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Idea

Curved spacetime manifolds can be often approximated by
manifolds with high degrees of symmetry
It would be useful to be able to draw spacetimes diagrams that
capture global properities and casual structure of sufficiently
symmetric spacetimes
We need to do a conformal transformation which brings entire
manifold onto a compact region such that we can fit the
spacetime on a piece of paper.
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Minkowski space

The Minkowski metric in polar coordinates:

ds2 = −dt2 + dr2 + r2dΩ2, (1)

where dΩ2 = dΘ2 + sin2ΘdΦ2 is a metric on a unit
two-sphere.

−∞ < t <∞, 0 ≤ r <∞. (2)

We need coordinates with finite ranges - at first switch to null
coordinates:

u = t − r , v = t + r (3)

with corresponding ranges given by:

−∞ < u <∞, −∞ < v <∞, u ≤ v . (4)
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null coordinates

Each point represents a 2-sphere of radius r = 1
2(v − u). The

Minkowski metric in null coordinates is given by

ds2 = −1
2

(dudv + dvdu) +
1
4

(v − u)2dΩ2. (5)
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calculating...

Using the arctangent we bring infinity into a finite coordinate value:

U = arctan(u), V = arctan(v), (6)

with ranges

−π/2 < U < π/2, − π/2 < V < π/2, U ≤ V . (7)

After easy calculations one gets that the metric given in (5) in this
coordinates takes form:

ds2 =
1

4 cos2 U cos2 V
[
−2(dUdV + dVdU) + sin2(V − U)dΩ2] .

(8)
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calculating...

Transforming back to the timelike coordinate T and radial
coordinate R :

T = U + V , R = V − U (9)

with ranges
0 ≤ R < π, |T |+ R < π. (10)

Now the metric is:

ds2 = ω−2(T ,R)
(
−dT 2 + dR2 + sin2RdΩ2) . (11)

where
ω(T ,R) = 2 cosU cosV = cosT + cosR. (12)
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Finally!

Finally, the original Minkowski metric, which we denoted ds2, is
related by conformal transformation to the new metric:

d̃s
2

= ω2(T ,R)ds2 = −dT 2 + dR2 + sin2 RdΩ2. (13)

This describes the manifold R× S3, where 3-sphere is maximally
symmetric and static.
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Einstein static universe
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Conformal diagram of Minkowski space
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...

The structure of the conformal diagram allows us to subdivide
conformal infinity into a few different regions:

i+ = future timelike infinity (T = π , R = 0)
i0 = spatial infinity (T = 0 , R = π)
i− = past timelike infinity (T = −π , R = 0)
I+ = future null infinity (T = π − R , 0 < R < π)
I− = past null infinity (T = −π + R , 0 < R < π)

Note that i+, i0, and i− are actually points, since R = 0 and
R = π are the north and south poles of S3. Meanwhile I+ and I−
are actually null surfaces, with the topology of ×S2.
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...

The conformal diagram for Minkowski spacetime contains a number
of important features: radial null geodesics are at the ±45◦ in the
diagram. All timelike geodesics begin at i− and end at i+. All null
geodesics begin at I− and end at I+; all spacelike geodesics both
begin and end at i0. On the other hand, there can be non-geodesic
timelike curves that end at null infinity (if they become
“asymptotically null”).
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Example

When we put polar coordinates on space, the metric becomes:

ds2 = −dt2 + t2q (
dr2 + r2dΩ2) (14)

with 0 < q < 1.
Crucial difference between this metric and that of Minkowski
space: singularity at t = 0 - it restricts the range of
coordinates:

0 < t <∞, 0 ≤ r <∞. (15)
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We choose new time coordinate η called conformal time, which
satisfies:

dt2 = t2qdη2 (16)

with range same as of t:

0 < η <∞. (17)

This allows as to bring out the scale factor as an overall conformal
factor times Minkowski:

ds2 = [(1− q)η]2q/(1−q)
(
−dη2 + dr2 + r2dΩ2) (18)
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...

After the same sequence of coordinate transformations as
previously, one gets (η, r) to (T ,R) with ranges:

0 ≤ R , 0 < T , T + R < π. (19)

the metric (18) becomes:

ds2 = ω−2(T ,R)
(
−dT 2 + dR2 + sin2RdΩ2) (20)
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...

Once again we expressed our metric as a conformal factor
times that of the Einstein static universe.
Difference between this case and that of flat spacetime:
timelike coordinate ends at singularity T = 0
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Conformal diagram for a Robertson=Walker universe
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More complicated spacetimes: black holes

The conformal diagram gives us an idea of the casual structure
of the spacetime, e.g. whether the past or future light cones of
two specified points intersect.
In Minkowski space this is always true for any two points.
Curved spacetimes - more interesting.
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Very brief introduction

Schwarzschild solution describes spherically symmetric vacuum
spacetimes.
Schwarzschild metric:

ds2 = −
(
1− 2GM

r

)
dt2+

(
1− 2GM

r

)−1

dr2+r2dΩ2 (21)

This is true for any spherically symmetric vacuum solution to
Einstein’s equations; M functions as a parameter. Note that as
M → 0 we recover Minkowski space, which is to be expected.
Note also that the metric becomes progressively Minkowskian
as we go to r →∞; this property is known as asymptotic
flatness.
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Very brief introduction

One way of understanding a geometry is to explore its causal
structure, as defined by the light cones. We therefore consider
radial null curves, those for which θ and φ are constant and
ds2 = 0:

ds2 = 0 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2, (22)

from which we see that

dt
dr

= ±
(
1− 2GM

r

)−1

(23)

This measures the slope of the light cones on a spacetime diagram
of the t-r plane. For large r the slope is ±1, as it would be in flat
space, while as we approach r = 2GM we get dt/dr → ±∞, and
the light cones ’close up’
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Very brief introduction

A light ray which approaches r = 2GM never seems to get there, at
least in this coordinate system; instead it seems to asymptote to
this radius.
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Very brief introduction

The problem with our current coordinates is that dt/dr →∞ along
radial null geodesics which approach r = 2GM; progress in the r
direction becomes slower and slower with respect to the coordinate
time t. We suspect that our coordinates may not have been good
for the entire manifold .
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Fixing r = 2GM: Eddington-Fielkenstein coordinates

By changing coordinate t to the new one ũ, which has the nice
property that if we decrease r along a radial curve null curve
ũ = constant, we go right through the event horizon r = 2GM
without any problems.
The region r ≤ 2GM is now included in our spacetime, since
physical particles can easily reach there and pass through.
Still, there are other directions in which we can extend our
manifold.
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Kruskal coordinates

ds2 =
32G 3M3

r
e−r/2GM(−dv2 + du2) + r2dΩ2 (24)

where r is defined implicitly from

(u2 − v2) =
( r
2GM

− 1
)

er/2GM (25)
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We start with the null version of the Kruskal coordinates, in which
the metric takes the form

ds2 = −16G 3M3

r
e−r/2GM(du′dv ′ + dv ′du′) + r2dΩ2 , (26)

where r is defined implicitly via

u′v ′ =
( r
2GM

− 1
)

er/2GM . (27)
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Then essentially the same transformation as was used in flat
spacetime suffices to bring infinity into finite coordinate values:

u′′ = arctan
(

u′√
2GM

)
, v ′′ = arctan

(
v ′√
2GM

)
, (28)

with ranges

−π/2 < u′′ < +π/2, − π/2 < v ′′ < +π/2, − π < u′′ + v ′′ < π .
(29)
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The (u′′, v ′′) part of the metric (that is, at constant angular
coordinates) is now conformally related to Minkowski space. In the
new coordinates the singularities at r = 0 are straight lines that
stretch from timelike infinity in one asymptotic region to timelike
infinity in the other.
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Thanks for listening
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