Carter-Penrose diagrams and black holes

Ewa Felinska

University of Wroclaw

04.05.2010

Ewa Felinska Black holes

Seminar Structure

Penrose diagrams

- Idea
- Obtaining Penrose diagrams from Minkowski space
- Example

2 Black holes

- Curved spacetime manifolds can be often approximated by manifolds with high degrees of symmetry
- It would be useful to be able to draw spacetimes diagrams that capture global properities and casual structure of sufficiently symmetric spacetimes
- We need to do a conformal transformation which brings entire manifold onto a compact region such that we can fit the spacetime on a piece of paper.

- Curved spacetime manifolds can be often approximated by manifolds with high degrees of symmetry
- It would be useful to be able to draw spacetimes diagrams that capture global properities and casual structure of sufficiently symmetric spacetimes
- We need to do a conformal transformation which brings entire manifold onto a compact region such that we can fit the spacetime on a piece of paper.

- Curved spacetime manifolds can be often approximated by manifolds with high degrees of symmetry
- It would be useful to be able to draw spacetimes diagrams that capture global properities and casual structure of sufficiently symmetric spacetimes
- We need to do a conformal transformation which brings entire manifold onto a compact region such that we can fit the spacetime on a piece of paper.

- Curved spacetime manifolds can be often approximated by manifolds with high degrees of symmetry
- It would be useful to be able to draw spacetimes diagrams that capture global properities and casual structure of sufficiently symmetric spacetimes
- We need to do a conformal transformation which brings entire manifold onto a compact region such that we can fit the spacetime on a piece of paper.

Idea Obtaining Penrose diagrams from Minkowski space Example

Minkowski space

• The Minkowski metric in polar coordinates:

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2},$$
 (1)

where $d\Omega^2 = d\Theta^2 + sin^2\Theta d\Phi^2$ is a metric on a unit two-sphere.

$$-\infty < t < \infty, \ 0 \le r < \infty. \tag{2}$$

• We need coordinates with finite ranges - at first switch to null coordinates:

$$u = t - r, v = t + r \tag{3}$$

with corresponding ranges given by:

$$-\infty < u < \infty, \ -\infty < v < \infty, \ u \le v. \tag{4}$$

Idea Obtaining Penrose diagrams from Minkowski space Example

Minkowski space

• The Minkowski metric in polar coordinates:

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2, \qquad (1)$$

where $d\Omega^2 = d\Theta^2 + sin^2\Theta d\Phi^2$ is a metric on a unit two-sphere.

$$-\infty < t < \infty, \ 0 \le r < \infty. \tag{2}$$

• We need coordinates with finite ranges - at first switch to null coordinates:

$$u = t - r, v = t + r \tag{3}$$

with corresponding ranges given by:

$$-\infty < u < \infty, \ -\infty < v < \infty, \ u \le v. \tag{4}$$

Obtaining Penrose diagrams from Minkowski space

Minkowski space

• The Minkowski metric in polar coordinates:

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2, \qquad (1)$$

where $d\Omega^2 = d\Theta^2 + \sin^2\Theta d\Phi^2$ is a metric on a unit two-sphere.

$$-\infty < t < \infty, \ 0 \le r < \infty. \tag{2}$$

• We need coordinates with finite ranges - at first switch to null coordinates:

$$u = t - r, v = t + r \tag{3}$$

with corresponding ranges given by:

$$-\infty < u < \infty, \ -\infty < v < \infty, \ u \le v.$$
 (4)

Idea Obtaining Penrose diagrams from Minkowski space Example

null coordinates

Null radial coordinates on Minkowski space.

Each point represents a 2-sphere of radius $r = \frac{1}{2}(v - u)$. The Minkowski metric in null coordinates is given by

$$ds^{2} = -\frac{1}{2}(dudv + dvdu) + \frac{1}{4}(v - u)^{2}d\Omega^{2}.$$

$$(5)$$

Ewa Felinska Black holes

Idea Obtaining Penrose diagrams from Minkowski space Example

null coordinates

Null radial coordinates on Minkowski space.

Each point represents a 2-sphere of radius $r = \frac{1}{2}(v - u)$. The Minkowski metric in null coordinates is given by

$$ds^{2} = -\frac{1}{2}(dudv + dvdu) + \frac{1}{4}(v - u)^{2}d\Omega^{2}.$$
Eve Felipske
Black bales

calculating...

Using the arctangent we bring infinity into a finite coordinate value:

$$U = \arctan(u), V = \arctan(v),$$
 (6)

< - 12 →

with ranges

$$-\pi/2 < U < \pi/2, \ -\pi/2 < V < \pi/2, \ U \le V.$$
 (7)

After easy calculations one gets that the metric given in (5) in this coordinates takes form:

$$ds^{2} = \frac{1}{4\cos^{2}U\cos^{2}V} \left[-2(dUdV + dVdU) + \sin^{2}(V - U)d\Omega^{2}\right].$$
(8)

calculating...

Using the arctangent we bring infinity into a finite coordinate value:

$$U = \arctan(u), V = \arctan(v),$$
 (6)

with ranges

$$-\pi/2 < U < \pi/2, \ -\pi/2 < V < \pi/2, \ U \le V.$$
 (7)

After easy calculations one gets that the metric given in (5) in this coordinates takes form:

$$ds^{2} = \frac{1}{4\cos^{2}U\cos^{2}V} \left[-2(dUdV + dVdU) + \sin^{2}(V - U)d\Omega^{2}\right].$$
(8)

Penrose diagrams Black holes Penrose diagram for a Schwarzschild black hole Penrose diagram for a Schwarzschild black hole

calculating...

Transforming back to the timelike coordinate T and radial coordinate R:

$$T = U + V, R = V - U \tag{9}$$

with ranges

$$0 \le R < \pi, |T| + R < \pi.$$
 (10)

Now the metric is:

$$ds^{2} = \omega^{-2}(T, R) \left(-dT^{2} + dR^{2} + \sin^{2} R d\Omega^{2} \right).$$
(11)

where

$$\omega(T, R) = 2\cos U \cos V = \cos T + \cos R.$$
(12)

Penrose diagrams Black holes Penrose diagram for a Schwarzschild black hole Penrose diagram for a Schwarzschild black hole

calculating...

Transforming back to the timelike coordinate T and radial coordinate R:

$$T = U + V, R = V - U \tag{9}$$

with ranges

$$0 \le R < \pi, |T| + R < \pi.$$
 (10)

Now the metric is:

$$ds^{2} = \omega^{-2}(T, R) \left(-dT^{2} + dR^{2} + \sin^{2}Rd\Omega^{2} \right).$$
(11)

where

$$\omega(T,R) = 2\cos U \cos V = \cos T + \cos R. \tag{12}$$

Finally!

Finally, the original Minkowski metric, which we denoted ds^2 , is related by conformal transformation to the new metric:

$$\tilde{ds}^{2} = \omega^{2}(T, R)ds^{2} = -dT^{2} + dR^{2} + \sin^{2}Rd\Omega^{2}.$$
 (13)

This describes the manifold $\mathbf{R} \times S^3$, where 3-sphere is maximally symmetric and static.

Finally!

Finally, the original Minkowski metric, which we denoted ds^2 , is related by conformal transformation to the new metric:

$$\tilde{ds}^2 = \omega^2(T, R)ds^2 = -dT^2 + dR^2 + \sin^2 R d\Omega^2.$$
 (13)

This describes the manifold $\mathbf{R}\times S^3$, where 3-sphere is maximally symmetric and static.

Idea Obtaining Penrose diagrams from Minkowski space Example

э

Einstein static universe

The Einstein static universe, $\mathbf{R} \times S^3$, portrayed as a cylinder. The shaded region is conformally related to Minkowski space.

Idea Obtaining Penrose diagrams from Minkowski space Example

Conformal diagram of Minkowski space

The conformal diagram of Minkowski space. Light cones are at $\pm 45^\circ$ throughout the diagram.

The structure of the conformal diagram allows us to subdivide conformal infinity into a few different regions:

$$\begin{array}{lll} i^+ &=& \text{future timelike infinity } (T = \pi \ , \ R = 0) \\ i^0 &=& \text{spatial infinity } (T = 0 \ , \ R = \pi) \\ i^- &=& \text{past timelike infinity } (T = -\pi \ , \ R = 0) \\ \mathcal{I}^+ &=& \text{future null infinity } (T = \pi - R \ , \ 0 < R < \pi) \\ \mathcal{I}^- &=& \text{past null infinity } (T = -\pi + R \ , \ 0 < R < \pi) \end{array}$$

Note that i^+ , i^0 , and i^- are actually points, since R = 0 and $R = \pi$ are the north and south poles of S^3 . Meanwhile \mathcal{I}^+ and \mathcal{I}^- are actually null surfaces, with the topology of $\times S^2$.

The conformal diagram for Minkowski spacetime contains a number of important features: radial null geodesics are at the $\pm 45^{\circ}$ in the diagram. All timelike geodesics begin at i^- and end at i^+ . All null geodesics begin at \mathcal{I}^- and end at \mathcal{I}^+ ; all spacelike geodesics both begin and end at i^0 . On the other hand, there can be non-geodesic timelike curves that end at null infinity (if they become "asymptotically null"). • When we put polar coordinates on space, the metric becomes:

$$ds^{2} = -dt^{2} + t^{2q} \left(dr^{2} + r^{2} d\Omega^{2} \right)$$
(14)

with 0 < q < 1.

Example

• Crucial difference between this metric and that of Minkowski space: singularity at *t* = 0 - it restricts the range of coordinates:

$$0 < t < \infty, \ 0 \le r < \infty. \tag{15}$$

• When we put polar coordinates on space, the metric becomes:

$$ds^{2} = -dt^{2} + t^{2q} \left(dr^{2} + r^{2} d\Omega^{2} \right)$$
(14)

with 0 < q < 1.

Example

 Crucial difference between this metric and that of Minkowski space: singularity at t = 0 - it restricts the range of coordinates:

$$0 < t < \infty, \ 0 \le r < \infty. \tag{15}$$

Penrose diagrams Black holes Penrose diagram for a Schwarzschild black hole Penrose diagram for a Schwarzschild black hole

Example

We choose new time coordinate η called conformal time, which satisfies:

$$dt^2 = t^{2q} d\eta^2 \tag{16}$$

with range same as of *t*:

$$0 < \eta < \infty. \tag{17}$$

This allows as to bring out the scale factor as an overall conformal factor times Minkowski:

$$ds^{2} = [(1-q)\eta]^{2q/(1-q)} \left(-d\eta^{2} + dr^{2} + r^{2}d\Omega^{2}\right)$$
(18)

After the same sequence of coordinate transformations as previously, one gets (η, r) to (T, R) with ranges:

$$0 \le R, 0 < T, T + R < \pi.$$
 (19)

the metric (18) becomes:

$$ds^{2} = \omega^{-2}(T, R) \left(-dT^{2} + dR^{2} + \sin^{2} R d\Omega^{2} \right)$$
(20)

- Once again we expressed our metric as a conformal factor times that of the Einstein static universe.
- Difference between this case and that of flat spacetime: timelike coordinate ends at singularity T = 0

- Once again we expressed our metric as a conformal factor times that of the Einstein static universe.
- Difference between this case and that of flat spacetime: timelike coordinate ends at singularity T = 0

Idea Obtaining Penrose diagrams from Minkowski space Example

Conformal diagram for a Robertson=Walker universe

More complicated spacetimes: black holes

- The conformal diagram gives us an idea of the casual structure of the spacetime, e.g. whether the past or future light cones of two specified points intersect.
- In Minkowski space this is always true for any two points. Curved spacetimes - more interesting.

More complicated spacetimes: black holes

- The conformal diagram gives us an idea of the casual structure of the spacetime, e.g. whether the past or future light cones of two specified points intersect.
- In Minkowski space this is always true for any two points. Curved spacetimes - more interesting.

- Schwarzschild solution describes spherically symmetric vacuum spacetimes.
- Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$
(21)

• This is true for any spherically symmetric vacuum solution to Einstein's equations; M functions as a parameter. Note that as $M \rightarrow 0$ we recover Minkowski space, which is to be expected. Note also that the metric becomes progressively Minkowskian as we go to $r \rightarrow \infty$; this property is known as **asymptotic flatness**.

- Schwarzschild solution describes spherically symmetric vacuum spacetimes.
- Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$
(21)

• This is true for any spherically symmetric vacuum solution to Einstein's equations; M functions as a parameter. Note that as $M \rightarrow 0$ we recover Minkowski space, which is to be expected. Note also that the metric becomes progressively Minkowskian as we go to $r \rightarrow \infty$; this property is known as **asymptotic flatness**.

- Schwarzschild solution describes spherically symmetric vacuum spacetimes.
- Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$
(21)

• This is true for any spherically symmetric vacuum solution to Einstein's equations; M functions as a parameter. Note that as $M \rightarrow 0$ we recover Minkowski space, which is to be expected. Note also that the metric becomes progressively Minkowskian as we go to $r \rightarrow \infty$; this property is known as asymptotic flatness.

Very brief introduction

One way of understanding a geometry is to explore its causal structure, as defined by the light cones. We therefore consider radial null curves, those for which θ and ϕ are constant and $ds^2 = 0$:

$$ds^{2} = 0 = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2}, \quad (22)$$

from which we see that

$$\frac{dt}{dr} = \pm \left(1 - \frac{2GM}{r}\right)^{-1} \tag{23}$$

This measures the slope of the light cones on a spacetime diagram of the *t*-*r* plane. For large *r* the slope is ± 1 , as it would be in flat space, while as we approach r = 2GM we get $dt/dr \rightarrow \pm \infty$, and the light cones 'close up'

Very brief introduction

A light ray which approaches r = 2GM never seems to get there, at least in this coordinate system; instead it seems to asymptote to this radius.

The problem with our current coordinates is that $dt/dr \rightarrow \infty$ along radial null geodesics which approach r = 2GM; progress in the r direction becomes slower and slower with respect to the coordinate time t. We suspect that our coordinates may not have been good for the entire manifold .

Fixing r = 2GM: Eddington-Fielkenstein coordinates

- By changing coordinate t to the new one \tilde{u} , which has the nice property that if we decrease r along a radial curve null curve $\tilde{u} = \text{constant}$, we go right through the event horizon r = 2GMwithout any problems.
- The region r ≤ 2GM is now included in our spacetime, since physical particles can easily reach there and pass through.
- Still, there are other directions in which we can extend our manifold.

Fixing r = 2GM: Eddington-Fielkenstein coordinates

- By changing coordinate t to the new one \tilde{u} , which has the nice property that if we decrease r along a radial curve null curve $\tilde{u} = \text{constant}$, we go right through the event horizon r = 2GMwithout any problems.
- The region $r \le 2GM$ is now included in our spacetime, since physical particles can easily reach there and pass through.
- Still, there are other directions in which we can extend our manifold.

Fixing r = 2GM: Eddington-Fielkenstein coordinates

- By changing coordinate t to the new one \tilde{u} , which has the nice property that if we decrease r along a radial curve null curve $\tilde{u} = \text{constant}$, we go right through the event horizon r = 2GMwithout any problems.
- The region *r* ≤ 2*GM* is now included in our spacetime, since physical particles can easily reach there and pass through.
- Still, there are other directions in which we can extend our manifold.

Kruskal coordinates

$$ds^{2} = \frac{32G^{3}M^{3}}{r}e^{-r/2GM}(-dv^{2} + du^{2}) + r^{2}d\Omega^{2}$$
(24)

where r is defined implicitly from

$$(u^2 - v^2) = \left(\frac{r}{2GM} - 1\right) e^{r/2GM}$$
 (25)

Penrose diagram for a Schwarzschild black hole

We start with the null version of the Kruskal coordinates, in which the metric takes the form

$$ds^{2} = -\frac{16G^{3}M^{3}}{r}e^{-r/2GM}(du'dv' + dv'du') + r^{2}d\Omega^{2}, \quad (26)$$

where r is defined implicitly via

$$u'v' = \left(\frac{r}{2GM} - 1\right)e^{r/2GM}.$$
 (27)

Penrose diagram for a Schwarzschild black hole

Then essentially the same transformation as was used in flat spacetime suffices to bring infinity into finite coordinate values:

$$u'' = \arctan\left(\frac{u'}{\sqrt{2GM}}\right)$$
, $v'' = \arctan\left(\frac{v'}{\sqrt{2GM}}\right)$, (28)

with ranges

$$-\pi/2 < u'' < +\pi/2, \ -\pi/2 < v'' < +\pi/2, \ -\pi < u'' + v'' < \pi$$
 . (29)

Penrose diagram for a Schwarzschild black hole

The (u'', v'') part of the metric (that is, at constant angular coordinates) is now conformally related to Minkowski space. In the new coordinates the singularities at r = 0 are straight lines that stretch from timelike infinity in one asymptotic region to timelike infinity in the other.

Penrose diagram for a Schwarzschild black hole

The Penrose diagram for the maximally extended Schwarzschild solution

References

- Sean Carroll 'Spacetime and Geometry: an Introduction to General Relativity', 2004
- Leonard Susskind, James Lindesay 'An Introduction to Black Holes, Information and The String Theory Revolution', 2005
- Sean M. Carroll 'Lecture Notes on General Relativity', 1997
- Jerzy Kowalski-Glikman 'Wprowadzenie do Teorii Grawitacji'

Thanks for listening

