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Abstract

Dynamical symmetry in physical systems. Free massive scalar par-

ticles interacting with each other - Spontaneous Symmetry Breaking.

The Linear Sigma Model - breaking continuous symmetry. Sponta-

neous continuous symmetry breaking of massless particles - Goldstone's

theorem.

1 Symmetry in physics

The realization of symmetries in physical systems has proven to be of help
in the description of physical phenomena: it makes it possible to relate the
behaviour of similar systems and therefore it leads to a great simpli�cation
of the mathematical description of Nature.

The simplest concept of symmetry occurs at the geometrical or kine-
matical level when the shape of an object or the con�guration of a physical
system is invariant or symmetric under geometric transformations like rota-
tions, re�ections etc. At the dynamical level, a system is symmetric under a
transformation of the coordinates or of the parameters which identify its con-
�gurations, if correspondingly its dynamical behaviour is symmetric in the
sense that the action of the symmetry transformation and of time evolution
commute.

To formalize the concept of dynamical symmetry, we �rst recall that the
description of a classical physical system consists in

i) the identi�cation of all its possible con�gurations Sγ , with γ running
over an index set of coordinates or parameters which identify the con-
�guration Sγ

ii) the determination of their time evolution

αt : Sγ → αtSγ ≡ Sγ(t). (1)

A symmetry g of a physical system is a transformation of the coordinates
(or of the parameters) γ, g : γ → gγ, which
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1) induces an invertible mapping of con�gurations

g : Sγ → gSγ ≡ Sgγ (2)

2) does not change the dynamical behaviour, namely

αtgSγ = αtSgγ ≡ S(gγ)(t) = Sgγ(t) = gαtSγ . (3)

The above condition states that the symmetry transformation commutes
with time evolution. For classical canonical systems, this amounts to the
invariance of the Hamiltonian under the symmetry g (symmetric Hamilto-
nian).

The realization of a symmetry which relates (the con�gurations of) two
seemingly di�erent systems clearly leads to a uni�cation of their description.
In particular, the solution of the dynamical problem for one con�guration
automatically gives the solution for the symmetry related con�guration (see
(3)). [3, p. 7]

2 Spontaneous Symmetry Breaking

For free scalar particles of mass µ we have the Lagrangian:

L = T − V =
1
2

(∂φ)2 − 1
2
µ2φ2 (4)

We are consider scalar particles that interact with each other. Then V in (4)
must contain an extra term of the form φ4. This Lagrangian has a discrete
symmetry, it is invariant under the transformation φ→ −φ. Thus the most
general Lagrangian for the scalar �eld would be:

L =
1
2

(∂φ)2 − 1
2
µ2φ2 − λ

4
(φ4) (5)

where µ is the particle mass. L has dimensions of energy per unit volume,
or E4, while the boson �eld φ clearly has dimensions of E. Thus λ is a
dimensionless constant.

The minimum value of V occurs at φ = φmin, when
∂V
∂φ = 0 If µ2 > 0,

the situation for a massive particle, then φ = φmin when φ = 0; this is the
normal situation for the lowest energy vacuum state with V = O. However,
if µ2 < 0 then

φ = φmin when φ = ±v = ±

√
−µ2

λ
(6)

Here the lowest energy state has φ �nite, with V = −µ4

4λ , so that V is every-
where a non-zero constant. The quantity v is called the vacuum expectation
value of the scalar boson �eld φ. Figure 1 shows V as a function of φ, both
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Figure 1: Plot of the potential V in (5) as a function of a one-dimensional
scalar �eld φ for the two cases µ2 > 0 and µ2 < 0.

for µ2 > 0 and µ2 < O. In µ2 < O case there are two minima, φmin = +v
and −v. In weak interactions, we are however concerned with evaluating
small perturbations about the energy minimum, so that we should expand
the �eld variable φ, not about zero but about the chosen vacuum minimum
v (or −v), i.e.

φ = v + σ(x) (7)

where σ(x) is the (variable) value of the �eld over and above the constant
and uniform value, v. Substituting in (5) we get:

L =
1
2

(∂µσ)2 − λv2σ2 − (λvσ3 +
1
4
λσ4) + constant (8)

where the constant refers to terms in v2 and v4 and the third term on the
right-hand side represents the interaction of the σ �eld with itself. The �rst
two terms on the right will be the same for either value of v, and when
compared with (4), suggest that the term −λv2σ2 is a mass term, with the
positive value

m =
√

2λv2 =
√
−2µ2 (9)

So, by making a perturbation expansion about either of the two minima ±v,
a real positive mass - as against an imaginary one in (6) - has appeared.
The perturbation expansion must be made about one or other of the two
minima - chosen for example by the toss of a coin - but when this is done,
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of course the symmetry in Figure 1 will be broken. This behaviour is called
spontaneous symmetry breaking. Many examples exist in physics. A bar
magnet heated above the Curie point has its elementary magnetic domains
pointed in random directions, with zero net moment, and the Lagrangian is
invariant under rotations of the magnet in space. On cooling, the domains
will set in a particular direction, that of the resultant moment, and the
rotational symmetry is spontaneously broken. [1, � 8.12] [4, � 4.1]

3 The Linear Sigma Model

Now we are consider that the broken symmetry is continuous. A generaliza-
tion of the preceding theory called the linear sigma model and it is the most
important example of this topic.

The Lagrangian of the linear sigma model involves a set of N real scalar
�eld φi(x)

L =
1
2

(∂µφi)2 +
1
2
µ2(φi)2 − λ

4
[(φ)2]2 (10)

with an implicit sum over i in each factor (φi)2. The above Lagrangian is
invariant under the symmetry

φi → Rijφj (11)

for any N×N orthogonal matrix R. The group of transformations (11) is just
the rotation group in N dimensions, also called the N-dimensional orthogonal
group or simply O(N).

Again the lowest-energy classical con�guration is a constant �eld φi0,
whose value is chosen to minimize the potential

L = −1
2µ

2(φi)2 + λ
4 [(φ)2]2

(see Figure 2). This potential is minimized for any φi0 that satis�es

(φi0)2 = µ2

λ .

This condition determines only the length of the vector φi0; its direction is
arbitrary. It is conventional to choose coordinates so that φi0 points in the
Nth direction

φi0 = (0, 0, ..., 0, v), where v =
µ√
λ
. (12)

We can now de�ne a set of shifted �elds by writing

φi(x) = (πk(x), v + σ(x)), k = 1, ..., N − 1. (13)

It is now straightforward to rewrite the Lagrangian (10) in terms of the
π and σ �elds. The result is
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Figure 2: Potential for spontaneous breaking of a continuous O(N) symmetry,
drawn for the case N = 2. Oscillations along the trough in the potential
correspond to the massless π �elds.

L =
1
2

(∂µπk)2 +
1
2

(∂µσ)2 − 1
2

(2µ2)σ2 −
√
λµσ3 −

√
λµ(πk)2σ −

− λ

4
σ4 − λ

2
(πk)2σ2 − λ

4
[(πk)2]2. (14)

We obtain a massive σ �eld just as in (8), and also a set of N-1 massless
π �elds. The original O(N) symmetry is hidden, leaving only the subgroup
O(N-1), which rotates the π �elds among themselves. Referring to Figure
2, we note that the massive σ �eld describes oscillations of φi in the radial
direction, in which the potential has a nonvanishing second derivative. The
massless π �elds describe oscillations of φi in the tangential directions, along
the trough of the potential. The trough is an (N-1) dimensional surface, and
all N-1 directions are equivalent, re�ecting the unbroken O(N-1) symmetry.
[2, � 11.1]

4 Goldstone's Theorem

The appearance of massless particles when a continuous symmetry is sponta-
neously broken is a general result, known as Goldstone's theorem. To state
the theorem precisely, we must count the number of linearly independent
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continuous symmetry transformations. In the linear sigma model, there are
no continuous symmetries for N=1, while for N=2 there is a single direction
of rotation. A rotation in N dimensions can be in any one of N(N-1)/2 planes,
so the O(N)-symmetric theory has N(N-1)/2 continuous symmetries. After
spontaneous symmetry breaking there are (N-1)(N-2)/2 remaining symme-
tries, corresponding to rotations of the (N-1) π �elds. The number of broken
symmetries is the di�erence, N-1.

Goldstone's theorem states that for every spontaneously broken contin-
uous symmetry, the theory must contain a massless particle. We have just
seen that this theorem holds in the linear sigma model, at least at the clas-
sical level. The massless �elds that arise through spontaneous symmetry
breaking are called Goldstone bosons. Many light bosons seen in physics,
such as the pions, may be interpreted (at least approximately) as Goldstone
bosons.

Consider, then, a theory involving several �elds φa(x), with a Lagrangian
of the form

L = T − V (φ) (15)

Let φa0 be a constant �eld that minimizes V, so that

∂

∂φa
V |φa(x)=φa

0
= 0. (16)

Expanding V about this minimum, we �nd

V (φ) = V (φ0) +
1
2

(φ− φ0)a(φ− φ0)b(
∂2

∂φa∂φb
)V )φ0 + ... (17)

The coe�cient of the quadratic term,

(
∂2

∂φa∂φb
)V )φ0 = m2

ab, (18)

is a symmetric matrix whose eigenvalues give the masses of the �elds. These
eigenvalues cannot be negative, since φ0 is a minimum. To prove Goldstone's
theorem, we must show that every continuous symmetry of the Lagrangian
(15) that is not a symmetry of φ0 gives rise to a zero eigenvalue of this mass
matrix.

A general continuous symmetry transformation has the form

φa → φa + α∆a(φ), (19)

where α is an in�nitesimal parameter and ∆a is some function of all the φ's.
Specialize to constant �elds; then the derivative terms in L vanish and the
potential alone must be invariant under (19). This condition can be written

V (φa) = V (φa + α∆a(φ)) or ∆a(φ)
∂

∂φaV (φ)
= 0. (20)
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Now di�erentiate with respect to φb, and set φ = φ0:

0 = (
∂∆a

∂φb
)φ0(

∂V

∂φa
)φ0 + ∆a(φ0)(

∂2

∂φa∂φb
)V )φ0 . (21)

The �rst term vanishes since φ0 is a minimum of V, so the second term must
also vanish. If the transformation leaves φ0 unchanged (i.e., if the symmetry
is respected by the ground state), then ∆a(φ0) = 0 and this relation is trivial.
A spontaneously broken symmetry is precisely one for which ∆a(φ0) 6= 0; in
this case ∆a(φ0) is our desired vector with eigenvalue zero, so Goldstone's
theorem is proved. [2, � 11.1]
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