
  

Uncertainty relation
for time and energy

University of Wrocław

Marcin Gonera March 23, 2010



  

Seminar structure

● algebraical derivation of Robertson relation

● interpretation (Einstein's box thought experiment)

● Lagrangian formalism of an object with proper time
as dynamic variable

● Hamiltonian formalism analysis

● quantization



  

Robertson relation

〈ψ∣A† A∣ψ 〉 〈ψ∣B† B∣ψ 〉 = ∥A∣ψ 〉∥2∥B∣ψ 〉∥2 ≥ ∣〈ψ∣A† B∣ψ 〉∣2

∣〈ψ∣A B∣ψ 〉∣2 ≥ ∣ Im 〈ψ∣A B∣ψ 〉∣2 = ∣ 1
2 i

〈ψ∣A B − B† A†∣ψ 〉∣
2

〈A2〉 〈B2〉 ≥
1
4
∣〈[A , B ]〉∣2

Δ A Δ B ≥
1
2
∣〈[A , B ]〉∣

〈X 〉 ≡ 〈ψ∣X ∣ψ 〉 , Δ X ≡ 〈X − 〈X 〉2〉

For any two operators A and B and a state |ψ〉 we have

On the other hand,

For Hermitian operators we get

where



  

Uncertainty principles
The Robertson inequality can be used for deriving uncertainty relations 
for any two observables which do not commute, like position and 
corresponding momentum coordinate:

There is one uncertainty relation which is not so obvious consequence of 
the Robertson relation: the time-energy uncertainty principle. It was clear 
to many founders of quantum mechanics that the following relation holds:

but it was not clear what Δt was, because the time at which a particle has 
given state is not an operator belonging to the particle, it is a parameter 
describing the evolution of the system.

[ xi , p i ] = i ℏ ⇒ Δ x i Δ pi ≥ ℏ
2

Δ t Δ E ≥ ℏ
2



  

Interpretation
The interpretation of Δt depends on the kind of experiment. It can be the lifetime 
of a state, but usually it is the accuracy of time measurement.

One false formulation is that measuring the energy of a quantum state to 
accuracy ΔE requires a time interval ℏ/2ΔE:

Such formulation, with Δt as duration of measurement, is not always true!

Δ t ≥ ℏ
2Δ E



  

Einstein's box
Consider a box filled with light. The 
box has a hole in one of the walls 
and a shutter, which opens and 
quickly closes the hole, such that 
some of the light escapes. There is 
a clock, which can be set such that 
the moment at which the photon 
escapes is known. In order to 
measure the energy of the leaving 
photon, Einstein proposed weighing 
the box before and after the 
emission – the box can be 
suspended on a spring, there is a 
pointer and a scale. The difference 
of masses multiplied by c2 will 
equal the energy of the photon.



  

Einstein's box
The idea of this thought experiment was that the uncertainty of time, at 
which the photon escapes, can be as small as one wishes

and the energy of photon can be measured to finite accuracy, such that

what is in contradiction with the time-energy uncertainty relation.

Bohr realized that since the box is immersed in a gravitational field, then 
the uncertainty in position of the box alters the ticking rate of the clock.

Apart from this, a photon as an localized object with definite energy can 
not exist!

Δ t  0

Δ t Δ E  0



  

Lagrangian formalism
In the exact form, the relation is between proper time and rest mass of an object. 
We will select the simplest Lagrangian, which describes the Einstein's box and 
other systems of that kind (a massive object in a field):

where we assumed that gravitational (gμν) and electromagnetic (Aμ) fields are 
given, and the variables are xμ.

It is obvious that, for a clock, the proper time is a measurable quantity, so we 
have to find another Lagrangian which includes the proper time as additional 
dynamic variable. We consider

Now the dynamic variables are τ, M and xμ.

L0 = −m c−g μν x  ẋμ ẋν  e Aμx  ẋ μ

L = M  τ̇ − −g μ ν x ẋ μ ẋν /c  e Aμ x ẋ μ



  

Lagrangian formalism
Calculating equations of motion it can be checked that τ can be indentified with 
proper time of the object, and, in order to have the same equation as one 
derived from L0, M must be identified with the constant mc2.

d
d λ

∂L
∂ τ̇

=
∂ L
∂ τ

⇒ Ṁ = 0

d
d λ

∂ L
∂ Ṁ

=
∂ L
∂M

⇒ τ̇ = −g μν  x ẋμ ẋν/c

d
d λ

∂ L
∂ ẋρ =

∂ L
∂ x ρ ⇒

d
d λ [ M

c
g ρ μx  ẋ μ

−g μν  x ẋμ ẋν
 e Aρx]−

−
M
c

g μ ν , ρ ẋ μ ẋν

2−g μν ẋ μ ẋν
− e Aμ , ρx ẋ μ = 0



  

Lagrangian formalism
We assume for simplicity that the fields are static: functions gμν and Aμ depend 

only on x1, x2, x3, and we have gi0 = 0. Then our Lagrangian can be written as

where f is defined by g00 = −f2.

The dynamic variables are τ, M, xi (i = 1, 2, 3) and the dot denotes differential 
with respect to t.

L = M  τ̇ −  f  x2 − g i j x ẋ i ẋ j /c2  c e A0 x  e Ai x ẋ i



  

Lagrangian formalism
The momentums conjugate to those variables are:

pτ ≡
∂ L
∂ τ̇

= M

p M ≡
∂ L
∂ Ṁ

= 0

p i ≡ ∂L
∂ ẋi = −M 1

2 f 2 − g k j ẋ k ẋ j /c2 −g k j

c2 δi
k ẋ j  ẋk δi

j e Ak δi
k =

=
M
c2

g i j ẋ j

 f 2 − g j k ẋ j ẋ k /c2
 e Ai



  

Hamiltonian formalism
We can calculate the Hamiltonian:

where the velocities were expressed by momenta.

In our case, however, there exist two constraints: ϕ1 ≡ M − pτ = 0
and ϕ2 ≡ pM = 0. Therefore we have to consider the total Hamiltonian
H ≡ H0 + u1ϕ1 + u2ϕ2, where u1 and u2 are undetermined Lagrange's 
multipliers.

H 0 ≡ pτ τ̇  pM Ṁ  p i ẋ i − L =

= f M 2  c2 g i j p i − e Ai p j − e A j − ce A0



  

Hamiltonian formalism
These multipliers can be determined by consistency conditions.
Time-derivatives of the constraints are defined by Poisson's brackets with 
the Hamiltonian and they must be weakly equal to zero:

where Poisson's bracket in our case is

and there is summation over k.

ϕ̇ 1 = {ϕ 1, H } ≈ 0 , ϕ̇ 2 = {ϕ 2 , H } ≈ 0

{ f , g } ≡ ∑
i=1

n

∂ f
∂ q i

∂ g
∂ p i −

∂ f
∂ pi

∂ g
∂ qi  =

= ∂ f
∂ τ

∂ g
∂ pτ

− ∂ f
∂ pτ

∂ g
∂ τ

 ∂ f
∂ M

∂ g
∂ pM

− ∂ f
∂ pM

∂ g
∂ M

 ∂ f
∂ xk

∂ g
∂ pk

− ∂ f
∂ pk

∂ g
∂ xk



  

Hamiltonian formalism
Calculating the consistency conditions we get the multipliers:

which require the Hamiltonian to be

H = H 0 −
f M M − pτ 

M 2  c2 g i j  pi − e Ai p j − e A j

u1 = −
f M

M 2  c2 g i j pi − e Ai p j − e A j
and u2 = 0



  

Hamiltonian formalism
Hamilton's equations of motion are as follows:

τ̇ =
∂H
∂ pτ

=
f M

M 2  c2 g i j pi − e Ai p j − e A j
, ṗτ = −

∂H
∂ τ

= 0

Ṁ =
∂H
∂ pM

= 0 , ṗM = −
∂ H
∂ M

≈ 0

ẋ i = ∂ H
∂ p i

≈
∂H 0

∂ pi
, ṗ i = −∂H

∂ xi ≈ −
∂ H 0

∂ xi



  

Quantization
Dirac's bracket, for our case, is

We can calculate Dirac's brackets between canonical variables τ, pτ, M, 
pM, xi, pi:

{A ,B }D = {A , B}  {A ,ϕ 1}{ϕ 2 , B }− {A ,ϕ 2}{ϕ 1 , B}

{τ , pτ}D = {τ , pτ} {τ , M − pτ}{pM , pτ} − {τ , pM }{M − pτ , pτ} =
= 1 −1⋅0 − 0⋅0 = 1

{τ , M }D = {τ , M } {τ , M − pτ}{ pM , M }− {τ , pM }{M − pτ , M } =
= 0  −1⋅−1 − 0⋅0 = 1

{x i , p j}D = δ j
i , the others = 0



  

Quantization
The following set of variables:

ϕ1 ≡ M − pτ ,  ϕ2 ≡ pM ,  T ≡ τ − pM ,  E ≡ pτ ,  x
i ,  pi   (i = 1, 2, 3)

are canonical variables. The subset {T, E, xi, pi} can be interpreted as 
canonical variables on the submanifold defined by the constraints
ϕ1 = 0 and ϕ2 = 0.

Thus, on the submanifold, we have M = pτ and pM = 0, what gives
T = τ and E = M (= mc2). Then the Dirac's brackets take form

{τ , E }D = 1 , {x i , p j}D = δ j
i , the others = 0



  

Quantization
It follows from the above that the rest energy E = mc2 is the general 
momentum conjugate to the proper time τ. If we quantize our system by 
Dirac's procedure, there are corresponding operators:

which satisfy following commutation relations:

We can now substitute the first commutator into Robertson relation, and 
it leads to the following uncertainty relation:

When the velocity is small, the relation translates into ΔEΔt ≥ ℏ/2.

τ , E , xi , p i i = 1, 2 ,3

[ τ , E ] = [ x i , pi ] = i ℏ

c2 Δ m Δ τ ≥ ℏ
2
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