
Carter-Penrose diagrams and black holes

Ewa Felinska

The basic introduction to the method of building Penrose diagrams has
been presented, starting with obtaining a Penrose diagram from Minkowski
space. An example of computation for curved spacetime has been provided,
with a conformal diagram for Robertson-Walker universe. A way of fur-
ther coordinate transformations needed to extend given manifold has been
provided and a Penrose diagram for Schwarzschild black hole has been
constructed.

1. Penrose diagrams

1.1. Obtaining Penrose diagrams from Minkowski space

Curved spacetime manifolds can be often approximated by manifolds
with high degrees of symmetry. It would be useful to be able to draw
spacetimes diagrams that capture global properities and casual structure of
sufficiently symmetric spacetimes. What is needed to be done is a conformal
transformation which brings entire manifold onto a compact region such
that we can fit the spacetime (ie. its infinities) on a finite 2-dimensional
diagram, known as Penrose-Carter diagram (or Carter-Penrose diagram or
just conformal diagram).

Let us start with the Minkowski space, with metric in polar coordinates:

ds2 = −dt2 + dr2 + r2dΩ2, (1)

where dΩ2 = dΘ2 + sin2ΘdΦ2 is a metric on a unit two-sphere and ranges
of timelike and spacelike coordinates are:

−∞ < t <∞, 0 ≤ r <∞. (2)

In order to get coordinates with finite ranges, let us switch to null coor-
dinates:

u = t− r, v = t+ r (3)

with corresponding ranges (Fig.1.):

−∞ < u <∞, −∞ < v <∞, u ≤ v. (4)

(1)



2 Carter-Penrose˙diagrams printed on July 6, 2010

Fig. 1. Each point represents a 2-sphere of radius r = 1
2 (v − u).

The Minkowski metric in null coordinates is given by

ds2 = −1
2

(dudv + dvdu) +
1
4

(v − u)2dΩ2. (5)

We can bring infinity into a finite coordinate value by using the arctan-
gent:

U = arctan(u), V = arctan(v), (6)

with ranges

−π/2 < U < π/2, − π/2 < V < π/2, U ≤ V. (7)

After easy calculations one gets that the metric given in (5) in this
coordinates takes form:

ds2 =
1

4 cos2 U cos2 V

[
−2(dUdV + dV dU) + sin2(V − U)dΩ2

]
. (8)

Transforming back to the timelike coordinate T and radial coordinate
R:

T = U + V , R = V − U (9)

with finite ranges
0 ≤ R < π, |T |+R < π, (10)
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the metric is given by:

ds2 = ω−2(T,R)
(
−dT 2 + dR2 + sin2RdΩ2

)
. (11)

where
ω(T,R) = 2 cosU cosV = cosT + cosR. (12)

Finally, the original Minkowski metric, which we denoted ds2, is related
by a conformal transformation to the new metric:

d̃s
2

= ω2(T,R)ds2 = −dT 2 + dR2 + sin2RdΩ2. (13)

This describes the manifold R×S3, where 3-sphere is maximally symmetric
and static.

Fig. 2. The Einstein static universe, R× S3, portrayed as a cylinder. The shaded
region is conformally related to Minkowski space (see: Fig.3.).

The structure of the conformal diagram allows us to subdivide conformal
infinity into a few different regions (Fig.2.):

i+ = future timelike infinity (T = π , R = 0)
i0 = spatial infinity (T = 0 , R = π)
i− = past timelike infinity (T = −π , R = 0)
I+ = future null infinity (T = π −R , 0 < R < π)
I− = past null infinity (T = −π +R , 0 < R < π)
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Fig. 3. The conformal diagram of Minkowski space. Light cones are ±45◦ through-
out the diagram.

Note that i+, i0, and i− are actually points, since R = 0 and R = π are the
north and south poles of S3. Meanwhile, I+ and I− are null surfaces, with
the topology of R× S2.

The conformal diagram for Minkowski spacetime contains a number of
important features: radial null geodesics are at the ±45◦ angle in the dia-
gram. All timelike geodesics begin at i− and end at i+. All null geodesics
begin at I− and end at I+; all spacelike geodesics both begin and end at
i0. On the other hand, there can be non-geodesic timelike curves that end
at null infinity (if they become “asymptotically null”).

1.2. Examples

When we put polar coordinates on space, the metric becomes:

ds2 = −dt2 + t2q
(
dr2 + r2dΩ2

)
(14)

with 0 < q < 1. The crucial difference between this metric and the one
of Minkowski space is a singularity at t = 0, what restricts the range of
coordinates:

0 < t <∞, 0 ≤ r <∞. (15)
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We choose new time coordinate η called conformal time, which satisfies:

dt2 = t2qdη2 (16)

with range same as of t:
0 < η <∞. (17)

This allows us to bring out the scale factor as an overall conformal factor
times Minkowski:

ds2 = [(1− q)η]2q/(1−q)
(
−dη2 + dr2 + r2dΩ2

)
(18)

After the same sequence of coordinate transformations as previously, one
gets (η, r) to (T,R) with ranges:

0 ≤ R, 0 < T , T +R < π. (19)

The metric (18) becomes:

ds2 = ω−2(T,R)
(
−dT 2 + dR2 + sin2RdΩ2

)
(20)

Once again we expressed our metric as a conformal factor times that of
the Einstein static universe. The difference between this case and that of
flat spacetime is that timelike coordinate ends at singularity T = 0

Fig. 4. Conformal diagram for a Robertson-Walker universe.
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2. Black holes

The conformal diagram gives us an idea of the casual structure of the
spacetime, e.g. whether the past or future light cones of two specified points
intersect. In Minkowski space this is always true for any two point, but the
situation becomes much more interesting in curved spacetimes. A good
example is Schwarzschild solution, which describes spherically symmetric
vacuum spacetimes.

Schwarzschild metric is given by:

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (21)

This is true for any spherically symmetric vacuum solution to Einstein’s
equations; M functions as a parameter. Note that as M → 0 we recover
Minkowski space, which is to be expected. It is also worth noting, that
the metric becomes progressively Minkowskian as we go to r → ∞; this
property is known as asymptotic flatness.

One way of understanding a geometry is to explore its causal structure,
as defined by the light cones. We therefore consider radial null curves, those
for which θ and φ are constant and ds2 = 0:

ds2 = 0 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2, (22)

from which we see that

dt

dr
= ±

(
1− 2GM

r

)−1

(23)

This measures the slope of the light cones on a spacetime diagram of the
t-r plane. For large r the slope is ±1, as it would be in flat space, while as
we approach r = 2GM we get dt/dr → ±∞, and the light cones ’close up’

The problem with our current coordinates is that progress in the r direc-
tion becomes slower and slower with respect to the coordinate time t. We
suspect that our coordinates may not have been good for the entire mani-
fold. Thus, lets have a closer look at EddingtonFinkelstein coordinates, a
pair of coordinate systems which are adapted to radial null geodesics for a
Schwarzschild geometry.

By changing coordinate t to the new one ũ, which has the nice property
that if we decrease r along a radial curve null curve ũ = constant, we go
right through the event horizon r = 2GM without any problems. The
region r ≤ 2GM is now included in our spacetime, since physical particles
can easily reach there and pass through - the apparent singularity at the
Schwarzschild radius is not a physical singularity but only a coordinate one.
Still, there are other directions in which we can extend our manifold.
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Fig. 5. Light ray which approaches r = 2GM never seems to get there, at least in
this coordinate system; instead it seems to asymptote to this radius.

3. Penrose diagrams for Schwarzschild black holes

Kruskal coordinates

ds2 =
32G3M3

r
e−r/2GM (−dv2 + du2) + r2dΩ2 (24)

where r is defined implicitly from

(u2 − v2) =
(

r

2GM
− 1

)
er/2GM (25)

We start with the null version of the Kruskal coordinates, in which the
metric takes the form

ds2 = −16G3M3

r
e−r/2GM (du′dv′ + dv′du′) + r2dΩ2 , (26)

where r is defined implicitly via

u′v′ =
(

r

2GM
− 1

)
er/2GM . (27)

Then essentially the same transformation as was used in flat spacetime
suffices to bring infinity into finite coordinate values:

u′′ = arctan
(

u′√
2GM

)
, v′′ = arctan

(
v′√

2GM

)
, (28)
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with ranges

−π/2 < u′′ < +π/2, − π/2 < v′′ < +π/2, − π < u′′ + v′′ < π . (29)

The (u′′, v′′) part of the metric (that is, at constant angular coordinates)
is now conformally related to Minkowski space. In the new coordinates the
singularities at r = 0 are straight lines that stretch from timelike infinity in
one asymptotic region to timelike infinity in the other.

Fig. 6. Penrose diagrams for Schwarzschild black holes

4. Conclusions

Penrose diagrams capture the causal relations between different points
in spacetime, with the conformal factor chosen in a way that entire infinite
spacetime is transformed into a diagram of finite size. This gives a very
intuitive picture of the whole spacetime and its signularities, thus while
comparing different spacetimes it is much easier to compare their conformal
diagrams than metrics themselves.
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