply
connected cluster (droplet) is formed.

pler to analyze and the percolation framework is easier to
understand.

Let us begin with presenting two sample relaxations under
our outflow dynamics on a 100 X 100 square lattice (see Figs.
1 and 2). Initially, the system consists of randomly distrib-
uted equal numbers of up (50%) and down (50%) spins.
After a relatively short time in each relaxation only one of
two types of configurations is created—droplets (Fig. 1) or
stripes (Fig. 2). In the stripe configuration one of the stripes
eventually breaks at one point to form a droplet and from this
moment the evolution of the system leads very quickly to the
ferromagnetic steady state. This observation led us to the
following postulate: A system quenched from a disordered to
an ordered phase evolves through droplets (fast relaxation) or
stripes (slow relaxation). The first, short-time, regime in the
survival probability S(7) corresponds to relaxation through
droplets, and the second, long-time, regime to relaxation
through stripes. We expect that the above postulate is valid
not only in the case of outflow but also zero-temperature
Glauber dynamics. To confirm this postulate we introduce
now a framework based on the percolation idea.

In the following the quantity of central interest will be the
connectivity of clusters of given spins (up or down) in a
specified direction (top to bottom or left to right). We say
that the connectivity is nonzero (1) in a given direction (e.g.,
left-right) if two opposite edges of the system (left and right)
can be connected via a continuous path composed of the
given spins [e.g., for spins up we denote the left-right con-
nectivity as P;r(7)=1 and so on]. For one type of spins there
are four distinct possibilities of overall connectivity: zero in
both directions (00), nonzero in one direction (01 or 10), and
nonzero in both (11). As we deal with two types of spins,

PHYSICAL REVIEW E 79, 011119 (2009)

R

)
q

¥

|

ot

(e

(f

i

)

(9 (h)

FIG. 2. Snapshots of the sample relaxation under outflow dy-
namics on a two-dimensional 100X 100 square lattice from a ran-
dom initial state consisting of 50% up spins after (a) 100, (b) 300,
(c) 500, (d) 5000, (e) 14 000, (f) 15 000, (g) 15 100, and (h) 16 000
Monte Carlo steps (MCS). In this trial after a relatively short time
(about 1000 MCS) the stripe configuration is formed. Eventually,
one of the stripes breaks at one point to form a simply connected
cluster, and from this moment the evolution of the system leads
very quickly to the final state with all spins in the same state.

there are (at least in principle) 16 various combinations of
connectivity possible. In the hard wall boundary conditions
some configurations are forbidden, e.g., up spins connected
vertically while down spins are connected horizontally. With
periodic boundary conditions, however, all possibilities are
valid; see Fig. 3 for a short review. Some configurations [the
first four—the chessboard, stripes (horizontal or vertical) on
chessboard, and odd configurations] are so exceptional that
we have never observed them in real simulations. The main
idea of the percolation framework analysis of system dynam-
ics consists in counting how much time the system spends in
each configuration in its history from the random initial state
toward the steady final state. In order to obtain information
in as clear and compact way as possible, for each simulation
sample, we provide four cumulative times spent by the sys-
tem in the following configurations: droplet (D), stripes (S),
diagonal stripes (DS), and transient (7). The diagonal stripes
configuration is generally defined as having full connectivity
in both directions (horizontal and vertical) for both spin ori-
entations (up and down): [11-11]—see Fig. 3. Its name
comes from the simplest example of this configuration in the
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stripes on [01-00] E
chessboard
(horizontal) 00-01]
stripes on
[10-00] ﬁ
chessboard
(vertical) [O 0-1 O]
odd [01-10] ﬁ
[10-01]
(a)
droplet (D [11-00] ﬁ
plet (D) [00-11]
stripes (S) [01-01] %
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stripes (S) [10-10] %
(vertical)
transient [01-11] @
state (T) [1T1-01]
transient [1T0-11] @
state (T) [11-10]
diagonal [M11-11] ﬁ
stripes (DS)

(b)

FIG. 3. All possible configurations with respect to connectivity
of up and down spins on a lattice with periodic boundary condi-
tions. In the middle column a digit 1 appearing at a given position
indicates the connectivity of spins up or down in the vertical (TB)
or horizontal (LR) direction. The first four types, although theoreti-
cally possible, do not appear in real simulations.

shape of alternating stripes angled at 45° to the horizontal.
Here the periodicity of the boundary conditions is crucial,
otherwise there is no possibility of connectivity in both di-
rections for both spin components. The last configuration’s
name (7) comes from the fact that these states do not last
long and are possibly a by-product of a transition between
more stable configurations. In order to speed up the simula-
tions, we decided to make a check of the configuration type
not continuously, but at certain times. We verified that our
choice of checking time interval (=1 MCS) did not affect the
quality of the results.

Application of the percolation framework analysis to our
outflow dynamics helps in understanding the shape of the
survival probability obtained in previous work [5]. The data
confirm our postulate of either fast evolution through drop-
lets or slow evolution through stripes. The times spent by the
system in various configurations are presented in Fig. 4 for
our outflow dynamics on a periodic square lattice of size L
=100. There are shown data collected from N=1000 simula-
tions. For each simulation the relaxation time is the abscissa
of the symbols. For each configuration type appearing (D, S,
DS, 7T) its cumulative time is the ordinate. Thus for each
simulation there are four points at the same abscissa value,
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FIG. 4. (Color online) Relaxation under outflow dynamics on
two-dimensional 100X 100 square lattice from random initial state
consisting of 50% up spins; the data from N=10 simulation are
presented. Symbols show how much time the system spends in
given configuration type before reaching the final state. For short
relaxation times (7<4X 103> MCS) the evolution goes mostly
through the droplet state (D), while for longer relaxation times
nearly 100% of the time is spent in the stripe configuration (S)
[occasionally in the diagonal stripe (DS) configuration]. The cross-
over time (here approximately 4 X 103> MCS) coincides with the
time where the change of slope appears in the survival probability

[5].

representing the contributions of particular configuration
types to the total relaxation time. For example, let us con-
sider a simulation having relaxation time 10 000 MCS. Let
us assume that during the evolution toward its final state the
system spent 2000 MCS in D configurations, 7950 MCS in S
configurations, 45 MCS in T configurations, and 5 MCS in
DS configurations. Thus resulting from this particular simu-
lation there appear four points on the plot having the follow-
ing coordinates: (10000, 2000), (10 000, 7950), (10 000,
45), and (10 000, 5). The proximity of a symbol to the line
y=x indicates that the system dwells in the corresponding
configuration most of the time until relaxation. The log-log
setting of the plot makes it possible to bring out more details
interesting for further analysis. Let us assume that a particu-
lar configuration type (say X) dominated the system history
until the final state in all simulations with relaxation times
from some interval. Thus one would see that symbols corre-
sponding to this configuration type X would group high in
the plot along the line y=x (or very close to this line) on the
mentioned interval. The other, much rarer configuration
types would be found as symbols at the bottom of the same
plot. On the other hand if there was a case of equally long-
lasting configuration types (say, each types D, S, T, and DS
took 25% of the relaxation time), the points would all lie
well below the line y=x (this is not the case in the considered
set of data, however). There is yet another possibility—in
different simulations of given relaxation times various con-
figuration types dominate. In such a case it could be seen on
the plot that the different symbols approach the line y=x (in
our case we have there a transition region; see further in the
text).

All simulations considered in Fig. 4 naturally split into
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two sets—one (.A), for which the droplet configuration domi-
nates (this is the case for all simulations with relaxation time
smaller than 4 X 10> MCS) and the second (B), where the
system spends most of the time in the stripe configuration
(here belong all simulations with relaxation times greater
than 6 X 10° MCS). To the latter also belong the rare simu-
lations for which long-lived diagonal stripes are observed.
There is also a third, transition region (relaxation times be-
tween 4 X 10° and 6 X 10> MCS) consisting of simulations
for which the dominant configuration type is not unique.
Then there is a considerable probability of finding simula-
tions with various dominant configuration types.

In the set A (short relaxation times) we attribute different
values of the droplet dwelling time to different sizes of the
droplet arising from the random initial state (for bigger drop-
lets the relaxation time is longer [5]). The dynamics of the
samples from the set B is different: most of the time the
system spends in the stripe configuration, after which the
stripe breaks and the resulting droplet evolves according to
the previous scenario (pertaining to the set A). In this case
the droplet part of the total time remains at the same level
(about 1.5X 10°> MCS on Fig. 4); this is because the droplet
arising from breaking the stripe has more or less the same
size (of order of half the size of the system). In the case of
the stripes their dwelling time has a much broader distribu-
tion, resulting not only from the differences in width of the
stripes that arise from the random initial state, but mainly
from behavior similar to a Brownian random walk. For the
stripe configuration the rather straight interface between
clusters of spins with different orientations has equal chance
to move in either direction (for the droplet the direction of
the interface movement is always toward its center). The
characteristic time limiting from above the set A (here about
4% 10° MCS) coincides exactly with the time of change in
the slope of the survival probability [5]. These two regimes
of exponential dependence correspond to evolution through
either the droplet or stripe configuration (the former are in-
terestingly always about 2/3 of all cases).

From the above analysis there appears the following sce-
nario for the dynamics of the system. At the first stage, when
the system starts its evolution from a totally random state
with 50% spins up and 50% spins down (i.e., quenched from
infinite temperature) small clusters tend to either grow or
disappear and the characteristic length in the system (the
mean width of the clusters) approaches the system size. The
interface between clusters of opposite spins gets smoother
and smoother. At a certain (rather short) time the state of the
system belongs to either the droplet, stripe, or diagonal stripe
configuration. In the first case (D) it is known [5] that the
droplet relaxes to the final steady state relatively fast via
shrinking (it has been proved already that every smooth
closed curve in the plane asymptotically approaches a
shrinking circular shape [15,16]). In the case when the sys-
tem in the first stage is in the stripe configuration, the evo-
lution is much slower (stripes at some points get thicker, at
others get thinner). One of the stripes eventually narrows to
make a break, the cluster becomes simply connected, and the
configuration switches to a droplet. The only configuration
not discussed yet—the transient one (T)—appears for short
periods and only either at the beginning of the simulations
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FIG. 5. (Color online) Relaxation under Glauber (inflow) dy-
namics on two-dimensional 100 X 100 square lattice from a random
initial state consisting of 50% up spins; the data from N=103 simu-
lation are presented. Symbols show how much time the system
spends in a given configuration type before reaching the final state.
For short relaxation times (7<<2X 10* MCS) the evolution goes
mostly through the droplet state (D). For much longer relaxation
times (>8 X 10* MCS) nearly 100% of the time is spent in the
diagonal stripe configuration (DS). For intermediate relaxation
times the stripe configuration (S) dominates. The crossover time
(here approximately 2 X 10* MCS) coincides with the time where
the change of slope appears in the survival probability [5].

(when the system “decides” whether to go through the stripe
configuration or directly through the droplet configuration)
or at switching times, when the system changes its configu-
ration (e.g., DS— D). Our extensive simulations proved that
all above statements remain valid for outflow dynamics on a
triangular lattice as well.

In the case of Glauber dynamics the overall dynamics
characteristic is somewhat similar, but a bit more compli-
cated. This is because in this dynamics the regular stripe
configuration (with straight line interfaces) is the final one
(in contrast to the outflow dynamics, where it always decays
to the ferromagnetic state with all spins parallel). In Fig. 5
there are presented data for Glauber dynamics simulations,
but here the relaxation time is measured until the system
reaches any of its final states (including regular stripes).
There is a natural partition into three sets of simulations: set
C with evolution mostly through droplets (it corresponds to
the set A of the previous dynamics), set D with the evolution
leading mostly through diagonal stripes (somewhat similar to
the set BB), and set £ of samples leading to the final regular
stripe configuration, characterized by the absolute majority
of stripe configurations.

Cases from the set C correspond exactly to the previously
described set A of outflow dynamics. The only difference
between the set D and the previously considered set B is that
in the set for Glauber dynamics there is evolution only
through diagonal stripes, since the horizontal and vertical
stripes no longer decay to the ferromagnetic state and they
form the new set £. Depending whether the system decides at
an early stage to evolve through the droplet configuration,
stripes, or diagonal stripes, we got the shortest, moderate,
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and longest relaxation times, respectively. In the plot of sur-
vival probability of Ref. [2] the change of the slope coincides
with the largest time in the set C (here 2 X 10* MCS). The
relative size of the set C (the probability that the system
chooses the droplet configuration) is here also 2/3, as it was
in the case of outflow dynamics. This universal constant for
outflow dynamics [5] and for Glauber dynamics on a square
lattice as well as on a triangular one (we checked that
Glauber dynamics on a triangular lattice also conforms with
the previous conclusions for a square lattice) must have some
simple explanation, but unfortunately it needs further inves-
tigations. One can suppose that this property is of a funda-
mental nature for the broader class of zero-temperature dy-
namics considered in the literature [17,18].

PHYSICAL REVIEW E 79, 011119 (2009)

We believe that the percolation framework we proposed
in this paper could be used to study relaxation not only in the
case of zero-temperature Ising-spin dynamics, but also in a
much broader class of coarsening systems. Our method gives
deeper insight into the relaxing system than the survival
probability. It cannot describe configurations in detail, as was
done, for example, in [19]. On the other hand, it gives gen-
eral information on the system structure during relaxation,
which may help to find some universal features of the dy-
namics investigated.
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1. Introduction

In quantum statistical mechanics there are very few rigorous results. Bose and Fermi ideal
gases are the only models for which there exists a full theory. These models are far from
being realistic however. For more physical potentials the only strict results come from
Ginibre [1]. In his paper it is shown that there is no phase transition in very low density
gases. In our work we prove that the domain free from phase transitions for a wide class
of physical potentials is much broader and the possibility of phase transitions is limited
to much higher gas densities.

Equilibrium statistical mechanics is usually [2] described via the equilibrium Gibbs
state in the grand canonical ensemble:

—BK
) = ol )
Tr[e=FK]

where K = H — uN, 8,1 € R, and e K is a trace class operator. Researching phase
transitions requires introduction of the finite volume Gibbs state:

Tr[e*ﬁ(Ha,A*MNA)A]
- Tr[efﬁ(Ho',AfﬂNA)] (2)

and the analysis of properties of the thermodynamic limit of the Gibbs state:
WO (A) = Tim WBH(A). 3)

The latter consists of detailed investigation of its existence, uniqueness, temperature
(8 = 1/kT) and activity (z = exp(Su)) dependence, and self-adjoint extensions of the
Hamiltonian with boundary conditions o.

In our work we follow methods developed by Ginibre [1]. Having used the Feynman-
Kac formula we see a resemblance between the Gibbs state’s integral representation
on Wiener measures and correlation functions of quantum mechanics. Analogously we
construct Kirkwood—Salsburg type integral equations (KS), that are very convenient
in investigating the Gibbs state’s thermodynamical limit. Here we write the integral
equations in operator form and analyze their spectral properties.

In the second section we use positive operators on cones in real Banach space, as
in [3], where classical KS operators were successfully investigated. This approach allows
us to conclude that the activity z = —r(K,) belongs to the spectrum of the KS integral

d0i:10.1088,/1742-5468,/2010/01/P01022 2
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operator. Since only positive values of the activity z have definite physical meaning, we
have to deal with spectral properties of the KS operator also for z > r(Kj).

In the third section we analyze the spectrum of the shifted KS operator (K, + CT).
By the use of positive operators we improve on known estimates of the spectral radius of
the KS operator. One of the more important points relies on getting rid of the unphysical
weight £ that appears in norm estimates. As a result of our investigations of the shifted
operator K, + C'1I, we find a new domain free from phase transitions in the Maxwell-
Boltzmann statistics.

2. Basic notions

Let A be a bounded, connected open set in R” with piecewise C' boundary OA. Let
Q(A, 3,n) be the set of families of n continuous functions w™ = (w1, ...,w,), each from
the interval [0, 3] to A, such that for all i < j and all ¢ € [0, 5] we have w;(t) — w;(t) # 0.
The set € of single, continuous functions (trajectories) w(t): [0,5] — R” is a Banach
space with the norm ||w|| = sup, |w(?)].

Let B¢(A) be the set of real, continuous functions ® on |J,-, Q(A, 5, n) such that
® = {p(w")}2, is bounded for each n and on each sector Q(A, 3,n) the function is
symmetric with respect to permutations of their arguments. The space Be(A) with the
norm

wneQ(A,B,n)

!Iq’llzsgp [é” sup IsO(W")II (4)

is the Banach space for £ > 0.
According to the theorem 6.3.9 of [2]:

/B Y (@) M () = /B (@) i (), (5)

where the characteristic function
() = 1 ifw(t) e A foralltel0,[] (©)
XaW) = 0 otherwise,

and B C Q(A, 3,1), the trajectories that do not hit the boundary dA will not feel the
effect of the boundary condition o.

In our discussion we restrict ourselves to continuous functions, since all non-continuous
functions form a set of Wiener measure dy zero [1].

In the space By = B¢(R") we introduce an integral operator:

m - 1 ~n ~ T m.o~n
for m > 1, and

(B = Y [ 4" ke, a) @), )

d0i:10.1088,/1742-5468,/2010/01/P01022 3
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where W™ — (ws,ws, .. wn) and
h(wn, &) = li[l {eXp {— /Oﬁ V(e (t) — &5(0)) dt] - 1} | ()

In the above equations we integrate over the Wiener measure:
do® = d@, - - - day, (10)
where

Ao = [ Az du (1)
A

and the variable u denotes starting and ending points of a trajectory wy [2].
Here we assume that the potential V' is non-negative, bounded and regular, so

k(w,@) <0, (12)
and

C= sup/ |k(w,®)]do < oo. (13)

The KS operator K = Ek, where
(E®)(w") = exp[—AW (wy, ™) p(w"), (14)
and W(wy,w™) =377, V(wi —w;) for n > 1 and W(wy,w'") = 0.

Now we introduce the projector Ily:

n

(Ma®) (") = [ [xalw;) (@), (15)

J=1

where the characteristic function ya(w;) = 1 if w;(t) € A for all ¢ € [0, 5] and 0 otherwise.
The KS operator in finite volume reads

K, = I EKII,. (16)
Let us here recall some definitions from the theory of cones [4].

Definition 1. A cone in a linear space F' is a convex subset K C F such that r € F' =
tr € K forallt >0, and —z ¢ K.

Definition 2. A cone is generating if Vyepdy, soex T = 21 — 22.

Definition 3. Let K be a cone in the Banach space F'. We say that two elements x1, z9 € F
are in the relation z; < a5 if 2y — 21 € K.

Definition 4. A cone K in a Banach space F' is normal if from the inequality 0 < x <y
there follows the condition ||z| < M||y|| for some constant M.

Definition 5. Let us consider the Banach space F' with the cone K C F. A linear operator
A: F — I is positive if AK C K.

d0i:10.1088,/1742-5468,/2010/01/P01022 4
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Let D¢(A) denote the following cone contained in the space Be(A):
(=D)™p(w™) = 0. (17)
Analogously D¢ = D¢(R") is a cone contained in the space Bk.

Proposition 1. Operators —k and —K, are positive with respect to cones D¢ and De(A),
respectively.

Proof. The positivity results from the following inequality for kernels:
(=1)"k(wy,@"™) > 0. (18)

Proposition 2. The cones D¢ and D¢(A) are normal and generating.
Proof. The thesis follows directly from the definitions of the cones; the arguments are
similar to those for the simple case of the cone made up from non-negative functions. 0O

Let us consider the spectral radius r(—K,).
Proposition 3. The point r(—K,) belongs to the spectrum of the operator —K, .
Proof. First let us note that r(—Kj,) > 0. Then the assumptions of theorem 8.1 from

chapter 2 of [4] are satisfied owing to the propositions 1 and 2, and the thesis of the
proposition 3 results from the cited theorem. O

As we are interested in finding an upper bound on the positive part of the spectrum
of the operator K,, we have to consider the shifted operator K, + C1.

3. Main results
For X in the resolvent set of the operator K, we have
PA = ()\]I — KA)_ld. (19)

Here a(w™) =0 for n > 1 and &(w!) = 1.
Expanding the above around C' we can write

Ky + C1T
: 20
A= )\+CZ( At C )O‘ (20)
We get the following:
Proposition 4.
[(Ka + 1)l < D - la], (21)

where we introduce an auxiliary operator D on the Banach space Be with matriz elements

Ci—it1

m forj—i+1>0 and 0 otherwise. (22)
j—1 !
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Proof. Let us write the operator K, as a sum of separate terms acting on different sectors
of the Fock space each:

(Ka®)(w Z Jr1p(w (23)
Let us introduce one more symbol:

In the above the symbol d;; stands for the standard Kronecker delta. Now we go to the
LHS of proposition 4:

I(Ka +Cmall <sup [ sup (o Jus - T @)W, (25)
k whEQ(A,B,k)
where the sum is taken over all sequences (ly,ls,...,l,_1) such that l;;; —; +1 > 0 for
eachi=0,1,...,n— 1 (we assume that [y = k and [, = 1).
Now let us notice that for any ¢ and j we have the estimate
3 o)) <~ (o)
sup  |(Jij @) (') £ m————=57- sup  [p(w’)], (26)
wieQ(A,Bi) - (j—i+1)! wl €Q(A,B,9)

which is valid for all ¢(w?) either non-negative or non-positive in each sector of the Fock
space independently (that is ¢(w')-¢; > 0 for each w'; here ¢; is a function N — {—1,41}).
For i # j the estimate (26) comes directly from the definition of the operator K, and
the formula (7). In the case of i = j the above estimate reduces to
sup [ Jip(w') + Cp(w)] < C- sup Jp(w')]. (27)
W €N(A,B,i) Wi €Q(A,B,i)
Let us see that two terms in the absolute value have different signs. This derives from the
fact that in J;; there appears to be only one term of the sum (7) for n = 1, and from the
inequality (12). Since

sup [ JiipW)] < sup  [Cp(w)], (28)
wieQ(A,B,i) wieQ(A,B,)

the formula (27) is straightforward.

Having proven the estimate (26) we now continue with the formula (25). First let us
note that in subsequent applications of the operator Jy,;,,, on the vector & for varying i
we stay within the domain of the functionals of definite sign.

Applying the estimate (26) recursively to the RHS of (25) we arrive at

| (Ky+CI)"al <sup |€7F Z Dy, Dy oo Dy,_;1 sup  |a(w)]
k WwEQ(A,B,1)

< D™ - lall
and the proposition 4 is proved. O

Taking the nth root of the equation (21), going to the limit n — oo and applying the
Cauchy criterion for the convergence to the series (20) we obtain its convergence for

A+ C| > r(D), (29)

d0i:10.1088,/1742-5468,/2010/01/P01022 6
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where the spectral radius 7(D) < e“. Thus the series (20) is certainly convergent on the
set

D={\:|A+C|>exp(C)}. (30)
Let us define
1 X /K+Cm\"
- i . 1
P )\+C;()\+C> “ (31)

Let us fix the trajectories set w™. Then we have the following:

Proposition 5. The functions from the family {pr(w™)(N)} are analytic and are jointly
bounded on the set D.

Proof. Analyticity of the functions is clear; joint boundedness comes from the
expansion (20) and the definition of the set D. O

Then we have:

Proposition 6. The family {ps(w™)(N)} is convergent to {p(w™)(N\)} almost uniformly on
the set D.

Proof. In view of proposition 5 and the fact that the family considered, pj(A), is
convergent to p(A) for big A (the case treated by Ginibre in [1]), use of Vitali’s theorem
gives the result. O

The existence and analyticity of all correlation functions p(\) implies the existence
of the unique Gibbs measure in the thermodynamic limit.
Thus we obtain the following:

Theorem. There exists a unique limit of the equilibrium Gibbs state that is analytical with
respect to the thermodynamic parameter z, which physically means no phase transitions

for
1
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In this paper we investigate a model (based on the idea of the outflow dynamics), in
which only conformity and anticonformity can lead to the opinion change. We show
that for low level of anticonformity the consensus is still reachable but spontaneous
reorientations between two types of consensus (“all say yes” or “all say no”) appear.

Keywords: Opinion dynamics; Sznajd model; agent-based models; finite-size systems.
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1. Introduction

In the past decade many models of opinion dynamics has been studied by physicists
(for the recent review see Ref. 1). Among them several simple discrete models
based on the famous Ising model, such as Voter model,? majority models®* or
Sznajd model,® have been proposed to describe consensus formation. The force
which leads to consensus is conformity — one of the most observed response to the
social influence. In all three models mentioned above a kind of conformity has been
introduced. In the Voter model a single person is able to convince others, within
the majority rule, individuals follow majority opinion and in the Sznajd model
unanimity is needed to convince others. Although the conformity is the major
paradigm of the social influence, it is known that other types of social response
are also possible.

People feel uncomfortable when they appear too different from others, but they
also feel uncomfortable when they appear like everyone else.® There is an experimen-
tal evidence for asserting uniqueness — sometimes people to assert their uniqueness
can change their own opinion, when they realize that this opinion is shared by oth-

rs.% Therefore asserting uniqueness can lead to so-called anticonformity. In 1963
Willis (reviewed recently in Ref. 7) has proposed a two-dimensional model of possi-
ble responses to social influence, in which both conformers and anticonformers are
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similar in the sense that both acknowledge the group norm (the conformers agree
with the norm, the anticonformers disagree).

Obviously the anticonformity is quite rare in comparison to the conformity. The
natural question is whether the existence of the very small probability of anticonfor-
mity can influence the opinion dynamics. Will the consensus be still possible in the
society with anticonformists? In this paper we decided to introduce the probability
of anticonformal behavior to one of the consensus models. Recently a generalized
one-dimensional model based on the original Sznajd model has been proposed to
incorporate some diversity or randomness in human activity.” In this paper we
investigate a special case of this extended model, in which both conformity and
anticonformity are possible. We check how the small probability of anticonformal
behavior in the presence of the strong conformity can influence the opinion dynam-
ics. It has been known for long that conformity/anticonformity is to some extent a
product of cultural conditions.® There are some experimental motivations for such
statement. For example, Frager in 1970 conducted experiments among Japanese
students and found a lower level of conformity compared with the US results and
some evidence for anticonformity.'® From this point of view a ratio between the
probability of conformity and anticonformity could be related to the cultural or
political conditions.

It should be mentioned here that for the first time, the effects of contrarian
choices on the opinion dynamics has been investigated by Galam.!! In his paper he
has defined a contrarian as an agent who adopts the choice opposite to the prevailing
choice of others whatever this choice is. Contrarians in the Galam’s majority model
play the similar role as anticonformists in our model. However, contrarians adopt
the choice opposite to the majority instead of unanimous majority, which is the
case of anticonformity.

2. The Model

We consider a chain of L Ising spins S; = +1, ¢ = 1,..., L with periodic bound-
ary conditions. At each step two consecutive spins are chosen at random, and they
influence their outer neighbors. In the most popular version of the Sznajd model,
inspired by the observation that an individual who breaks the unanimity principle
reduces the social pressure of the group dramatically,® only the unanimous major-
ity influences the neighborhood. In the paper,? all possible configurations of four
consecutive spins has been considered. Two randomly selected middle spins decide
the outcome of the update step (following in Ref. 9, we write them in brackets).
The action of a selected pair has been considered independently on each direc-
tion. Thus all different possible elementary cases make up a following list: ([AA]A,
[AA]B, [ABJA, and [AB]B), where the symbols A and B stand for different opin-
ions, i.e. A = —B = +1. To determine the dynamics, the vector of probabilities
p = (p1,p2,ps,pa) of change for the third spin (one that is outside brackets) has
been introduced®:
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p1: [AAJA — [AA]B, (1)
2t [AAIB — [AAJA, 2)
ps: [AB]A — [AB]B, (3)
pa: [AB]B — [AB]A. (4)

The first parameter, p;, describes the chance of spontaneous appearame of an an-
ticonformist opinion and the complementary probability pj = 1 — p; describes the
situation, where in the same conditions the opinion is not changed. Second param-
eter, po, is a chance of convincing an individual to the other opinion, shared by his
two consecutive neighbors — i.e. conformity. Again p§ = 1 — py is a probability of
one’s opinion remaining unaltered with the presence of conformity among his two
consecutive neighbors. In this paper we investigate the special case, in which only
conformity and anticonformity can lead to the opinion change, thus ps = py = 0.
The case in which po = 1 and p; = p3 = p4 = 0 corresponds to the Sznajd model. In
this paper we have decided to investigate the case in which p; = 1 and p; € (0,1) is
the only parameter of the model. To investigate the model, we provide Monte Carlo
simulations with the random sequential updating mode and thus the time ¢ is mea-
sured in the Monte Carlo Sweeps (MCS) which consists of L elementary updatings.

3. Results

The quantity, which is usually measured in such models, is the public opinion m as
a function of time ¢. In this kind of models the public opinion is equivalent to the
magnetization:

mz%Zsi. (5)

In the case of p; = 0, which corresponds to the deterministic rule of the Sznajd
model, the system reaches the ferromagnetic steady state (consensus from the social
point of view). Once p; > 0 the system never reaches any absorbing state and the
opinion dynamics depends on anticonformity probability p;. The time evolution
of public opinion m(t) is presented in Figs. 1-3. It can be seen that consensus
(m = =£1) is reached only for small values of p; (Fig. 1), while for larger values
of anticonformity consensus is not reached and public opinion fluctuates around
its mean value m = 0 (Figs. 2-3). One can also notice that the amplitude of
the fluctuations decrease with p;, on the other hand the frequency of fluctuations
increase with p;. This tendency is valid for all values of p; and thus the time of
consensus state (“all up” or “all down”) decreases with p;. For very small values of
p1 the system spends most of the time in one of the extreme consensus state and
in the limiting case p; = 0 the consensus becomes the absorbing steady state.

To analyze more precisely the dependence between the consensus time and the
level of anticonformity p; let us introduce the mean relative time of consensus
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Fig. 1. The time evolution of the public opinion m in the system of L = 100 individuals as
a function of time for the probability of anticonformity p; = 0.003. It can be seen that society
for most of the time is in a consensus state (m = =£1), but from time to time spontaneous

reorientations occur. From the social point of view this means that, on the one hand society
polarizes to given opinion due to the conformity, but on the other hand spontaneous (and rather
rapid) changes of polarization are possible, due to the weak anticonformity.

1,0

0,5

m 0,0

0.5

_130 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10

t [10° MCS]

Fig. 2. The time evolution of the public opinion m in the system of L = 100 individuals as a
function of time for the probability of anticonformity p; = 0.1. It can be seen that already for
this level of anticonformity, consensus is not reached and the public opinion oscillates around its
mean value m = 0.

(1c) as a mean number of MCS for which |m| = 1 divided by the total number
of sweeps in the simulation. The dependence between the mean relative time of
consensus (7.) and p; is presented in Fig. 4. For small values of p; this dependence
is exponential, i.e. (7.) ~ exp(—ap1), with o = a(L) ~ (3/2)L. This means that
although the relative time of consensus decrease with pi, consensus is still possible
for larger values of p;. No qualitative change of behavior is seen while looking at
(1c) as a function of anticonformity. On the other hand, if we look at Figs. 1-3 it
seems that there is some qualitative difference between opinion dynamics presented



Spontaneous Reorientations in a Model of Opinion Dynamics 563
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Fig. 3. The time evolution of the public opinion m in the system of L = 100 individuals as a
function of time for the probability of anticonformity p1 = 0.9. It can be seen that for this level of
anticonformity consensus is not reached, similarly to the Fig. 2. The difference between the case
p1 = 0.1 and p = 0.9 is visible in the fluctuations around the mean value m = 0 — the amplitude
of the fluctuations decreases with p1, on the other hand the frequency of fluctuations increases
with p;.

10
10
20
10 30
/\o 40
\l'/’ 10 50
10
o T T T T T
0,00 0,05 0,10 0,15
P,

Fig. 4. (Color online) The dependence between the mean relative time of consensus (7.) and the
level of anticonformity p; for several lattice sizes (from L = 10 to L = 200). For small values of
p1 this dependence is exponential, i.e. (T¢) ~ exp(—ap1), with o = a(L) ~ (3/2)L.

in Figs. 1-3. In Fig. 1 the system is ferromagnetically ordered for most of the
time and spontaneous transitions between two opposite ferromagnetic states are
observed.

Therefore, let us now check the dependence between control parameter p; and
the mean reorganization time (t,), defined as a mean time between arriving at two
consecutive opposite consensus states. More precisely we monitor the events of time,
at which the system attains the given consensus (m = +£1) for the first time since
it was in the last opposite state m = F1. It occurs that there is an optimal value
of p; for which the mean reorganization time (¢,) is the shortest (see Fig. 5). From
the social point of view this means that there is a special level of anticonformity for
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Fig. 5. The dependence between the mean reorganization time () and the level of anticonformity
p1 for the lattice size L = 100.
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Fig. 6. (Color online) The cumulative distribution function CDF of the public opinion m for
several values of anticonformity level p; and the lattice size L = 100. It can be seen that for
p1 < 0.04 the curve is ~-shaped and for certain value p = p* € (0.03,0.04) there is the qualitative
change in convexity to the ~-shape.

which reorganizations (“revolutions”) are the most frequent. The optimal value of
p1 is roughly inversely proportional to the system size L. Thus their product piL,
describing the mean number of acts of anticonformity per one Monte Carlo sweep,
remains constant independently on the system size.

Now we can show that, indeed, there is a qualitative change in the opinion
dynamics for a certain value of p; and this value corresponds to the optimal value
of p1, i.e. value for which the mean reorganization time (¢,.) is the shortest. To do
this let us present the cumulative distribution function CDF of the public opinion
m. In Fig. 6 it can be seen that for p; < 0.04, the curve is ~-shaped and for certain
value p; = p* € (0.03,0.04), the shape of CDF changes qualitatively to the ~-shape
(the change in convexity). While for p; < 0.03 the system for most of the time is
in the consensus state, for p; > 0.04 the consensus state is probably extremely low.
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One should notice (see Fig. 5) that the optimal value of p; also lies in the interval
(0.03, 0.04) and thus corresponds to p*.

4. Summary

We have proposed a new model of opinion dynamics with anticonformists based
on the general model proposed by Kondrat.? In our model only conformity (with
probability 1) and anticonformity (with probability p;) can lead to the opinion
change. According to Willis, both conformers and anticonformers are similar in the
sense that both acknowledge the group norm (the conformers agree with the norm,
the anticonformers disagree). In our model a pair of neighboring individuals sharing
the same opinion will influence its neighborhood (so-called outflow dynamics — the
idea taken from the Sznajd model). To investigate the model, we have provided
Monte Carlo simulations with the random sequential updating mode. It occurs
that for small values of anticonformity level consensus is still reached, but it is
not the absorbing steady state as in the case of p; = 0. For small values of p;
spontaneous reorientations occur, which can be understood from the social point
of view, as complete repolarizations (e.g. spontaneous transition from dictatorship
to democracy). We have shown that there is a special value of anticonformity level
p1 = p* below which the system stays for most of the time in the consensus state
and spontaneous reorientations occur. Above this value the consensus is almost
impossible and qualitative change is visible in the cumulative distribution function
of the public opinion m.

Spontaneous reorientations in an Ising spin system has already been observed
more than 25 years ago by Binder and Landau.!? They have shown that in the
Glauber kinetic Ising model transitions from +m to —m are quite often on small
lattices below critical temperature. Indeed in our model, p; plays the role of the
temperature.” Such spontaneous transitions are usually reported as finite size ef-
fects,!213

social systems have always finite size and thus such finite size phenomena are im-

which is also the case in this paper. However, it should be stressed that

portant. Review on finite size effects in several models of the opinion dynamics can
be found in Ref. 13.

The main criticism connected with such simple social models concerns usually
oversimplifications of the assumptions. We do not want to convince anybody that
there is no free will or no external factors influencing individual choices. We have
only shown that even in the conformistic societies with very low (but nonzero) level
of anticonformity, spontaneous reorientations of the public opinion are possible.
There is no need to introduce any external field nor strong leader to explain these
social repolarizations. This seems to be quite an important result in the social
perspective.

References

1. C. Castellano, S. Fortunato and V. Loreto, Rev. Mod. Phys. 81, 591 (2009).



566 G. Kondrat & K. Sznajd-Weron

2.

PN DO W

11.
12.
13.

T. Liggett, Stochastic Interacting Systems: Contact Voter, and Exclusion Processes
(Springer-Verlag, New York, 1999).

S. Galam, Fur. Phys. J. B 25, 403 (2002).

P. L. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701 (2003).

K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000).

D. Myers, Social Psychology (The McGraw-Hill Companies, Inc., 1996).

P. Nail, G. MacDonald and D. Levy, Psychological Bulletin 126, 454 (2000).
R. Bond and P. Smith, Psychological Bulletin 119, 111 (1996).

G. Kondrat, arXiv:0912.1466v2.

R. Frager, J. Personality Soc. Psychology 15, 203 (1970).

S. Galam, Physica A 333, 453 (2004).

K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 (1984).

R. Toral and C. Tessone, J. Commun. Comput. Phys. 2, 177 (2007).



PHYSICAL REVIEW E, VOLUME 63, 051108
Percolation and jamming in random sequential adsorption of linear segments on a square lattice

Grzegorz Kondrdt and Andrzej I?iealski’r
Institute of Theoretical Physics, University of Wroctaw, pl. M. Borna 9, 50-204 Wroctaw, Poland
(Received 5 September 2000; published 20 April 2001

We present the results of a study of random sequential adsorption of linear segneeatie$ on sites of a
square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed
needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a
constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only
in a restricted range of the needles length. We determine the values of the correlation length exponent for
percolation, jamming, and their ratio.
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[. INTRODUCTION and jamming. They used two kinds of objects—linear seg-
ments of length 2 to 10 and square blocks. They have found
The problem of percolation is an old ofi] but still new  that the ratio of the two threshold concentratiegsandc; is
results appear and some unsolved questions ref@dirin  constantc,/c;~0.62, regardless of the length of the needle.
general site percolation is defined om-@imensional lattice In the present paper we extend the study of Vanderwalle
where each site can be either occupied with the probalaility et al. to larger lattices and longer objedise consider only
or empty with the probability +c. Neighboring occupied linear segmenis In particular we shall check the claim that
sites form a cluster. If it is so large that it reaches the twathec,/c; ratio does not depend on the length of the needles.
opposite edges of the lattice, e.g., top and bottom, the cluster
is said to be percolating. The lowest concentration of occu-

. . . . . . 1. MODEL
pied sites for which there is a percolatifmy spanningclus-
ter for an infinite lattice is called the percolation threshold We consider a square lattice of size<L. On the sites of
[2]. the lattice we put randomly linear segmeifiteedles of a

Another realization of the percolation problem is randomgiven lengtha, with the constraint that the needles cannot
sequential adsorptiofRSA), in which objects(point par- cross each other, although they may touch themselves. We
ticles, segments, rectangles, gtare put on randomly chosen used hard boundary conditions, i.e., the needles may touch
sites and the objects do not mop&. It is also possible to the edge of the lattice but they cannot stick out of it—each
consider RSA in a continuuifa]. needle must lay totally inside the lattice. Adopting open

Jamming is a problem related to RSA percolati@. boundary conditions does not affect the results.

Again objects are placed randomly on the lattice sites until a To achieve simulation efficiency, our algorithm of depo-
concentratiorc; is reached, where there is no room on thesition needles consists of two parts designed for two different
lattice for the next object. For pointlike particles=1, but  regimes. First when the current concentration of the needles
for spatially extended entities;<<1. Continuum models of is small, we chose randomly, from a uniform distribution, the
jamming also exis{3]. orientation(vertical or horizontal and position of the upper

The RSA models irreversible dissociatifs] and binding  left end of the needle to be inserted. If there is enough space
of large ligands to polymer chairi§]. Another area of ap- on the lattice, the needle is deposited, if not, we pass to the
plicability is the deposition of large molecules on solid sur-next try. After a certain number of adsorption trials we
faces, like proteind7] or macromolecules on biological switch to the other regime where the dense routine is applied.
membrane$8]. The isotropic-nematic transition in the hard A list of all empty sites and orientations still available is
rods such as polymers, has been studied first by FRjrgnd =~ made. From that list a site is randomly chosen. We determine
later, e.g., in Ref[10]. Spatial organization of needles into a the direction of the needle and check whether the needle can
well-organized nematic phase is however a different probbe put there. In any case the site is removed from the list.
lem, not considered here. General forms of percolation mod¥he process is continued untill the last item on the list. Such
els have a wide range of applications—from chemisorptionprganization saves time, since we avoid inserting needles
spatially disordered systems, porous materials, car parkingnto densely packed regions.
and ecology 3], to separating the good and bad people at the A cluster is defined as a group of sites linked by the
entrance to Hadefgl1]. For overview of percolation, jam- needles. If there is an uninterrupted path between the top and
ming, and related problems see R&]. the bottom of the lattice, the cluster is said to be percolating

In a recently published papdi2] Vanderwalleetal. or spanning, and the concentration of occupied sites defines
studied the relation between the two transitions—percolatiohe percolation threshold,. The concentration at which no

more needles could be put on the lattice without violating the
constraint determines the jamming thresho]d
*Email address : gkon@ift.uni.wroc.pl We have considered lattices of sizes=-30, 100, 300,
TEmail address: apekal@ift.uni.wroc.pl 1000, 2500 and needles of lengéhk=1, . ..,2000. On the
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FIG. 2. Percolation threshold, vs needles’ lengtha. L

=2500, 100 runs(a) Short needlea=1, .. .,45; (b) long needles
a=1,...,2000.
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FIG. 3. Snapshot of a spatial distribution of needles at the per-
colation threshold fot. =100. (a) a=5, (b) a=20. They axes are

smallest lattices only smaller needles were located. Averag-

ing was done over 100 independent runs. We have checked
that averaging over 1000 runs did not reduce the émaan
standard deviation &) in a marked way.

Our main results of the simulations are presented in Fig.
1, where the percolation and jamming thresholds, as well as
their ratio, are plotted against the length of the needées (
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=2500. As convergence and error analysis sh¢sez be-
low) we can safely accept them as the asymptatie-(e) —¢C
values. 09 ¢ G
The percolation threshold foa=1, ... ,13 diminishes, o
then it begins to grow linearly with the slope 0.000 71. The 08 | - _
minimum valuec,,;,=0.463 is reached foa=13. As seen - -
in Fig. 2, theo increases with the size of the needles startince> |
from 0.001@=1) up to 0.0084=45). The increase of the <"
percolation threshold for longeris however quite clear. The < | | ________ I _______ S
appearance of this unexpected feature is connected with tt 06 ¢
condition that the needles may touch themselves but the -
cannot cross. In the simulations where the restriction ha 05 | T -
been lifted we observed no minimum but a monotonic de- L -
crease. In the model considered here the needles have t 0a - ‘ .
tendency to align in parallel not only with respect to the 10 100 L 1000 10000
edges of the lattice but also to themsely®se Fig. 3, hence (@
the needles form compact clusters. In the case of horizontall
oriented needles, in order to move, e.g., two steps down, tw 1 ,
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FIG. 5. Percolation to jamming thresholds rat@/c; vs FIG. 7. Convergence analysis of percolaticy, jamming
needles’ lengtha. L=2500, 100 runs. Logaritmic fit fora thresholdsc; , and their ratioc, /¢, vs lattice size.. 100 runs.(a)
=15,...,45. a=5, (bh) a=45.
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FIG. 8. Deviation analysisr vs lattice size_ for several values
of the needles’ lengthia) Percolation (b) jamming, and(c) perco-  The uncertainty of the exponent derived from the graph
lation to jamming ratio. analysis equals 0.02. Clearly this behavior differs essentially
from bare power law postulated in Ré#]:

needles of lengtla are needed. The longer are the needles

the higher is the percentage of occupied sites necessary for cj~a*°-2, (2
passing these two steps. The increasey4) is to a certain

degree compensated by vertically oriented needles, whicfyr the continuunoff-lattice) case of RSA of randomly ori-
however also form clusters, thus offering many equivaleninted and highly anisotropidength to widé rectangles.
ways for percolation. Further simulations for much longerTheira coincides with our length of needlasin the discrete
needles indicate continuous increasecin although at a case we did not observe the maximuncphta=2 reported
slower rate—see Fig.(B). The jamming thresholds obtained in Ref.[4]. The reason is that on the lattice the number of
from the simulations have much smaller error than that fopossible orientations of the needles is restrictesf2qwhere
percolation and even fax=45 it is below 0.002. Values of zis the coordination number of the lattjce@ contrast to the
c;, as a function ofa, decrease according to a power law continuum case. It is interesting that the asymptotic concen-
(very good fit for alla=5) approaching the asymptotic value tration for jamming(for a— ) is 0 off lattice and it remains
c}* =0.66+0.01 (see Fig. % finite in the discrete case.
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Another interesting quantity in our model is the ratio AJ~L‘1’V1, 1/v;=1.00=0.05,
cp/c; as a function ofa (see Fig. % It grows for a )
=1,...,3,then it stabilizes untilla=7 and then it grows A~L~Yr, 1v,=0.77+0.05. (4)

again. The plateau value of,/cj~0.62, the constant found

in Ref. [12]. The growth for longer needles (&@<45) Here v corresponds to the correlation length exporiéit

could be fitted by a logarithmic dependence é~Jc—cp| 7. (5)
Cp/cj~0.50+0.13 loga. (3)  These values are, within the error bars, the same foa all
=1,...,45 andagree with those found by Vanderwalle

Further simulations for longer needlésee Fig. 6 support et al.[12] Also Nakamurg 13] found vj=1.0+0.1 for RSA

our claim of monotonic increase ©},/c; over a wide range  of square blocks. It seems therefore that the exponeate

of a (even up toa=2000). We may conclude therefore that good candidates for universal quantities.

the universality claimed in Ref12] holds only in a rather Examples of spatial arrangements of shor+=6) and
restricted range dd e [3,7]. As a matter of fact, the value of |onger (@=20) needles on a lattice 18000 are shown in
cp/c; for a>7 shown in Table | of Refl12] is greater than  Figs. 3 (percolation and 9 (jamming. Analysis based on
those fora<7 but the authors attribute it to the finite-size examination of different runs shows some regularity in the
effects. This is however most probably just the beginning ofheedles distribution—we have found that the needles near
the growth ofc,/c; . the edges have the tendency to stick along the borders.

We analyzed the dependence of the obtained thresholdsonger needles, for obvious reasons, form clusters of parallel
on the lattice size. and needles’ length focusing on con- alignment, as was already observed in R&g].
vergence. It appeared that for the raéili. <1/3 the values
of ¢, andc; do not vary much with increasing (keepinga IV. CONCLUSIONS
constank—see Figs. #® and 7b). The error barghere o)
however decrease rapidly with while the difference of the
thresholds for different lattice sizes is much smaller than th
appropriate error. Thus it is safe to take the values of th
thresholds from the simulations withh =2500 as the
asymptotic(exac} ones.

The finite-size effects can clearly be seen in Fih)2
wherec,, is drawn againsa=1, . .. 2000 forL=2500. At
a=L/2 we can notice a sharp change in the slope of th
functioncp(a).

Consider now the dependencembf c,,c;,c,/c; on the
lattice size.o is analogous to the quantity defined in Ref.
[12] as the sharpness of the transitionpercolating to per-
colating or nonjammed to jammgdHere however the
power-law approach to the asymptotic valpé»)—p(L)
~L ™Y [cf. formula(3) in Ref.[12]] does not hold. We have
found (see Fig. 8 that theo for percolation Q,), jamming
(4;), and thec,/c; ratio (A,;) decrease with the lattice size ACKNOWLEDGMENTS
according to the power laws

We have performed extensive simulations of RSA using
linear segments of siza=1, . ..,45 onsquare lattice sites.
Se have found that the percolation threshold is a nonmono-
Sonic function ofa, having a minimum due to parallel orien-
tation of the needles, @= 13, while the jamming threshold
decreases to a nonzero constant veitas a power law. The
ratio of the two thresholds is nonmonotonic too—after initial

rowth it stabilizes for some values af and then it grows
ogarithmically. Whether the asymptotic value is equal to
one or less is an interesting question. To answer it unequivo-
cally is unfortunately beyond our computing power. The val-
ues of the correlation length exponent for percolation,
jamming thresholds, and the ratio of the two, do not depend
on the length of the needles and they are, within the error
bars, equal to those found elsewh¢i®,13 for deposition
of needles, rectangles, or squares.

The authors are grateful to M. Droz, J. O. Indekeu, Z.
Ap~L*1’”p, 1/v,=0.75-0.05, Koza, and N. Vandewalle for helpful comments.
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Percolation and jamming in random bond deposition
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A model is presented in which on the bonds of a square lattice linear segftireéslles”) of a constant
lengtha are randomly placed. We investigate the dependence of the percolation and jamming thresholds on the
length of the needles. The difference from the standard site deposition problem is demonstrated. We show that
the system undergoes a transitioraat6. When shorter needles are used, the system first becomes percolating
before becoming jammed. For longer needles the lattice becomes jammed but there is no percolation. We
present evidence that the transition is due to different clustering of the short and long needles. We also
determine the Fisher exponent, obtaining the same value as for standard two-dimensional percolation .

DOI: 10.1103/PhysReVE.64.056118 PACS nuner64.60.Ak, 05.40-a

[. INTRODUCTION spheres(modelling, e.g., adsorption of spherical molecules
[4]) there is an interesting domain of the study of RSA of
Recently there has been much theoretical and experimeriectangles or line segments. These models can be used in
tal interest in random sequential adsorpti®SA) models.  describing the characteristics of composites or materials
In this approach finite objects are randomly deposited, on&ade in the process of adsorption of rodlike polymers or
by one, onto an initially empty substrate.g., a lattice or a conducting needlegl4]. In these modelgboth continuous
continuous surfageand are adsorbed if there is no overlap- and discretgthe central point of interest is often the kinetics
ping with previously adsorbed objects. These kinds of modof the process. However, here we concentrate on the depen-
els have a wide range of applications in physics, chemistrydence of thresholds on the length ragiof adsorbed objects
biology, etc. for describing processes in which microscopicalrectangles As the continuous approach differs in some pre-
steps are irreversible. dictions from the lattice site orle.g., the jamming threshold
A large group of RSA problems was motivated by theCj(a)—0 asa—o for the continuous casfl5] and c;(a)
study of kinetics of some chemical reactions, e.g., simple~cj #0 for the discrete casgi6]], there are also features
cyclization reactiongsee Ref.[1], in which the RSA ap- that distinguish between the site and bond formulation of the
proach itself originatesirreversible dissociation from poly- discrete(lattice) problem. To the best of our knowledge a
mer chaing 2], and the binding of large ligands to polymer needles’ adsorption on bonds has never been considered in
chains[3]. Another area of applicability is the desorption of the literature.
large molecules like proteins on solid surfagdsor macro-
molecules on biological membrangs]. Many properties of Il. MODEL
growth processes in three-dimensional solid state phy6ics
are well described by the RSA approach as well. Also some Here we investigate a system in which linear segments
ecological[7] and sociological problemg8] were succes- (“needles”) of lengtha are randomly placed on the bonds of
fully solved using RSA. For an extensive overview of thethe square lattice. The needles may touch but they cannot
field, see Ref[9]. cross each other or have a common bond. At each step of the
In the context of RSA the notion of jamming is very im- simulation we randomly generagigom uniform distribution
portant. A system reaches a jamming point if no more obthe position and orientation of the needle to be inserted. If
jects can be adsorbed due to the lack of available space. Thieere is no possibility of depositing the needle, we discard it
jamming thresholdt; is then defined as a fraction of occu- and go on to the next step. The essential difference between
pied surface at that moment. the site deposition investigated, e.g., in R¢16,17 and the
The problem of percolation is an old oh&0], but there  present study is that now the two closest parallel needles
are still new results and new questions being pd4d¢12.  themselves do not touch— a connecting path is realized only
In a standard formulaton ondadimensional lattice each site by vertical and horizontal needles touching somewhere on
can be occupied with a probability(or empty with a prob- their length. As beford16], we use hard boundary condi-
ability 1—c). Neighboring occupied sites form a cluster. Thetions, meaning that no part of any needle may stick out from
cluster is said to be percolating if it reaches two oppositghe lattice. We have verified that allowing for open boundary
edges of the latticée.g., the top and bottomThe lowest conditions does not alter the results.
concentration of occupied sites for which there is a percolat- We investigate two phenomena, percolation and jamming.
ing cluster for an infinite lattice limit is called the percolation The percolation threshold is defined as a concentrati
thresholdc, [11]. needles at which there is an uninterrupted path, following the
There are many applications of percolation theory, espebonds occupied by the needles, from the top to the bottom of
cially in spatially disordered systems, porous media and critithe lattice[11]. The smallest possible length of the needles,
cal phenomena. For an overview see, e.g., [R8f. a=1, corresponds to the standard bond percolation, for
Apart from the relatively well known case of the RSA of which we recover the well-known resut,=0.5[11]. The

1063-651X/2001/6¢45)/0561184)/$20.00 64 056118-1 ©2001 The American Physical Society



GRZEGORZ KONDRAT AND ANDRZEJ PEALSKI PHYSICAL REVIEW E 64 056118

1 ‘ . —o—o—=6—=0 16
.
—x L= 30
\\
081 o o L=100 0.8 | \‘E
O----© L=1000 <
06 | & 0.6 | \‘E\\_\
L —
N © r e
P S B T
- - "4 4
04 | & 04 h
e—eoc
L @--40 ¢,
02} 02 (;J
/ +——ec/c
/
!
0 ‘
0 S ‘ 1 2 3 4 5 6
0 8 10 a
a

FIG. 2. Thresholds for percolatiory,, jammingc;, and their
ratio c,/c; for a=1...6. Thelattice size isL=1000, averaged
over 100 samples.

FIG. 1. ProbabilityN, for the absence of percolation in the
system vs needle lengd=1 . . . 6 forlattice sized =30, 100, and
1000, averaged over 1000 samples.

jamming threshold is defined as a concentratign of  a similar minimum for the site problertsee Ref[15]), for
needles, above which it is impossible to add another needlenger needlesd,;,=13), we expect the same mechanism
of a given length to the latticf9]. to be responsible for both phenomena. For longer needles
We shall study, using Monte Carlo simulations, the de-there is a competition between enlarging the range of con-
pendence of the two thresholds and their ratio on the lengthection and the increasing difficulty in restoring connection
a of the needles. We shall also compare the results with thosgor details, see Ref16]). Fora=6, however, it is so diffi-
obtained for site percolation and jammiftf]. Most of the  cult for one needle to become connected to others that per-
results were found for & =1000 square latticéalthough colation does not appear. The difference between sites and
smaller and larger lattices,= 30, 100, 300, and 3000, were bonds here is crucial. In the site problem two close parallel
also considergdand averaged over 100 independent runsneedles can be connected via other parallel needles lying in
We have checked that the statistics is not much improved bipetween them. In a bond problem, however, even the two

averaging over 1000 runs. closest parallel needles remain disconnected unless they both
touch the same perpendicular needle. Thus we suppose that
. RESULTS for long needles small clusters work as shields, preventing

the formation of a connected network of bonds in the system.

We have found that percolation in the SyStem sets in OnlyAnother argument Supporting our Conjecture is found by a
for short needles witha<a*=6. In the case of longer djrect inspection of snapshots of the needle arrangement, an
needles no percolating cluster exists for large enough latticesxample of which can be seen in Fig. 3. The state of a system
(e.g., out of 1000 samples far=7, only two percolate on a of needles witha=8 at the jamming point is shown there.
300x 300 lattice, but none on a 108A000 latticg. The In order to obtain some more insight into the problem, we
longer the needles, the higher the chance of absence of pajave also examined the cluster structure of the system at
colation(jamming sets in in the system fiysfThis probabil-  jamming, when no more needles can be added. As we can
ity is drawn in Fig. 1 against the needle length. The transitiorsee in Fig. 4, there is a clear change in the shapefo6.
from a percolating to a nonpercolating system occurs at &or smalla most of the mass carried by the needles consti-
rather narrow range of the needle length. Asymptoticallytutes a large percolating cluster. For long needles more and
(L—c0) we expect a step function. A possible explanationmore mass is accumulated in very small clusters, especially
for the existence of a nonpercolating regime is discusseth single isolated needles. That is, 2.5% of the total mass is
further. This behavior diStingUiSheS between the bond prObconcentrated in such needles m:r_-4, and 16.5% foa=7.
lem and the site one, since in the latter we can always reach Tg establish a connection between our model and other
percolation threshold for all needle lengfi$]. The absence percolation critical phenomena we have verified the so called
of percolation was reported earlier in a different context andrisher law[11]. It is generally observed that, for percolation
for the site problem; see, e.g., Ré18] in the case of the models the cluster size distribution function measured at the

RSA of squares, or a more general mofied] of RSA of  percolation point follows a power law
rectangles, both on site square lattices.

The variation of the percolation threshalg with increas-
ing needle lengtha is shown in Fig. 2(we consider onlya Ng(Cp)ocs™7,
<6, since above this point there is no percolatiofhe un-
certainties of thec, are below 0.004; therefore, we are con-
vinced that there is a minimum fer=a,,;,=4. As there was where the Fisher exponent is eqiaB] to
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FIG. 5. Cluster size distribution functions, for a=1...6 at
the percolation point, averaged over 100 samples;1000. Data
sets for eacla are separated by a factor of 2 for clarity.

FIG. 3. Snapshot of a spatial distribution of needles at the jam- L€t Us now analyze the jamming threshaidas a func-
ming threshold fot. = 100. The needle length &=8; therefore, no  tion of the needle length. It appears that points conform to

percolation appears. the following formula with very high accuradgee Fig. &
c.(a)—croad,
187 . )
7= g1 ~ 2055 where ¢ =0.3350+0.0025 andA=—1.05+0.10 (uncer-

tainties are obtained from graph analysis for various trial

. . . _ _ alues ofc’ and A). The same kind of dependence was
and is a universal quantity throughout many two-d|menS|onar und for the site RSA of needIdd 6], but with c* (sites)
(2D) models. The results of our investigations are presenteuﬁJ 001 L he i ’ d # both |

in Fig. 5, where size distribution functions for clusters at70'66— ‘01 Letus compare the jammed state for both lat-
percolation are ploted on a log-log graph for various need| ices (bonds and sitgs especially for very long needles. In

lengths. Averaged over 100 samples on a 200000 lattice, moetgtc?r?eesin?gr%%?nsaitr?nsd ;%éoggndog?;?iie?f p;e:rrlal':el ﬁ:'%r:f'
“experimental” points follow straight lines with the same ' P 9 y Ply.

sope for ala=1...6, deermingd to be-1- 202 TS 7 Stes arost al stes are occumed, utfor bonde
+0.04. Thus our modela>1) manifests the same charac- i Th(') lains th P Ipt' it 2¢* (bond
teristic as in standard 2D percolatioa=1). empty. This explains Ihe rela 'GIT(S' esy=2cj (bonds).
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FIG. 4. Plot ofM(s), the number of unit bonds in clusters not FIG. 6. Power law approach of tlee=co limit for the jamming
larger thars vs s, measured at the jamming point. The lattice size isthreshold. Lattice L=1000, averaged over 100 samples,
L=100, averaged over 10 000 samples. The needle lengtha are=10...40. A meanstandard deviationr (dotted line$ is also
=2,4,5,6,7, and 10. shown.
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FIG. 7. Convergence analysis. The values of the threshgds
¢;, andc,/c; are plotted with error bars against the lattice dize
Herea=5, and averaging is over 100 samples.

It should be noted that there were estimatesclj*o(rsites)
only (also see Ref.17]). The dependence af onais quite
different for continuous models of RSA of rectangiege,
e.g., Ref[15] or [20]): ¢;(a)>a® with A=—0.2[20] or A
= —0.26[15], the threshold tending to zero as-».
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Having determinect, andc; we can look at their ratio
cp/c; carrying some information about the structure of the
system(see Fig. 2 One can easily see that/c; is almost
linear with a. Finally, we analyzed the convergence of the
thresholds ad. tends to infinity. It appears that fdr/a
>15 the values o€, andc; do not vary much with increas-
ing L (keepinga constantwhile the mean standard deviation
o drops significantly. Thus it is safe to cosider the values of
the thresholds obtained fdr=1000 as the asymptoti@x-
act ones—see Fig. 7.

IV. CONCLUSIONS

We have investigated the random deposition of linear seg-
ments on the bonds of a square lattice. As in the case inves-
tigated earlief16], we have found a minimum in the perco-
lation threshold dependence on the length of the deposited
objects. We believe that the same mechanism is responsible
for both results. Unlike the site case, here, for needles longer
thana=6, the system cannot reach the percolation threshold,
since it becomes jammed first. The ratio of the two thresh-
olds shows(till a=6) a linear behavior. For the Fisher ex-
ponent we obtained the same value as for the standard (
=1) 2D percolation problem, which suggests the same uni-
versality class.
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We study random sequential adsorption of flexible chains onto a two-dimensional lattice by
computer Monte Carlo simulations. The flexibility of chains is controlled by the temperature of the
solution via the Boltzmann factor. We investigate the percolation threshold in the system as a
function of chain length and temperature. Several temperature regimes are identified, and respective
characteristic types of behavior of the system are discussed. Especially, nonmonotonicity of
percolation threshold is observed—there appears a characteristic temperature unique for all chain
lengths for which the percolation threshold attains its minimum. 2@2 American Institute of
Physics. [DOI: 10.1063/1.1505866

I. INTRODUCTION pecially in the quickly evolving area of polymer science.
_ ) There are many models dealing with conformational changes
_Recently, there _has been still mucr_l theoretical and eXpf polymers due to the presence of an adsorbing suffaca.
perimental interest in random sequential adsorp@SA) The behavior of the system is highly influenced by the chain

models. This approach originates from the work of FFOW’ flexibility (or stiffnes$.2®2° Also, connectivity plays an im-

who studied a cyclization reaction in the polymer chain in . . - .
. . . . portant role in the analysis of phase transitions in polymer
which adjacent pendant groups randomly link. In general, i l odels26:27

RSA-type modefs” we consider objectge.g., atoms, mol- . . . .
ecules, or circles, rectangles, ellipsoids, lattice sites, lattice Studying systems _Of extgnded erX|bIe ObJPTCtS I|ke. poly-
animals that attach to some substrageg., polymer chain, mers from the percolation point of view seems |nt.e'rest|ng for
solid surface, biological membrane or lattice, continuumSeveral reasons. In  polymer phase transitions both
plana one by one(sequentially at a random position pro- (temperature-dependgnitexibility of the chainé® and the
vided that there is no overlapping with previously adsorbedPercolative character of transitidiisare important factors
objects. Once an object is attached, it will neither move nobeing discussed. In physics of collofflsand especially in
desorb back to the solution. gelation phenomeriathe basic concept is the emergence of
The RSA model finds many application in various fieldspercolation in the system. When adsorbed onto surfaces
of physics and chemistry, especially where one deals witlpolymers create some interesting structéitésthat can be
irreversible processes. Among important applications aralso analyzed from the percolation point of view. Percolation
reactions on one-dimensionélD) polymer chaing, chem-  of perfectly stiff chaingrods is studied®3#in the context of
isorption; adsorption of proteins on solid surfac@spr  conductivity, where it has applications in material science.
growth processes in 3D solid-state physicS: Also, there  The nontrivial effect of relaxing this stiffness condition may

i cBi14 o i o , . Lo
to diffuse on the surface:™ For an extensive overview of gemifiexible fibers. This approach may also be useful in in-

the field, see Refs. 15 and 16.

The problem of percolation is an old ohebut there are
still many questions to be answerfdn the simplest formu-
lation on a lattice each site is occupied with probabifitor
empty with probability +p). As p increases from 0, occu-
pied sites form cluster&@ cluster is a set of occupied sites
that are connected via a nearest-neighbor relatidhsome

vestigating the conductivity of materials consisting of tiny
metallic structures of various shapes or conducting poly-
mers®

In our paper we analyze the process of adsorbing flexible
chains (which can model, e.g., polymegrérom a solution
onto a solid surface using computer Monte Carlo simula-
threshold concentratiog, of occupied sites there appears ations. We concentrate _here on the percolative characterist.ics
percolating cluster that spans the whole system. There ad the system and their dependence on temperature, which
many applications of percolation theory in physics andcontrols the chain flexibility. Even though our model is rela-
chemistry, especially in disordered systems, porous medidively simple, it presents a rich behavior that is discussed in
and critical phenomena. As percolation is the simplesgetail. The model extends our previous apprd&ah which
nontrivial model of phase transitions, it is widely used in stiff chains(linear stick$ were considered only.

describing transition phenomera.g., gelation see, e.g., The organization of the paper is following: Section Il
Ref. 19. describes the model in detail. In Sec. Ill results of simula-

Adsorption and percolation of extended objects belongions are presented and discussed. Section IV contains the
to standard tools extensively used these days in physics, esencluding remarks.

0021-9606/2002/117(14)/6662/5/$19.00 6662 © 2002 American Institute of Physics
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FIG. 2. Possible bendings and their energies.

now the percolation threshot, for a given lattice siz&. As

L increases to infinity, the results become closer and closer to
the exact value of the percolation threshold for an infinite
lattice.

In order to introduce flexibility of chains into the model
(nonflexible straight chains—needles—were studied in detall
in Refs. 36 and 3)7and let it vary with the temperature of the
solution, we invented the following approach.

We assume that monomers interact between themselves
via radial force with potential energy(r). The interaction is
restricted only to the monomers that belong to the same

Our model describes the process of adsorbing large conehain and are close togeth@rearest neighbors in the chain
plex objects(e.g., polymersonto a solid surface from a so- or separated at most by one monom&hen we can attribute
lution irreversibly. Within the framework of random sequen- to each chain shap@r conformation a unique potential en-
tial adsorption onto the lattice we investigate the percolatiorergy, being the sum of pairwise interaction energies between
characteristics of the system. Namely, we find the depenthe monomers. Because we consider the process of adsorbing
dence of the percolation threshold on the adsorbed objecthains from the solution that is in equilibrium, it is reason-
sizes. In this model, which is an extension of the previousable to claim that the relative probability of coming across a
model dealing with hard rotheedles RSA (see Refs. 36 and chain of given shape is proportional to the Boltzmann factor
37), we investigate the role that chain flexibility and tem- exp(—E/T), whereE is total conformation energy and is
perature of the solution play in the behavior of the system.the temperature, both measured in the same arbitrary units.

We will be working on a triangular lattice with a marked As the distance between two consecutive monomers in a
hexagonal of side sizé on it. In a single simulation we chain is always equal to the lattice constant, their contribu-
perform a number of adsorption trials, each consisting otion to the probability distribution of shapes cancels out.
trying to put a single chain of given lengthonto the ini-  Thus that part of the interaction that matters is the one be-
tially empty hexagonal according to the following rules. tween next nearest neighbors in a chain—in other words,

As a chain of sizea, we understand a set afsites of the  angles between bonds in a broken line making a chain are
lattice that are connected by a broken line composed of seg@nly important.
ments of unit length(i.e., lattice constant Two adsorbed For the sake of simplicity we take here the plain Cou-
chains cannot overlap at any poiifiard core interaction be- lomb potentialV(r)=—c/r with some constant (in fact,
tween the chainsnor can any chain stick out of our hexago- the absolute value of this constant cancels out as we have
nal (hard boundary conditionsWe choose a place to start on some freedom in rescaling temperature and choosing the
putting a chain at random. If it is previously occupied, welowest-energy level In the case of a triangular lattice there
reject the trial: otherwise, we continue in trying to adsorbare only three possible values for bending angles;
consecutive monomers of a given chain. If overlapping oc=180°, a;=120°, anda,=60°. Adopting the aforemen-
curs at any stage of the process, we reject the whole triationed choice of potentidiCoulomb repulsiopand rescaling
otherwise, we put the chain onto the lattice and it will remainenergy-temperature axis to obtain values in the interval
there forever. We check concurrently with adsorbing thg 0,100 we arrive at energies corresponding to the angles
chains whether percolation sets in. Namely, we look for thew;, and «, equal toE,=0, E;=15, andE,=100, respec-
moment where there appears for the first time a continuousvely (see Fig. 2 In the zero-temperature limit one can find
path (a path consisting of nearest neighbocemposed of 0-type bonds only—all chains are straight needfe¥.0n
sites occupied by monomers of adsorbed chains only, whicthe other extremeT—«) the model reduces to the self-
connects two opposite edges of our hexagésay, the upper avoiding random walk approact**8As we can see further,
and lower sides At that moment we find the filling factor— really interesting is some finite-temperature interval, where
i.e., the ratio of the number of adsorbed monomers to theve can observe some kind of phase transition in the system.
total number of sites in our hexagonal. Let us now make a comment on our numerical routine

For given chain lengtla we performN simulations, each for randomly choosing appropriate chain shapes. At the start
until percolation appears. An example of a chain configurawe take randomly the position of the first monomer and,
tion in the system at the end of a simulation is shown in Figrandomly, one directioifout of six possiblg pointing to the
1. We take then the average of the filling factor, approachingiext monomer. If any of them is previously occupied, we

FIG. 1. Snapshot of the system at the end of a simulationexamplg
Lattice sizeL =100, chains lengtla= 10, and temperaturé=25.

Il. MODEL
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o ) . ] FIG. 4. Behavior ofc, near temperaturg, .
will discard that choice and try again. Otherwise, we choose

from the set of five possible bending angles60°, —120°,
+180°, +120°, +60°), one according to the probability dis- =2 there is no flexibility—just the known case of monomers
tribution implied by the Boltzmann factor. This gives the and dimer§ 83§ up toa= 22 (for longer chains simulation
position of the next monomer to be adsorbed. Then we repedime grows significantly We took simulations mainly for
the last step until either ath positions for monomers are temperatures of powers of @p to a constaftin order to
empty(so our trial has succeeded and we put the whole chainover several orders of magnitude. We choose the limits in
onto the latticg or any of them proved to be occupiéand such a way that below the lowest temperature investigated,
we discard the trial and start again T,=0.78125=100/2, and above the highest,=12800
There is also another approach—one chooses the posi100x 27, nothing interesting happens in the system appar-
tion of the next monomer from the set of empty neighbors ofently.
the current monomer, which is definitely cheaper with re-  There are several kinds of characteristic behavior in our
spect to simulation time. Within our model, however, we system for different temperatures. For a temperature small
work with chains that, having one shape, they do not changenough T<T,) percolation is insensitive to temperature
it. A given chain either fits to the local configuration of changes. AsT approaches temperaturg,, the function
empty sites or not, but it does not adjust its shape to a voidc,(a) becomes flat. For medium temperatures percolation
This is the case in quick adsorption phenomena, where theérops to a minimum attained at temperatligeunique for all
time of adsorption of a single chain is much shorter than thehain lengths. This nonmonotonic behaviorogfis a novel
time scale of conformational changes. feature in percolation models. AbovE; the thresholdc,
It could also be possible to use the standard Metropoligrows monotonically up to an infinite-temperature limit
algorithn?® for generating equilibrium configurations of a Cp(a, T=w).
chain instead of our approach, but giving the same equilib- For T<T; (cold regim¢ we have the same behavior as
rium probability distributions, it would cost only more com- described in Ref. 36 for straight needles on a square lattice.
puter time. In both caseg, as a function ofa attains a minimum. Its
One could consider in the interaction pairs of monomersxistence can be understood in terms of the balance between
farther along the chain than next nearest neighbor. Apattwo mechanisms leading into opposing directions: a de-
from increasing the computing time and complexity of ourcrease ot, due to increasing of connection range for longer
program(the need for the Metropolis approache only gain  chains and an increase of, due to blocking induced by
we suspect would be possibly some quantitative correctiongarallel close needlggor details, see Ref. 36Here a mini-
like temperature rescaling. It is due to the fact that there is anum is obtained aa= 10 instead ola=13 in Ref. 36—we
high correlation between the energy of a chain counted up tattribute this difference to the underlying lattice difference
next nearest neighbdas we do heeand one counted over (in Ref. 36 we worked on a square latticEor low tempera-
all pairs in the chain. tures there are very few bendings in a chéng., for T
<T; we can expect less than 1.5% of bending angles other
than ¢y=180°) and these do not interfere with the process
of percolating cluster formation. At temperatufe things
We performed an averaging over a numiér100  start changing. In Fig. 4 we demonstratg(T) for various
simulations for each choice of parametérs., the tempera- chain lengths and from the graph we estimatg=2.0
tureT, the chains length, and the lattice siz€). The analy- *=0.2.
sis of convergence and mean standard deviation proved that Above temperaturé&, the functionc,(a) starts losing its
the percolation threshold, obtained forL=1000 can be minimum. For T=T,=2.65+0.05 the threshold becomes
safely considered as the asymptotic ome{~). Thus we constant: c,~0.403+0.002 for longer chainsa(>10)—
present our results fdr= 1000, which are collected in Fig. see Fig. 4. Increasing the temperature furtikgrpecomes a
3. We dealt with chain lengths from=3 (for a=1 anda  monotonically decreasing function. The reason for this is that

Ill. RESULTS
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the blocking mechanism no longer works in the systemmodels is a jamming thresholt . It is defined as the final
since chains have more bent shapes and there are more atwhcentration of occupied sitéadsorbed monomersit the
more possibilities of making a connection between chainsmoment when no more objects can be inserted onto the lat-
Finally, c,(a,T), as a function of temperatuig has a mini-  tice. We have investigated within our model the threstwld
mum atT~T3;="7.5 for all a, so chains connect most easily. as a function of the chain length and temperature. It appears
Let us note thal 5 is of order of magnitude o ;—at these thatc;(a=constT) is insensitive to the temperature changes
energies bending angles of the first king; &120°) start to  and drops slowly as the chain lengdhincreases. Thus from
appear widely in the system, while those of the second type final mass of our adsorbate one can only derive the chain
(a,=60°) are still exceptionalless frequent than 13%).  length and not the temperature of the solution.
These minimum phenomena can be explained in terms of an
increasing variety of shapédue to the abundance of first- V. CONCLUSIONS
type bending anglgswhile still keeping a large extension of In this paper we discussed temperature behavior of the
the ch_ain. It is also worth mentio_ning that the minimal Valuepercolation threshold of the system of adsorbed flexible
of ¢, lies well below the percolation threshold for the “pure cnains. For the cold regime system characteristics coincide
system,” for which only one type of bending angle is al- \yith those of straight needI@&At moderate temperaturesy
lowed: either O-type or 1-typ@ot to say about 2-type, for grops significantly, attains a minimum @=Ts, and for
which ¢, is very large. As chains are longer, the discussed high temperaturesc, quickly approaches the infinite-
effects are more pronounced. temperature limit self avoiding random walBARW casg
_ When the temperature grows further, second-type bendn our model we assumed some simplifications; e.g., we re-
ing angles will appear more frequently and, since they aryricted the interaction between the monomers only up to the
less suitable for making connectiofthey cause more com-  second nearest neighbor and we neglected interchain interac
pact shapes of the chainghe percolation threshold grows tions other than hard core. It might be interesting to study
with temperature. For high temperaturé>E) the system more realistic variations of our model, but it seems to us that
saturates since all Boltzmann factors are very close to unityhe overall types of system behavior would not change in
The approach tocp(a,T—) is roughly a power law: that case. Our model could find applications in the study of
Cp(a, T=2)—cp(a,T)=1/T. the deposition of small conducting objects like conducting

During our simulations for each temperature, we alsopolymers or tiny metallic structures of various shapes as well
record the mean conformation energy per one adsorbed chaiy in investigations of the process of gelation.
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We consider the process of percolation cluster formation for pointlike conductors subjected to
random sequential adsorption onto two-dimensional lattice by computer Monte Carlo simulations.
The initial presence of impurities disturbs this phenomenon significantly and we study here how the
size and density of impurity particles affect the resulting percolation threshold. Some unexpected
features such as the nonmonotonicity of the percolation threshold as a function of impurity
concentration are discussed.2005 American Institute of PhysidDOI: 10.1063/1.1896358

I. INTRODUCTION objects after being adsorbed are allowed to diffuse on the

_ surface®*?° For an extensive overview of the field see Refs.
Even though the problem of percolat?’om known for 56 and 27.

year§ and many papers have dealt with its aspects, still there
are interesting questions to be answered. In its simplest foys
mulation on a lattice each site is occupied with probability

In many cases when one investigates the process of per-
olation[e.g., formation of a network of chemical bon@g-
o ) - ! lation) or making a conductive connection between small
(or the site is empty with probability 1p). As p increases  graing in compositdthe presence of impurities must be con-
from O occypled sites form clustefa C"_JSter Is a set _Of sidered. This is an important factor in studying various char-
occupied sites that are connected via nearest-neighbQf.iaristics of composites such as conducthii?® and
bonds. At some threshold concentratiop of occupied sites,  gycturd as well as in other fields like the investigation of
there appears a percolatirfopfinite) cluster that spans the random medi&°
whole system(i.e., there is a path composed of occupied  ere e are interested how the presence of impurities
sites that connects opposite edges of the systanticularly  jiseif disturbs the behavior of the system. There are some
interesting are models in which percolating clusters are.ntributions to this subjeéi‘,’” but the different points of
formed from extended objec?fél.O The percolation theory o\ (e.g., fluid theory approach versus RSake them
finds many applications in physics and chemistry, especially,aqequate for describing phenomena, like the process of se-
in disordered systems, porous media, and critical phenomyentia adsorption on precontaminated substrate. To deal
ena. As the simplest nontrivial model of phase transition,, i, this problem we have developed a computer code simu-
percolation is widely used in describing transition phenom-|aﬁng the behavior of the system using the Monte Carlo
ena(e.g., gelation (see Ref. 1L _ method. We concentrate here on 2D systems with pointlike

Random sequential adsorptidRSA) models describe o ctorgeach conducting particle occupies a single site of

the systems that are characterized by implicit randomnesg, latticé and more extended impuritiéstick-shaped par-
and irreversibility. This approach originates from the work of ;a5 of given length The discussion of more complex case
FIor.y,l? who studied a cyclization reaction in the polymer ¢ oyiended particles of both kindsonductors and insula-
chain in which adjacent pendant groups randomly link. Inyrg goes beyond this paper. In the following sections the
general in RSA-type modefs™®we consider objectte.g.,  getails of the modelSec. 1) and results with discussion

atoms, molecules or circles, rectangles, ellipsoids, latticsec i) are described. Concluding remarks are contained in
sites, lattice animaJsthat attach to some substrae.g., Sec. IV.

polymer chain, solid surface, biological membrane, con-

tinuum plane, or latticeone by ongsequentially at random

position provided that there is no overlapping with previ-

ously adsorbed objectsome models allow this constraint to Il. MODEL
be relaxedl Once an object is attached, it will neither move

nor desorb back to the solution. We want to investigate here the process of forming a
There are many applications of RSA models in variouspercolating cluster with the presence of impurities by per-
fields of physics and chemistry, especially where irreversibilTorming a series of computer simulations. With the absence
ity of the phenomena is to be considered. Among importangf imperfections the process of percolation is relatively well
applications are the reactions on one-dimensi¢b@) poly-  stydied* In real life, however, there is one additional factor
mer chains;’ chemisorptiorf’ adsorption of proteins on that often must be taken into account: impurities. When the
solid surface$! or growth processes in three-dimensionalgrface of interestin the current paper a 2D latticés not
(3D) solid-state physic&:**Also there are models in which jgeq| initially, but has defects or is covered with obstacles or
contamination, the process of growing clusters and making
¥Electronic mail: gkon@ift.uni.wroc.pl connections between conducting particles is disturbed. One

0021-9606/2005/122(18)/184718/5/$22.50 122, 184718-1 © 2005 American Institute of Physics
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500 and since finite-size effects seem to be very small for
L=500, we have takerc,=c,(ad,id;L=500 for further
analysis. Some simulations finished without arriving at per-
colation, so “no percolation” quantitfNoP) was introduced

as a number of such simulations in a series divided by the
number of simulations in that seri€Nl).

Here we adopted hard wall boundary conditidiasy
part of the particle cannot extend beyond the substiate
order to model the real experimefrio periodic boundary
conditions on a single real surface can be observed

For choserL. =500 we measured the value @f for val-
ues ofad=1...24 and foreach value ofad we tested the
whole range ofid for which percolation of conductors
appears.

FIG. 1. A typical example of a snapshot of the system at the end of simu]” RESULTS
lation. The size of the insulator particlésill circles) is ad=6, its concen- '

trationid=0.2, an_d the concentratic_)n of conductodsts at percolation is The case of point imperfectior(ad= 1) is exceptional
¢=0.5572. The size of the systemlis50. . ..
(due to no correlation of empty places left after deposition of
insulators. Let us look at the following problem of choosing
can speak here about either “insulators” or “contaminations,sites of the lattice: “take and mark sites out ofn avail-

“obstacles,” “impurities,” etc., depending on the physical able.” The probablllty distribution of the possible outcomes
context considered. will not change if at first we choose at random sopren

The simulation setup is as follows. Our surface of inter-—M sites that will not be marked, and then sites to be marked
est is modeled on a triangular lattice as a hexagon with sidedf® chosen out afi—p sites left(heren stands for the total
equal toL lattice constants. Each single computer experimenflumber of sites on the lattigel et us calculate the appropri-
consists of two steps. Firstly, we cover our sample with parate probabilities. Let® (M) be the probability that irm
ticles of impurity up to some concentratigth This concen- trials one has chosen the sites from the sét
tration is defined as a fraction of sites of the hexagon that arg X1, Xz - - Xm}. Obviously,

occupied by impurities. Each adsorbed particle of impurity mm-1 1 1
has the shape of a stick consisting aif consecutive sites (M) = nn-1 n-m+1 = n\’
(“atoms”) in a line. The lengttad is the same for all impurity (m)

particles in a single simulation. Particles of impurity cannot
overlap and their spatigland orientational distribution is  Let P, (p,m) be the probability that, as above, one has cho-
random with uniform density(generated using the RSA sen inm trials the sites from the mentioned skt, but pre-
method. After placing impurities up to a desired concentra-viously somep sites had been randomly thrown away from
tion id we turn to the second step of the experiment—the lattice. The last probability factorizesP;(p,m)
adsorption of the conductors. In this study we consider point=P, ,P,;z. Here P, stands for the probability of choosing
like conducting particles that consist of one lattice site eachthesep sites to be thrown away in such a way that none of
We stop the adsorption process when the percolation of corthe thrown away points belongs to the det,
ductors sets in the system. This is the case when there exists

. . . . n-m
a set of neighboring conducting particles that connect oppo- ( )
site sites of the lattice. For each simulation a threshold den- Pya= n-mn-m-1 n-m-p+1 1\ p
sity of adsorbed conducting particles is evaluated. An ex- n n-1 n-p+1 n
ample snapshot of the system at percolation can be viewed in <p)
Fig. 1 (for parameterd =50, ad=6, andid=0.2). For the ) - )
given set of simulation parameters, size of the laticg | "€ Second factoP,g is the probability of choosing appro-
length of impurity particlesad), and density of impurities Priate m sites inm trials, but here one chooses fromp
(id), we perform a series ok=100 separate experiments SiteS 1eft(p sites had been thrown away
(with various seeds of random number genepatoorder to m m-1 1 1
obtain statistical reliability of the results. We derive from Pig= n-pn-p-1 - p-m+1 = (n _ p) :
each such series a mean value of percolafign and its
mean standard deviatidir). Continuing this procedure for
different choices of parameters’ values we obtain the funcOne can easily see that indeBg=P,;, provided thatp<n
tion c,=cy(ad,id;L). This function is a starting point for —m. If, however,p>n-m, then P;,=0 and the reasoning
ongoing investigations. The resulting percolation thresholdreaks. This problem is equivalent to the one of generaiing
Cp=Cp(ad,id; L) is sensitive to the size of the lattite but as  impurity positions before adding conducting particles.
L —oo the threshold converges to the infinite lattice limit, Let us now consider two probabilitieB(m) is the prob-
cg(ad,id):cp(ad,id;Laoo). We have worked with. up to  ability that percolating cluster forms just after adsorbmitp

m
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P O30 e _
: : L ad=6 ]
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ld 0.55 —
| ad=3 ]
FIG. 2. The percolation thresholg(id) for point insulators(ad=1). The
error bars relate to the mean standard deviation. i 1
conducting particle om-site lattice (no insulators previ- - ]
ously) and P(m|p) is the probability that after adsorbing 0.50 Tl b b by
insulator particles and th@—1 conducting particles, the per- 0.0 0.1 02 03 04 0.5
colating cluster forms just after adsorbimgh conducting id
pamCIe' In view Of. the previous discussion I.t appears thaEZIG. 3. The percolation threshold(id) for finite-size insulators(ad
P(m):P(m| p) provided thatp<n-m, or equivalentlym =3---24). The data for which NoP 0 are not shown here.

<n-p. The mean value of the percolation threshold reads as

For a given size of insulators there is an interval
[id™,id*], where the number of simulations that show no per-
colation rises from 0% to 100%. Abovd* there is no per-

cy(id=0) = %2 P(mm

m=1

and colation at all. Even though the size of conductarsl im-
np plies that these conducting particles can fit the tiniest space
c (id—9> _}2 P(mlp)m free of insulators on a lattice, the absence of percolation
p|\ld="]= p . S )
n/ Ny results from the formation of an infinité.e., percolating

] . ] cluster of insulators that limits the connection between con-
for pure conducting and insulator contaminated cases, rejyctors. This intervdlid™,id*] shrinks to a single poirit* as
spectively. These two probabilities practically coincide forine size of the system risels=— = (see Fig. 4 The detailed
lattices big enough ang not too big. The only possible analysis shows that this limiting valié' is the complement
d|fferenc_e comes fro_m the set of conflgur_a_tlons, for Wh'Chof the percolation threshold, derived forid infinitesimally
percolation appears in the system at densitiep/hr=1-id below id", id*=1-c.. More exactly id*=1-c,(id") (see
or bigger. And since the percolation transition for large lat-cyrve plotted with circles on Fig.)4Moreover, this value
tices becomes shatfthe probability of attaining percolation (jg*) coincides with the percolation threshold of sticks of
at densities well away from the percolation threshold is neggiven length alondthe case of adsorption of linear particles
ligible. Thus we arrive at equalitg,(id=0)=c(id) for id
<1-¢,(0). In other words the measured percolation thresh-

old for the case of point insulators should not depend on ) +°'6 SR B B
insulator concentration up td<0.5. Indeed the above rea- id 05 C E
soning is in a good agreement with simulations, as one can “F \ é:
see on Fig. 2, wherey(id)=const=0.5 within statistical er- id o, F o
ror. At first glance it may seem contradictory to simple F ]
intuition—one can think that “for higher concentration of 03 F 3
obstacles percolation clusters should not form easily,” but C .
here that is not true. As it was explained above the positions 02 -
of particles of both kinds are independénncorrelategland F ]
formation of percolating cluster of conductors is insensitive 0.1 2 E

to the distributions of impuritiesup toid=<0.5). T T T T
The analysis is different for bigger impurity particles. As 00 5 10 15 20 25

the use of finite-size impurities induces some correlations in ad

the distribution of empty place&@nd consequently of con-

ductors, the percolation threshold is sensitive to the presFIG. 4. The specific values of the concentration of insulaidrs(id*) for

: ; ; :_ which the percolation does not appear at least drespectively, neverin
ence of dISturbanceenSU|ator3 and increases monotoni the number of Monte Carlo runs as a functionaaf The size of the lattice

C".i”y with concentration and length of impurity particks®e  \aries here from. =100 (thick lines to L=800 (the thinnest lines The
Flg. 3). relationidzl—cp(id‘) is plotted with circles.

[=]
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r T — T 1 L BN B B S B
oe2 ad=24] [ ad=24 =
ad=18 3
0.60 ad=12 -
g ad=9 g 0.60 -
0s8 F ad=6 =
o 3 3 c,
0.56 =
F sf (ad=3) = 0.44 (02) 3
- sf (2d=6) = 1.00 3 0.55 .
054 B sf(ad=9)=1.4505) |
: sf (ad=12) = 1.80 (10) E
: sf (ad=18) =2.40 (10) | 3
052 | sf (ad=24) =2.90 (10) | .
E [ 3 3 :
0‘50- L I L I L I L I L : 0,50 IIIIIIIIIIIIIIIIIIIIII
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
x=id-sf id
FIG. 5. The rescaled percolation threshojgx) for ad=1---24. FIG. 6. The percolation threshold,(id) for extended insulatorgad

=3---24). The boundary line(id)=1-id is plotted with dots.

(sticks with no impurity preadsorbed on a substrate; see Ref. ] ]
5 for detaild, which confirms that the percolation of conduc- have to analyze the structure of the insulating adsorbate and

tors stops when the percolation of insulators sets in. especially the structure of the free space left for adsorption of
Looking at the percolation threshoig} as a function of the c_ond_uctor_s. It appears t_hat this remaining free space has,
insulator concentratioid for various sizes of insulator par- OF high impurity concentration, a structure similar to that of

ticles, one can observe the shape universality of the curvég'e infinite cluster slightly above the percolation threshold,

(at least forid away fromid*). On a single plot one can draw i.e., it consists of blobs, links, and dead ehdsblob is a

all graphs properly rescaled in abscissa to see this universdRc@l region of wide open space where many paths connect-

ity (see Fig. 5. The scaling factor sf=&id) was determined N9 borders of that region can be drawn there. A link is a
of thin-line-shaped region that connects other parts of the sys-

in such a way that the rescaled functiogéx) for x=id(sf) tem, otherwise disconnected. A dead end is a region that has
follow the single(universal curve. To fix the reference point no impact on the overall connectivity in the system. Let us
df concentrate first on the regime of a very high concentration
we arbitrarily chose $dd=6)=1. The consistency is remark- of impurities, where some of the simulations do not end in
ably good on a wide interval afl. Uncertainties of the scal- percolation(NoP>0). This is the case foid e [id™,id*].
ing factor were estimated via graph analysis. Then we have the following interesting factor influencing the
Some deviations are present, especially for insulatopercolation threshold. The effective insulator distribution is
concentrations approachingl” (the effect is more pro- affected bya posterioricondition of the appearance of per-
nounced for higherad). It should be mentioned that all colation in the system, because only percolating samples are
graphs on Fig. 5 end at™, the concentration, for which taken into account in calculating the mean value of the per-
simulations start to show that it is not possible to reach pereolation threshold,. In other words the latest insulator par-
colation (at least one simulation out di=100 shows no ticles are added not uniformly to the empty space, but the
percolation. The scale factor sf as a function afl (size of  addition avoids places that must be occupied by conductors
insulator particlesis very smooth and can be fitted with high to form the connection(links). Otherwise percolation is
accuracy by the formula &d)=p In(gad+r) with valuesp blocked and such simulation is discarded when evaluaing
=2.345,9q=0.106, and =0.893. So further insulators are adsorbed not to links, but to blobs
Let us now discuss the case of high insulator concentraand dead ends, and this decreases the resulting percolation
tions. It appeargFig. 6) that after continuous growth, the threshold.
function c,(id) reaches a maximum at the concentration of  One can assume that a similar mechanism can also work
impurities id=idy(ad) and drops down wheid increases for slightly lower concentrations, for which NoP=0, but still
further. The reason for the initial increase of the function isid >idy, (the concentration of impurities, for which the per-
rather easy to understand—for bigger amount of long obeolation reaches its maximymSince most of the free space
stacles there are more long barriers that must be gone aroupdesumably forms dead entiss doekthe case of the perco-
to make a connectiofor connecting path becomes longer for lating clustej the subsequent impurity particles are more
higherid). This factor is valid, however, only for elongated likely to adsorb there. So the percolating cluster at the
obstaclegad> 1), as we discussed previously. To explain thethreshold becomes more compéand smaller.
nonmonotonicity for higher insulator concentratioh we It is worth noticing (Fig. 6) that all curvesc,(id) for
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Lo insulators the percolation process of conductors is insensitive
to impurities (at least for impurity concentration below
0.9 50%). For finite-size impurities and a small to medium level
of impurities the percolation threshott} increases with the
c 08 impurity concentration according to the universal cutthe
P effect is more apparent for larger size impuriti€Bhere ex-
1-id 07 ists a characteristic value of impurity concentratitmt de-
pends on the size of impurity particleabove which the
0.6 percolation threshold in the system becomes a decreasing
function.
Y]~ S I B T P These phenomena relates not only to the case of adsorp-
00 0.1 02 03 04 0.5 tion of conducting particles onto precontaminated surface
id (e.g., in preparing conducting composjtést also to other

FIG. 7. The relative percolation threshabﬁ'(x):cp(id)/l—id. The values systems where the notion of connectivity plays an important

ofadare 1, 3, 6, 9, 12, 18, and 24tarting from the right curve to the lgft role, e.g., CO”_OidS in the process of gelati_on, filters getting
blocked, and in the study of porous materials as well.

ad=3---24 Iay below the boundary I|nep(|d)=1—|d of the ACKNOWLEDGMENTS
allowed area, approaching this line idsincreasegbecause

always c,+id=<1.0). Each graph ends here at=id*(ad), The author is grateful to Prof(.ass'or AndrzekBiski, Dr.
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iscussions.
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We consider the jamming aspect of random sequential adsorption of extended particles onto
two-dimensional lattice by computer Monte Carlo simulations. The initial presence of impurities on
the substrate disturbs this phenomenon significantly and we study here how the size and density of
impurity particles affect the resulting jamming threshold. We present the formula for jamming
threshold as a closed function of all important parameters (the size of primary particles, the size of
impurity particles, and the final density of impurities). The fractal dimension of the space free of
impurities is also discussed. © 2006 American Institute of Physics. [DOI: 10.1063/1.2161206]

I. INTRODUCTION

The adsorption of large particles on the surface belongs
to one of the most important processes in surface physics and
chemistry of many real systems. Random sequential adsorp-
tion (RSA) models were used as the simplest approach to-
ward irreversibility.1 Since a long time ago there has been
interest in using RSA in models for reactions on polymer
chains,>? chemisorption on crystal surfaces,” adsorption in
colloidal systems,s’6 random growth in surface physics,7
growth processes in three-dimensional (3D) solid-state
physics,&9 in technology of composites,lo in granular matter
study,11 in disordered systems,12 and also in a wider context
such as ecology13 or sociology.14 The characteristic features
important here are (a) irreversibility of deposition (no de-
sorption), (b) randomness of a position (and an orientation)
of a particle to be adsorbed, and (c) sequentiality what means
that at any time only one particle is being adsorbed, but
relaxing of these constraints leads also to interesting models
as well.'>® There are wide reviews on the topic, see, e.g.,
Refs. 17-19.

In a large group of RSA models there is one more re-
striction often considered: no overlapping with previously
adsorbed objects is allowed. As a consequence of this the
investigated system approaches the jamming state, in which
no more objects can be adsorbed (due to absence of free
space of appropriate size or shape). In many papers the main
concern is focused on the study of a dynamics leading to a
such state.”’* On the other hand it is also interesting to
investigate the structure of the final (jammed) state. One of
the basic observations here is that the distribution of ad-
sorbed objects in RSA is different from that obtained at
equilibriumlg’24 (in RSA case one has infinite memory of the
process and orientational order is purely local, in contrast to
the equilibrium case, where there are long-range correlations
in a nematic phase).

In studying many systems one often has to consider also
some contaminations (impurities) that disturb the act of
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deposition of primary particles (i.e., that of primary interest)
and introduce disorder into the system. It is a very common
situation that parts of the system are not perfectly clear, but
contaminations have significant effect on the system behav-
ior. This important case, however, is not very well studied
and the bibliography on that topic is rather short. In general
there are two ways of incorporating the factor of impurity
into the model—either competitive adsorptionzs_27 (one has
an adsorption of particles from a mixture and some probabil-
ity distribution is used for generating the type of a particle
being adsorbed at every time) or preadsorption (covering the
surface of interest with impurities up to some level, before
the RSA of primary particles starts). It is rather clear that
both approaches are not equivalent (the appropriate choice
depends on the physical details of the process). We concen-
trate here on the second possibility (preadsorption), and we
want to investigate how the level and size of impurity par-
ticles interfere the jamming process of extended primary par-
ticles. Both primary and impurity particles considered here
are needlelike. We developed a computer code for Monte
Carlo simulations of the adsorption process and the analysis
of the obtained data constitutes the main body of the paper.

There is a close relation between the present work and
Ref. 28, in which we studied the percolation process affected
by impurities.

In the following section (Sec. IT) we explain the details
of the model. Since there appears two different cases, we
describe them separately and present the results in two con-
secutive sections (Secs. IIT and IV). In the final section (Sec.
V) some remarks and conclusions are included.

Il. MODEL

In this paper we present conclusions based on extensive
Monte Carlo simulations of the system with impurities. The
details of this approach are described further in this section.
The system of interest consists of two kinds of extended
particles (impurities and primary particles) and a substrate on
which these particles are being adsorbed. We work here on a
triangular lattice and the substrate is a hexagonal of the edge
equals L lattice sites. Particles are modeled here as straight

© 2006 American Institute of Physics
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chains of consecutive lattice sites, with length (defined as the
number of sites it covers) depending on their type (through-
out the simulations primary particles have length a and im-
purity particles have length ). In a series of simulations
these lengths remain constant. The adsorption is random and
sequential what means that at any time we try to put ran-
domly (at random position and orientation) one particle of a
given type. The particles cannot overlap (this constraint ap-
plies both to particles of the same type and to particles of
different types), so in a case of detected overlapping the trial
of adsorption of given particle is rejected and the next posi-
tion and orientation are randomly generated. Once the par-
ticle lands in an empty space it stays there forever (no de-
sorption).

One of the main quantities considered in this paper is the
jamming threshold for primary particles adsorbed on a sub-
strate previously filled up to some level with impurities. On
an empty substrate we adsorb impurities until the coverage c;
(the ratio of the number of lattice sites occupied by impurity
particles to the total number of sites in the substrate). Then
we adsorb primary particles as long as possible. At some
moment, however, there is no empty place that can accom-
modate a single primary particle—we say that the system is
jammed. The jamming threshold c; is the coverage of pri-
mary particles at that moment (the ratio of the number of
lattice sites occupied by primary particles to the total number
of sites in the substrate). This quantity depends on several
parameters: ¢; =c; (a,b,c;)—on the size a of primary par-
ticles, the size b of impurity particles, the impurity level c;,
and also on the lattice size L. In order to obtain statistically
reliable results we repeat N times the simulations for the
same set of parameters’ value and we take the average c; (a
wavelet in the symbol ¢;” denotes the single simulation value
in contrast to a value c¢;—the mean in a series of simula-
tions). In this paper we took the length of each simulation
series N=100, what guarantees reasonably good accuracy
and low level of fluctuations. The mean standard deviation o
is also calculated and used for controlling statistical errors. In
order to get rid of finite-size effects we took for further
analysis the simulations done on a substrate as large as L
=500 lattice units, while we used smaller values L only for
comparison. In the study of the pure jamming curve (no im-
purities added: ¢;=0), however, we have chosen L as big as
1000 since particles with the length up to a=50 were con-
sidered. In all simulations hard wall boundary conditions
were chosen (they mimic the situation of many real experi-
ments). From the previous study of similar RSA
models'®*** it is known that the type of boundary condi-
tions may influence the decay of finite-size effects, but for
large enough lattices there have no impact on the results.

The main objective of this study is to discover how the
length of impurity particles and the level of impurities in the
system influence the jamming threshold of primary particles.
It appeared that one can distinguish two separate cases, when
the impurity particles are either smaller or larger than the
primary particles (either b<<a or b>a, while the case of b
=a is trivial). Because these two possibilities proved so dif-
ferent, we study them in two separate sections.

J. Chem. Phys. 124, 054713 (2006)

lll. RESULTS: THE CASE OF IMPURITIES SMALLER
THAN PRIMARY PARTICLES

At the beginning of our study we need to look at the pure
jamming threshold (no impurities at all) as a function of the
particles’ length: c;-):c?(a):cj(a,b,c,-:O). This function will
be the point of reference for further considerations.

In RSA approach the way that jamming threshold de-
pends on the size of objects being adsorbed on the surface is
sensitive to the details of the model. The major factor here is
the structure of the substrate: for continuous case it is ob-
served that the function cj-)(a) has a maximum for aspect
ratio a of the objects (rectangles, ellipses) close to 2 and
decays to zero with power law.'”31%% On the other hand the
discrete systems (modeled on a lattice) show different behav-
iors: the jamming threshold decreases monotonically with
size but the infinite limit (¢ — ©) remains finite (nonzero). In
the literature several forms of this decay are postulated:
power law,” polynomial in inverses of a,>>** inverse of
logarithm35 (for an end-on mechanism of deposition), and
exponential®® (for small values of a). Additionally it
appealrs”’m’%’37 that the type of underlying lattice has an
effect only on numerical constants in the formulas, not on the
formulas themselves.

For our data simulated on a triangular lattice with the
lattice size L=1000 the resulting formula for jamming reads:
c)(a)=c;+consta™ with ¢;=0.595(5), const=0.54(4), and
A=0.75(5). The values of a considered here (and in the
whole paper) remain in the set {1, 2, 3, ..., 50}.

In the numerical part of our study we obtained the func-
tion ¢;(a,b,c;) for fixed a and b while the impurity level c;
ran through the whole admissible interval [0, c;)(b)], for
which one can still adsorb particles. This function is a mean
of a series of N=100 computer simulations with the same set
of parameters. We repeated such series for chosen sizes
of particles involved: ae{3,6,9,12,15,18,24} and
be{l,3,6,9,12,15,18,24}.

It is obvious that the jamming threshold of longer par-
ticles is lower—there are many holes that can accommodate
shorter particles but not longer. Contaminating the substrate
by impurity particles up to some level c; in the RSA process
makes the surface of the substrate somewhat rough or disor-
dered. The amount of disorder introduced depends on the
impurity level c; as well as the impurity size b. For impurity
particles smaller than primary particles (b<a) areas forbid-
den for adsorption of impurities (where these particles can-
not fit too small cavities) are also forbidden for primary par-
ticles. Thus the resulting jamming threshold ¢; will be
smaller than the amount of impurities that could be further
adsorbed in place of primary particles [up to the jamming of
impurities: cj(a,b,ci)<c?(b)—ci]. On the other hand in the
case when impurity particles are larger than primary particles
(b>a) there are also areas (holes within impurity structures)
that will be covered by primary particles and the final cov-
erage of the substrate by particles (of both kinds) is relatively
higher. The difference between these two possibilities seems
to be a bit deeper, so each case is described in a separate
section. The intermediate case when b=a (particles of both
kinds are equal in size) is trivial in the following sense. The
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FIG. 1. The case b<a: the jamming threshold c¢,(a,b,c;) for a=1,3.6, b
=1,3,6, and c¢; ran through the interval [0.0, 10] The lattice size is L
=500.

jamming threshold c¢;(a,b,c;) simply equals the difference
between the total jamming threshold c; %a) for one kind of
particles only (no impurities) and the 1mpur1ty level c;.

In the rest of this section we discuss the first case: b
<a. In the following we will be aiming at obtaining the
functional dependence c¢;=c;(a,b,c;) in a closed form. As it
stands the rough data c;(a,b,c;) for only some values of
parameters a and b (for clarity) are shown as a function of c;
on Fig. 1. To extract some regularities in this graph we need
to do additional operations on the data.

Firstly let us notice that both the function c; itself and
the impurity level c¢; practically do not go beyond pure jam-
ming threshold ¢; %a). We have c; fa.b,c; )\c (a) since
cjila,b,c;)<cja,b,c;=0)= ¢; Y%a) (thejammmg threshold is a
decreasmg function of c;). On the other hand for most cases
cjla,b,c;)=0 for ¢;> c?(a) [some minimal deviations can be
observed for b=1---3 and a <6 due to the fact that for very
small lengths (a,b) there are some elongated holes even for
very high level of impurities]. Thus we can normalize both
axes by dividing by the factor c;-)(a).

After this rescaling one can draw the function
cila,b,c;)/ c)(a) VS ¢; /co(a) on a single graph for different
values of the parameters a and b (see Fig. 2). It appeared that
all curves belong to the same family of functions and differ-
ent curves coincide for some choices of a and . We discov-
ered that this family can be described by the formula: y#
+x=1 [or y=(1-x)"P], where y=cja,b c)/c (a) and x
=c,/ co(a) The exponent 8=p(a,b) does not depend on the
impurity level ¢; (it has some small deviations from a con-
stant function with respect to c;, but these are below 0.05 and
may be the subject of a finer analysis). This unusually simple
formula can be related to some fractality of the area of the
substrate that is accessible for primary particles after impu-
rities are deposited. The exponent 8 may be pertained to the
fractal dimension, but here one can rather speak about “rela-
tive dimension,” because it determines the way how the ac-
cessible area (and the process of adsorption itself) can be
seen from the point of primary particles. The regular case
B=1 (that is y+x=1—all sites that are not impurity are ac-
cessible) is reproduced for b=a and especially for b=a=1

J. Chem. Phys. 124, 054713 (2006)

c./C.
J/ J

FIG. 2. The jamming threshold after suitable rescaling [dividing both axes
by the factor c?(a)]. Within the curves of the same type (i.e., the same value
of a) lower curves correspond to bigger values of b. For given a the values
of b considered on this figure belong to the set {1, 3, 6, 12, 24} providing
that b<a.

[for this latter case the scaling factor c?(a: 1) is just unity].
Here bigger values of 8 means more space accessible for the
adsorption of the primary particles and the maximum value
B=1 is related to the highest adsorption. The smaller expo-
nent B, the lower jamming threshold (at the same impurity
level).

The determination of the functional dependence of 8 on
a and b is the next step of our study. We have observed that
the arguments a and b of the exponent function B(a,b) enter
it via their difference a—b: B(a,b)=f(a—b). The value of B
vs a—>b for all a and b investigated is plotted on the Fig. 3.
The points follow one function, roughly being f(x)=5/(4
+x)—0.05. In the case of equal size particles of both kinds
(that is the regular case b=a) the value B=1 (as it was dis-
cussed above). On the other extreme we have 8— 0 for big
difference in particles’ size. The fact that the behavior of the
system is governed only by the difference in particle’s sizes
can be simply explained. In the case of fitting a single pri-

1.0
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0.6
04

02

0.0 IIIllIIlIIIlIIIIIIIIIIII
0 5 10 15 20 25

a-b

FIG. 3. The values of the exponent S vs the particles’ size difference
for all possible choices of ae{3,6,9,12,15,18,24} and b
€{1,3,6,9,12,15,18,24} such that b<a. The curve is an inverse-type fit
B=5/(4+x)-0.05 with x=a—b.
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C.
1

FIG. 4. The illustration of conformity of the formula (1) (lines) to the
simulation results (circles) on some examples: the upper solid curve corre-
sponds to the choice a=12 and b=9 and the lower dashed curve corresponds
to a=24 and b=6.

mary particle to some small hole in the impurity structure
this is just that difference which determines the number of
possible positions of the particle.

Thus one can describe the jamming threshold in the fol-
lowing closed form:

fabic) = c?<a>(1 - cjf("a))g(“ § (1)
with
80 + 20x
gx) = Y
and

c(a) =0.595 +0.54a"7.

It is noteworthy that the function describing such a compli-
cated process can be (at least at the first approximation) ex-
pressed in a such compact form. The accuracy of the above
formula is for some choice of parameters pretty good (e.g.,
a=12 and b=9), for others (e.g., a=24 and b=9) still satis-
factory (see Fig. 4). To get deeper insight into details of the
studied phenomenon of interplay between impurity particles
and primary particles in the process of adsorption, further
study of the subject is needed, however.

IV. RESULTS: THE CASE OF IMPURITIES LARGER
THAN PRIMARY PARTICLES

In the case when impurity particles are larger than pri-
mary particles the latter can penetrate some internal holes of
the impurity adsorbate that cannot be filled up with impurity
particles. This can introduce some roughness or fractality of
the space not covered by impurities, that is accessible for
RSA of primary particles. Let us check that by examining the
fluctuation behavior.

In pure RSA (no impurities considered) one can
introduce™ correlation length exponent v; for jamming in the
form oo L~/%. The correlation length exponent is a standard
critical quantity in other critical phenomena, such as
percolation.”’40 It measures the decay of fluctuations o in the

J. Chem. Phys. 124, 054713 (2006)

FIG. 5. A typical example of emerging structures at jamming (here no
impurities were present: ¢;=0). The figure shows the central part of a sub-
strate (L=500). The adsorbed primary particles of length a=15 are plotted
in black, left free sites are shown with small dots.

system as the size of the system tends to infinity. This expo-
nent governs also the divergence of correlation length at
criticality (as in percolation). In the case of adsorption on
heterogenous media one can still introduce this exponent:
Loscar ef al.*! report that the jamming correlation length
exponent v; carries information not only about the universal-
ity class of the adsorption process itself but also about the
fractality of the substrate as well. This is implied by the fact
that the fluctuations of the final density of the adsorbate de-
pends not only on the adsorption process of primary par-
ticles, but also on the fluctuations introduced by the process
of preparing such a heterogeneous medium (i.e., adsorption
of impurities). Thus in the RSA processes on heterogeneous
media the mean standard deviation of jamming o; (which
measures the fluctuations in the system) can be decomposed
into two terms: oygy, related to the substrate and orgy related
to the adsorption process. The RSA part follows usual scal-
ing: opga % L™" where the exponent v, can be expressed*!
via the fractal dimension of the substrate d; and the dimen-
sionality of the underlying space D:v,=2/(2D~dy), here D
=2. Thus the exponent v, can be equal to unity only for the
case of dy=2 (no fractality). In the RSA on clean surface (no
impurities) one obviously has®' v;=1.

After analyzing fluctuations in the system for b>a and
extracting the correlation exponent v; from the RSA part of
the mean standard deviation oggy for various impurity levels
¢; we came to the following conclusion. We have the fractal
dimension d;=2 for all considered cases (we obtained v,
=1.00+0.03), which means that we have no fractality in the
system. After closer inspection (see Fig. 5, on which some
part of the system after jamming of impurities with =15 is
shown) it appears that the empty space consists of quite
regular blocks, on the contrary to the previous suggestions.

V. CONCLUSIONS

In this paper we analyzed the RSA process with two
kinds of adsorbed particles: impurity particles that are depos-
ited up to some level in the first stage of the process, and
primary particles that are adsorbed on the substrate contami-
nated by impurities. The resulting jamming threshold of pri-
mary particles was investigated and a closed form of its de-
pendence on parameters (size of both kinds of particles and
level of contamination) was proposed for impurities smaller
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than primary particles. For impurities larger than primary
particles the analysis of fluctuations of the jamming thresh-
old indicated that after first stage of the process (adsorption
of impurities) the space left for adsorption of primary par-
ticles has no fractal properties, but its fractal dimension
dp=2.
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We consider the percolation aspect of random sequential adsorption of extended particles onto a two-
dimensional lattice using computer Monte Carlo simulations. We investigate how the composition of the
particles influences the value of the percolation threshold. Two regimes can be distinguished: one for almost
linear particles (with the composition of straight segments reaching 85-100 %) and the second one for more
bent (flexible) ones. For more bent particles we found a high correlation between the percolation threshold and
the structure of an adsorbate at percolation. We also observe that there is no difference in the conclusions for

both kinds of lattice considered (square and triangular).

DOI: 10.1103/PhysRevE.78.011101

I. INTRODUCTION

Even though the problem of percolation [1] has been
known for many years [2] and many papers have dealt with
its various aspects, there are still many interesting questions
to be answered. In a basic lattice formulation, each site is
occupied with the probability ¢ or is empty with the comple-
mentary probability 1—c. As ¢ increases from 0, neighboring
occupied sites start to form connected clusters with greater
and greater size. Eventually, for a certain threshold value Cps
there appears an “infinite” cluster that spans the whole sys-
tem. The probability threshold depends on the system’s size
L, but it has a finite limit as L— (the convergence is a
power law [1]). There are many applications of the percola-
tion theory in physics and chemistry, especially in disordered
systems, porous media, and critical phenomena. Percolation
is the simplest nontrivial model of phase transitions and is
widely used in describing transition phenomena [3] (e.g., ge-
lation). Other important applications include resistivity of
composites [4,5] and strain behavior of solids [6].

There are several mechanisms of particle deposition onto
a surface, but among them random sequential adsorption
(RSA) both is relatively simple and has many successful
applications in theory and experiment. The starting point in
this approach is usually an empty substrate surface. The pro-
cess of adsorption is sequential, i.e., there is only one particle
being adsorbed at a time. The position and orientation of the
adsorbed particle at each trial is generated randomly. The
result of each trial is determined by a nonoverlapping rule:
the trial is accepted (and the particle is adsorbed) if there is
no overlapping with the previously adsorbed particles. How-
ever, if any part of the particle overlaps with some other
particles, the whole trial is rejected and a new position and
orientation (in some models also a new shape) is generated
again (without any correlation to previous trials). The whole
process is irreversible—adsorbed particles stay on the sur-
face forever at the adsorbed positions.

The RSA approach originates from the work of Flory [7],
who studied a cyclization reaction in a polymer chain in
which adjacent pendant groups link randomly. In general, in
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1539-3755/2008/78(1)/011101(7)

011101-1

PACS number(s): 64.60.ah, 61.46.Bc, 61.43.Hv

RSA-type models [8—13] one usually consider atoms, mol-
ecules, or geometric shapes like circles, lines, or ellipses that
adsorb on polymer chains, solid surfaces, biological mem-
branes, or lattice or continuum planes. These models are
widely used in various fields of physics and chemistry, espe-
cially where one deals with irreversible processes. The ap-
proach of RSA has been used, among others, in models for
reactions on polymer chains [7,14], chemisorption on crystal
surfaces [15], adsorption in colloidal systems [16,17], ran-
dom growth in surface physics [18], growth processes in
three-dimensional (3D) solid state physics [19,20], technol-
ogy of composites [21], granular matter study [22], and dis-
ordered systems [23] and also in the wider context of ecol-
ogy [24] or sociology [25]. For an extensive overview of the
field, see Refs. [26-28].

Recently the irreversible adsorption of large particles
(polymers, nanoparticles, etc.) has attracted much attention.
Among many papers devoted to the subject one can mention
Ref. [29], where blocking effects in the adsorption dynamics
of linear macromolecules are explored. In Ref. [30] a scale-
invariant behavior of the jamming time for linear particles
adsorbed on arbitrary finite square lattices is revealed. An
analytical derivation of the power law describing the size of
jamming fluctuations on homogeneous and inhomogeneous
lattices can be found in [31]. The other shapes on a triangular
lattice as well as their mixtures were considered in Ref. [32]
(see also references therein), where the approach to jamming
was investigated. There is an interesting comparison study of
lattice adsorption versus continuous adsorption in Ref. [33].

Relatively many papers have been devoted to determining
the universality class and the threshold for the percolation of
particles modeled by random walks of given length; see
Refs. [34-36]. Additional effects connected to nonperiodicity
of the substrate (or contamination of the underlying regular
lattice) were studied in Refs. [37-39]. Some generalizations
of the problem using mixed side-bond percolation can be
found in Refs. [40,41]. The interplay between jamming and
percolation for monomers, dimers, and square particles at
various temperatures was studied in Refs. [42-45]. An inter-
esting model of percolation of very large polymers (with the
length of order of the system size) is discussed in Ref [46].
Some aspects of percolation in nanocomposite films were
described in Ref. [47].

©2008 The American Physical Society
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The solutions of most percolation problems are of mainly
approximate nature, since the exact calculations can be done
only in very special cases (e.g., ¢, for random percolation on
a triangular lattice or percolation on Bethe lattices [1]). We
decided to perform Monte Carlo simulations of the problem
since other approaches did not prove promising.

The paper is organized as follows. In Sec. II we describe
the details of the model. A discussion of finite-size scaling
and the error bars of the data is included in Sec. III. The
main results of the paper are presented in Sec. IV. The rea-
sons for lack of percolation for some sets of parameters are
discussed in Sec. V. Additional data on the other (triangular)
lattice confirming the previous conclusions (drawn for the
square lattice in Sec. IV) are described in Sec. VI. Some
additional facts on cluster structure are put forward in Sec.
VII. Concluding remarks are included in Sec. VIIIL.

II. MODEL

In this paper we study adsorption of extended particles of
fixed length on a lattice. The coverage of the surface is in-
creased in the process up to the percolation threshold, when
there appears a so-called infinite cluster (a cluster that ex-
tends through the whole system). The resulting percolation
threshold depends on the spatial structure of the particles
being adsorbed and their size. We investigate here by means
of Monte Carlo simulations how the composition and the
size of the particles determine the threshold. Other aspects of
a similar model were studied in Ref. [48]. In order to obtain
a deeper insight into the problem we carried out simulations
on two kinds of 2D lattice: square and triangular.

Each particle is modeled here as a group of a consecutive
neighboring sites (monomers) of the lattice (we deal with
unbranched polymers). Between successive monomers we
have bonds that form a broken line (the backbone of the
particle). By the composition of the particle we understand
here the fractions of corresponding bending types in a back-
bone. On a square lattice there are only two types of bend-
ing: straight (S0) and at right angles (S1); on a triangular
lattice we have three: straight (70), slightly bent at the angle
of 120° (T'1), and highly bent at the angle of 60° (T2); see
Fig. 1. For a given particle composition (p,, p;) for the
square lattice and (py, p,, p,) for the triangular one, we put
particles on a lattice randomly (details below) until percola-
tion appears. Then the resulting density of the particles is
calculated (the ratio of occupied sites of the lattice to the
number of all sites accessible). To obtain statistically reliable
results with a low level of fluctuations we carry on the simu-
lations for a given composition of particles for N=100 times.
In order to acquire a comprehensive set of data for each
considered particle size (a=3,...,30), we sample the whole
space of compositions with a density step from 0.2 down to
0.01.

A single run for the given composition starts with an
empty substrate (a square L X L on the square lattice, a hexa-
gon with the edge of L lattice units on the triangular one, and
hard wall boundary conditions adopted in both cases). The
process of adsorption is random and sequential, i.e., at any
time we try to put randomly (at random position and orien-
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FIG. 1. Possible types of backbone bending on a square (top)
and a triangular lattice (bottom).

tation) a single particle. Its shape is generated also randomly
according to the probability distribution of possible bending
types (pg:p, for the square lattice, py:p;:p, for the triangu-
lar one). Thus the exact numbers of bending of each type can
vary from particle to particle, while the average composition
remains constant in a single run. If the particle under consid-
eration overlaps with the particles previously adsorbed, the
whole trial is rejected. If there is no overlapping, the particle
stays there forever. In each case, we then try to put on the
substrate a new particle (with a new shape) at a new position
with a new orientation. We repeat this procedure until the
percolation cluster arises in the system (i.e., the opposite
edges of the system are connected via some path of nearest
neighbor sites occupied by the particles). One can consider
many definitions of the overall connectivity (e.g., any oppo-
site edges are to be connected, given opposite edges are to be
connected, all opposite edges are to be connected, etc.), but
asymptotically all are equivalent [49]. Here we check the
connectivity between upper and lower edges of the system. It
appeared that for some values of the simulation parameters
we cannot observe percolation, especially for long particles
and p, very close to 1. In this case particles tend to form
compact, isolated islands, so the connectivity in the system is
poor. Jamming in the system sets in before percolation can
appear (no more particles can be added due to a lack of free
space of appropriate shape). More detailed discussion of this
effect is postponed to Sec. V. For reliability of the results it is
important to keep finite-size effects within reasonable limits.
For bigger lattices the statistical fluctuations of the threshold
obtained are smaller. Also the difference between the limit-
ing (“exact”) value of the threshold (size of the lattice
L—) and the values obtained for a given size L drops
down to zero with increasing L. Thus it is desirable to use as
large latices as possible. We carry out our simulations on
lattices as big as L=1000 for a square lattice and L=300 for
a triangular one. Extensive discussion of finite-size effects
(scaling), statistical deviations, and errors is included in the
following section.
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FIG. 2. Standard deviations ¢ of the square lattice threshold for
a=3, 10, and 30 as a function of the lattice size L. The composition
parameters are p,=0.80, p;=0.20. Straight lines represent power
law fits with exponents —0.770(21), —0.724(25), and —0.770(22) for
a=3, 10, and 30, respectively.

II1. DISCUSSION OF FINITE-SIZE SCALING

For percolation-type systems on finite lattices, it is known
[1] that finite-size scaling theory describes correctly the de-
pendence of the average threshold and its standard deviation
on the size of the lattice L. In such systems one assumes that
the probability II that a lattice of linear size L percolates at
concentration p has the form Il(p,L)=®[(p—p*)L""]. The
scaling function ®(x) increases from 0 to 1 as its argument x
increases from — to +. Here p* is the infinite (exact) per-
colation threshold (as L — ) and the constant v is the critical
exponent (4/3 for simple site percolation in two-dimensional
systems). It appears from the scaling theory that (a) the stan-
dard deviation o of the threshold (o=(p?)—{p)?) measured
for a finite lattice L satisfies the power law

O_OCL—l/V’ (1)

and (b) the effective percolation threshold ¢, (the mean value
measured for a finite lattice) approaches the exact value p*
also via power law

c,=p L. (2)

To check the validity of relation (1) we collected data for
various sizes of the particles (a=3,...,30), various compo-
sitions (p;=0,0.2,0.4,0.7,0.9), and square lattices of vari-
ous sizes (L=30, 60, 75, 100, 130, 180, 300, 500, and 1000).
Obviously, for long particles (a= 30) we omit the lattice size
L=30 due to extremely high finite-size effects. For all data
we obtained the confirmation of Eq. (1) with the value of the
exponent 1/v ranging from 0.69 =0.02 to 0.77 = 0.02. This
coincides with the theoretical value for two-dimensional per-
colation 1/v=0.75. A typical log-log plot of o vs L is given
in Fig. 2. Numerical points follow the power law within
reasonable accuracy.

In the following we will analyze the percolation threshold
) for L=1000 as a function of composition in more detail,
but now we estimate the differences in the threshold value
between the finite (L=1000) and infinite (exact) cases: A
=|c,(L=1000)-p*|. Plotting the mean value c, of the thresh-

p
old for various lattice sizes L against L~Y" we confirm the
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FIG. 3. Finite-size scaling of the square lattice threshold c,
against L~!" for v=4/3, particles with a=3, 10, and 30, and lattice
size L=30,...,1000. The composition parameters are p,=0.80, p;
=0.20.

validity of the finite-size scaling in the system. From the
plots we estimate the difference A =0.004 for all parameters,
except for very long straight particles (a =30 and p,= 1.00),
where A=0.01. An example of such a plot is given in Fig. 3.
Our A stands here for the error we make taking thresholds
for L=1000 instead of the exact (L— ) value.

We can also ask about the statistical fluctuations and un-
certainty for the chosen L=1000. We obtain the mean value
of ¢, in a series of N=100 simulations. The statistical error
of the mean is VN times smaller than the standard deviation
0. The numerical values of this error are well below 1073 for
all parameters of the model and do not exceed 2 X 10~ for
L=1000.

IV. RESULTS FOR SQUARE LATTICE

In the case of the square lattice we analyzed particles of
sizes between 3 and 30. We skipped the case a<<3 (mono-
mers and dimers), as one cannot speak about the composition
of such small particles. We chose the sampling step of p as
0.1, but additionally we considered a more refined grid for
sufficiently small p;, where the percolation threshold
as a function of a composition changes more quickly
(small p, implies py=1.0, i.e., straight particles).
The considered value of p; belongs to the set
{0,0.01,0.02,...,0,05,0.010,0.15,0.2,0.3, ...,1.0} and the
complement po=1-p;. The percolation threshold c, is
shown in Fig. 4. For all lengths and compositions of the
particles we plot the resulting percolation threshold (lines are
guides for the eye only), obtaining a two-dimensional sur-
face. The sections of this surface for constant values of the
length a are the main point of interest in this work, since they
show the composition dependence of the percolation thresh-
old. Examples for some chosen lengths (¢=5, 10, and 20)
are shown in Fig. 5. It can be seen that the variation of
composition dependence is larger for longer particles, while
for the smallest ones (a=3) the threshold remains a nearly
constant function. For all lengths, however, we observe a
common qualitative behavior as p; increases from zero. For
p1=0.0 (thus py=1-p;=1.0 and the particles form straight
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FIG. 4. Percolation threshold c), as a function of the particle size
a and its composition on a square lattice (p; is the relative amount
of bendings of type S1). Here the size of the system L=1000. Lines
are guides for the eye only.

needles) we have a local maximum; then the threshold
sharply decreases as p; approaches a particular value of 0.15,
for which we have a minimum. Then the function increases
in a linear manner in the rest of the interval [0,1].

The fact that for higher values of p; the threshold is larger
comes from the smaller diameters of such particles (to make
up a percolating cluster one needs more particles, when they
are more compact). In contrast, the straightest shapes (with
p1=0.0) do not mean the easiest way of making connections
in the system (or the lowest value of the percolation thresh-
old). This is because needlelike particles in the process of
adsorption make domains of common alignment. When a
linear particle is adsorbed close to another particle with the
same orientation, they will be likely connected by other par-
allel particles. The density of a system composed of such
domains is higher than for more flexible (bent) particles,
where the particles have more possibilities of touching each
other and the clusters have a sparser structure. It should be
noticed that the changes of the threshold ¢, are large in the
vicinity of p;=0. From the experimental point of view, this
means that the system is very sensitive to small deviations
from linearity of the particles (in the case of less straight
particles, variation of their composition results in smaller
changes of the percolation threshold).

With the two above-mentioned mechanisms of increasing
the threshold for either small or large values of the parameter
P1, one expects a minimum at some intermediate value of p;.

0.60 [T e
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C
p0.45
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FIG. 5. Percolation threshold as a function of the particles’ com-
position only. Each line represents a section of the surface of Fig. 4
for the given particle length (here a=5, 10, and 20). The size of the
system L=1000. Lines are guides for the eye only.
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FIG. 6. Comparison of the relative height Ac), of the maximum
of the percolation threshold for linear particles as a function of the
particle length a for two kinds of lattice: square (squares) and tri-
angular (triangles). This height is measured against the reference
level; see text for details. Uncertainties are smaller than the size of
the symbols.

The localization of this minimum can in general depend on
the size of the particles. We found, however, that it is not the
case here—the value of p;=0.15 is universal for particles of
all sizes. That means that this specific composition (pg
=0.85,p;=0.15) is the most favorable one for percolation on
a square lattice. Unfortunately, a theoretical determination of
that value is difficult and still needs further investigation.

We consider now the threshold ¢,(py,p;) as a sum of a
linear part (the main component) and a function with a peak
around p;=0 (the domain component). In particular, we mea-
sure the height of the peak of the latter in the following way.
We take the difference Ac, between the value of ¢, obtained
in simulations for p;=0 and the linear dependence extrapo-
lated to p;=0 (we draw an extrapolation line through two
points for p;=0.4 and 0.7, since in that interval we have very
well-pronounced linear behavior of ¢,). The resulting height
of the peak accounting for domains of parallel alignment is
presented in Fig. 6. The results for the square lattice are
plotted as squares. The triangles on the plot correspond to a
similarly defined Ac, on a triangular lattice; see the detailed
discussion in Sec. VI. The uncertainties of the data shown
are smaller than the size of the symbols.

V. NO-PERCOLATION REGIME

For large values of p;=0.8 and for long particles (a
>23) there are problems in reaching percolation. For such
compositions the particles are quite compact and connectiv-
ity between them is rather low. The interparticle space is
narrow, so it is difficult to adsorb another big compact par-
ticle. Owing to the statistical algorithm used for generating
the shape of the particles (each next bond is chosen accord-
ing to probability), it is often possible to fill such a narrow-
shaped space with a big particle; however, one needs an ex-
tremely large number of trials (very long expected values of
adsorption times). In order to avoid waiting for practically
infinite time to end a simulation, we introduced in our com-
puter code a maximum number of allowed unsuccessful ad-
sorption trials in a row. After reaching this limit a current run
is qualified as “no-percolation” case and stopped. In Fig. 4
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only such sets of parameters are taken into account, for
which in all N=100 runs percolation was reached. For each
series of simulations we introduce the quantity NNOF, the
ratio of the number of no-percolation cases to all cases in a
series (N). For L=1000 we obtained NNO°>0 for a=30
(p;=0.8), a>26 (p,=0.9), and a>23 (p,=1.0). The finite-
size scaling of NNOP done for L=30,...,1000 divided the
considered set of parameters (a, py, and p;) into two catego-
ries: (a) those for which NNO? — 0.0 as L increases, and (b)
those for which NNP — 1.0 as L increases. In other words,
the transient set of parameters for which neither NNF 0 nor
NNOP £ 1 is shrinking as we go to larger lattices. Thus the
no-percolation characteristics can be attributed to the given
particles’ parameters (namely, their size and composition)
rather than stemming from computational limitations and
finite-size effects. A similar absence of percolation in adsorp-
tion models was reported in the study of adsorption of big
squares on a lattice [50,51], where no percolation was found
for the size of the squares a>3.

VI. RESULTS FOR TRIANGULAR LATTICE

We carried out the simulations also on the triangular lat-
tice in order to check the universality of the studied depen-
dencies. Indeed, the whole behavior is confirmed. The details
of the triangular version of the simulations do not differ dis-
tinctly from the square case. Here we considered particles of
size a=3,...,20 and the substrate size L as large as 300.
These values are smaller than those for the square case
mainly due to the much larger computational costs of simu-
lations on the triangular lattice. For example, the time forNV
=100 simulations for (pgy,p;)=(0.2,0.8) and L=300 was
about 31000 s (nearly 9 h), while for (pg,pi.p2)
=(0.2,0.4,0.4) and the same values of L and N the simula-
tions on the triangular lattice lasted 81 000 s (22.5 h).

The typical landscape of dependence of the percolation
threshold on the composition is given in Fig. 7, where c, is
plotted against p; and p, (probabilities of bending types T'1
and T2 of Fig. 1, respectively) for particles of size a=10.
The three vertices of the plot, left, right, and rear, correspond
to straight linear particles (py=1, p;=0, and p,=0), particles
with bonds of type T1 (py=0, p;=1, and p,=0), and most
bent particles with bonds of type T2 (py=0, p;=0, and p,
=1), respectively. The arrows on the plot point to isolines of
constant level of p; or p,. It can be clearly seen that the
behavior of the threshold is dominated by the linear part (flat
surface), above which there is a peak around the leftmost
vertex that corresponds to the linear straight particles.

Finite-size scaling was checked also for these data and we
obtain confirmation of Eq. (1) with the value of the exponent
1/v ranging from 0.68 to 0.81 with errors =0.05. Again this
coincides with the theoretical value for two-dimensional per-
colation, 1/v=0.75. As before, we estimate the difference in
the threshold value between the finite (L=300) and infinite
(exact) cases: A=|c,(L=300)-p*|. From the plots of the
mean value ¢, of the threshold against L™""”, we obtained the
difference A=0.004 for all parameters, except for long
straight particles (¢=20 and py=1.00), where A=0.012.
Again the value of A is considered as giving the accuracy of
Fig. 7.
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FIG. 7. Percolation threshold c, on the triangular lattice for
particles of length =10 as a function of their composition (p;,p,).
The arrows point to isolines of constant level of p; or p,. The
leftmost vertex (with ¢,~0.41) corresponds to strictly linear par-
ticles (pg,p1,p2)=(1,0,0); the rightmost one with ¢,~0.39 corre-
sponds to particles made of T1-type bending only [composition
(0,1,0)] while the rear one describes the most compact case of cp
~(.55 and composition (0,0,1). The dotted lines approaching the
value c,~0.33 represent the reference level, from which the height
Ac), of the peak is measured (see more details in the text).

We now determine the height of the peak rising above the
plane of Fig. 7, as it is a measure of deviation from linear
behavior for straight particles. We took three representative
points on the flat (linear) part of the plot, (pg,p;.p2)
=(0.6,0.4,0.0), (0.6,0.0,0.4), and (0.2,0.4,0.4), and we ex-
trapolate this plane to the composition of linear particles
(1.0,0.0,0.0) (see the dotted lines on Fig. 7). The height of
that peak, Ac,, is plotted on Fig. 6 with triangles. One can
see that the data for square and triangular lattices coincide.
Here the error bars do not exceed the size of the symbols.

The most favorable composition (for which the percola-
tion threshold acquires its minimal value) is located for all
particle sizes at p,=0 and p; between 0.2 and 0.3 (thus p,
lies between 0.7 and 0.8). The more exact estimation of that
point needs further study, however.

On the triangular lattice there are also simulations where
no percolation was reached (see more detailed discussion of
this effect in Sec. V). For relatively small particles (a < 14),
we arrive at percolation at every run for all compositions
(po,p1-P2)- When we consider larger particles, more bent
shapes cease to percolate while straight ones still form per-
colating clusters. Here the value of the percentage p, of most
bent segments is crucial. For example, percolating particles
for the most bent shape (p,=0,p;=0,p,=1) have the maxi-
mum size a=13, for lower p, (py=0,p,=0.4,p,=0.6) the
maximum size is a=22, but for p,=0 all considered particles
(up to a=30) percolate. The exact finite-size scaling of NNOF
in the triangular case was not done, however, due to very
long times of simulations for high values of lattice size L and
particle size a.

VII. CLUSTER STRUCTURE ANALYSIS

In order to verify the possibility of correlation between
the percolation threshold and some single-particle character-
istics, we checked also how the composition of the particles
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affects the mean square radius of gyration and the mean end-
to-end distance. It turned out that there is no sharp transition
for any composition of a single particle, so the appearance of
different regimes of percolation (high value of the threshold
for almost straight particles, no percolation for very compact
particles, mild linear dependence for the other cases) can be
attributed only to collective interaction of the particles.

On the other hand, the composition of the particles influ-
ences the structure of the percolating cluster. We investigated
this relation further and looked at the percentage of sites
having a given number of neighbors. We found a strong cor-
relation between the relative number of sites with exactly
two neighbors (for the square lattice) and the percolation
threshold. For the linear part (away from the peak for pg
=0.8 and no-percolation regime) the equation c,=0.897(1
—R,) is satisfied within an accuracy of 0.03. The quantity R,
is defined as the mean ratio of a number of adsorbed sites
with exactly two neighbors to the total adsorbed number of
sites (monomers of the particles) at percolation, averaged
over N simulation runs. The collected data (for p, €[0.1,0.8]
in the square case) as well as the linear relation postulated
above are presented in Fig. 8. The statistical errors of the
points are of order o(R,)=0.02 and o(c,)=0.015. All data
presented in Fig. 8 are obtained for lattice size L=300.

VIII. CONCLUSIONS

We analyzed the random sequential adsorption of ex-
tended particles with a given size and composition of the
shape on square and triangular lattices. The shape variables
on the square lattice py,p, (defined as the percentage of a
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FIG. 8. Correlation between the percolation threshold c,, and the
percentage R, of monomers with exactly two nearest neighbors at
percolation for various compositions (p;=0.2,...,0.9) and sizes
(a=3,...,20) of the particles (for the square lattice). The line c,,
=0.897(1-R,) is also shown. Statistical errors are smaller than
0.015 for ¢, and smaller than 0.02 for R,.

given kind of bending in a chain) influence the percolation
threshold ¢, in such a way that one can look at the whole
landscape of the function c,(pg.p;) as a sum of a mildly
linear part for p;=0.4 and sharp peak around p;=0. The
overall behavior of the threshold ¢, is common on both lat-
tices considered. In particular, the height of the peak as a
function of the particle size coincides for both cases.

A linear correlation between the percolation threshold and
cluster structure (more precisely, the relative amount of
monomers with exactly two neighbors at percolation) was
observed for particles with 0.2=p,; =09 (on a square
lattice).
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