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Abstract. Algebraic derivation of Robertson relation is shown. Then the uncertainty relation 

for time and energy is discussed as not obvious consequence of Robertson relation. Finally, it 

is shown that the uncertainty relation for proper time and rest mass can be derived only if we 

describe  the  system by a  Lagrangian  which  includes  proper  time  as  additional  dynamic 

variable.

I. FUNDAMENTALS

For any two operators A and B and a state |ψ〉 we have

〈ψ∣A† A∣ψ 〉 〈ψ∣B† B∣ψ 〉 = ∥A∣ψ 〉∥2∥B∣ψ 〉∥2 ≥ ∣〈ψ∣A† B∣ψ 〉∣2 (1)

where the inequality is the Cauchy-Schwarz statement for inner product of the two vectors

A|ψ〉 and B|ψ〉. On the other hand, the expectation value of the product AB is greater than the 

magnitude of its imaginary part:

∣〈ψ∣A B∣ψ 〉∣2 ≥ ∣ Im 〈ψ∣A B∣ψ 〉∣2 = ∣ 1
2 i

〈ψ∣A B − B† A†∣ψ 〉∣
2

(2)

Putting these two inequalities together we get, for Hermitian operators,

〈A2〉〈B2〉 ≥ 1
4
∣〈[A , B]〉∣2 (3)

where  〈X〉 ≡ 〈ψ|X|ψ〉.  We can  shift  these  operators  by their  expectation  values  (then  the 

commutator does not change) and take square root side by side, what gives a form of the 

Robertson relation:
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Δ A Δ B ≥ 1
2
∣〈[A , B ]〉∣ (4)

where the standard deviation of an observable X is defined as

Δ X ≡ 〈 X − 〈X 〉2〉 (5)

The inequality with the commutator term only was developed in 1929 by H.P. Robertson [12], 

and a little later E. Schrödinger added an anticommutator term.

The  Robertson  inequality  (4)  can  be  used  for  deriving  uncertainty relations  for  any two 

observables  which  do  not  commute.  For  example,  the  commutator  between  position 

coordinate xi and corresponding momentum coordinate pi is equal to iℏ, what gives the well-

known Heisenberg relation

Δ x i Δ pi ≥ ℏ
2 (6)

Beside this, Robertson inequality gives uncertainty relations between angular position and 

angular  momentum of  an  object  with  small  angular  uncertainty,  between  two  orthogonal 

components of the total angular momentum operator, between the number of electrons in a 

superconductor and the phase of its Ginzburg-Landau order parameter [2][3].

There is  one uncertainty relation,  which is  not  so obvious consequence of the Robertson 

relation: the time-energy uncertainty principle. Since energy has the same relation to time as 

momentum does  to  space in  special  relativity,  it  was  clear  to  many founders of quantum 

mechanics (Niels Bohr among them) that the following relation holds:

Δ t Δ E ≥ ℏ
2 (7)

Also Heisenberg [11] discusses the classically conjugate variables of time and energy and 

defines a time operator through the, quote, ”familiar relation”

[ E , t ] = −iℏ (8)

and on the basis of this he assumes the uncertainty relation.

But it was not clear what Δt was, because the time at which a particle has given state is not an 

operator belonging to the particle, it is rather an external parameter describing the evolution of 

the system. Nevertheless, Einstein and Bohr understood the meaning of this principle. A state, 

which exists only for a short time, cannot have definite energy. For example, in spectroscopy, 

excited states have a finite lifetime and by the time-energy uncertainty principle, their energy 
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cannot be determined – each time they decay, the energy they release is slightly different. The 

energy distribution of the outgoing photon has a peak at theoretical value of the state energy,  

but the spectrum has finite width. The same effect occurs in particle physics: it makes difficult 

to determine the rest masses of fast decaying particles.

II. DISCUSSION ON THE INTERPRETATION

Basically, the interpretation of Δt is not unique – it depends on the kind of experiment. It can 

be the lifetime of a state, but usually it is the accuracy of time measurement [4]. One false 

formulation of the principle is that measuring the energy of a quantum state to accuracy ΔE 

requires a time interval at least ℏ/2ΔE:

Δ t ≥ ℏ
2Δ E (9)

Such variation of  the  principle,  with  Δt as  a  duration  of  the measurement,  is  not  always 

satisfied.

Another and more widely-used form of the principle was given in 1945 by L.I. Mandelshtam 

and I.E. Tamm [6]. For an energy operator E, an observable B and a non-stationary state |ψ〉, 

the following formula holds:

Δ E Δ B

∣d 〈B 〉
d t ∣

≥ ℏ
2 (10)

The second factor in the left-hand side has dimension of time, and is so-called lifetime of the 

state |ψ〉 with respect to the observable  B. In other words, this is the time after which the 

expectation value of B changes appreciably.

A very  rigorous  discussion  on  the  notion  of  time  was  given  in  [4].  The  author  gives  a 

summary of the main types of time-energy uncertainty relations ∆t∆E ≳ ℏ, and their range of 

validity depending on the interpretation of the quantities ∆t and ∆E:

 A relation involving  external time is valid if ∆t is the  duration of a perturbation or 

preparation process and ∆E is the uncertainty of the energy in the system.
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 There is no limitation to the duration of an energy measurement and the disturbance or 

inaccuracy of the measured energy.

 There  is  a  variety  of  measures  of  characteristic,  intrinsic  times,  with  ensuing 

universally valid dynamical time-energy uncertainty relations, ∆E being a measure of 

the width of the energy distribution or its fine structure. This comprises the Bohr-

Wigner, Mandelshtam-Tamm, Bauer-Mello, and Hilgevoord-Uffink relations.

 Event  time  observables can  be  formally  represented  in  terms  of  positive  operator 

valued  measures  over  the  relevant  time  domain.  An  observable  time-energy 

uncertainty  relation,  with  a  constant  positive  lower  bound  for  the  product  of 

inaccuracies, is not universally valid but will hold in specific cases, depending on the 

structure of the Hamiltonian and the time domain.

 Time measurements by means of  quantum clocks are subject to a dynamical time-

energy uncertainty relation, where the time resolution of the clock is bounded by the 

unsharpness of its energy, δt ≳ ℏ/∆E.

 Einstein’s photon box experiment constitutes a demonstration of the complementarity 

of time of passage and energy: as a consequence of the quantum clock uncertainty 

relation, the inaccuracy δE in the determination of the energy of the escaping photon 

limits the uncertainty ∆T of the opening time of the shutter. This is in accordance with 

the  energy  measurement uncertainty  relation  based  on  internal  clocks discovered 

recently by Aharonov and Reznik [13].

 Temporal diffraction experiments provide evidence for the objective indeterminacy of 

event time uncertainties such as time of passage.

Finally we have to recall that:

 A full-fledged quantum mechanical theory of time measurements is still waiting to be 

developed.

In  1930,  during  the  famous  Einstein-Bohr  debate  on  quantum  mechanics,  a  thought 

experiment was designed. It was called ”Einstein's box” and was supposed to violate the time-

energy uncertainty relation:

Consider a box filled with light. The box has a hole in one of the walls and a shutter, 
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which opens and quickly closes the hole, such that some of the light escapes. There is a 

clock, which can be set such that the moment at which the photon escapes is known. In 

order to measure the energy of the leaving photon, Einstein proposed weighing the box 

before and after the emission – the box can be suspended on a spring, there is a pointer 

and a scale. The difference of masses multiplied by c2 will equal the energy of the 

photon.

The idea of this thought experiment was that the uncertainty of time, at which the photon 

escapes, can be as small as one wishes

Δ t  0 (11)

and the energy of photon can be measured to finite accuracy, such that

Δ t Δ E  0 (12)

what is in contradiction with the time-energy uncertainty relation.

Bohr spent whole day thinking of a solution of this paradox. Finally he realized that since the 

box is immersed in a gravitational field, then the uncertainty in position of the box alters the 

ticking rate of the clock. It was ironic, because Einstein himself was the first who discovered 

gravity's effect on clocks.

There was another error made by Einstein: he was thinking of a photon as an localized object, 

with definite  energy.  But such an object  does  not  exist!  Since the shutter  is  open during 

vanishing time interval, the electromagnetic pulse must be very sharp (Dirac delta in the limit  

when  interval  goes  to  zero).  And  from classical  electrodynamics  we  know,  that  Fourier 

components of such a pulse have wide spectrum of frequencies (Dirac delta is a superposition 

of infinite number of sinusoids with various frequencies), so the energy is not defined.

Today it is known that also Bohr's reply had some errors [1]. However, the precise evaluation 

of all effects shows that there always appears enough amount of uncertainty and the relation 

cannot be violated.

III. LAGRANGIAN FORMALISM

In an interesting paper [5] S. Kudaka and S. Matsumoto show one of possible derivations of 

the time-energy uncertainty relation. In the exact form, it is relation between the proper time 
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and rest mass of an object. We will select the simplest Lagrangian, which can describe the 

Einstein's box and other systems of that kind (a massive object in a field) and then we will 

examine the Hamiltonian formalism.  Notice that  the weighing procedure does not  require 

gravitational field: assume that the object has an electric charge e. Then the mass can also be 

determined from relation

eƐ = m v
t (13)

where Ɛ is external electric field switched on for a time t, and v is the velocity achieved by the 

object. Therefore, for generality, we assume that both gravitational (gμν) and electromagnetic 

(Aμ) fields are given. Lagrangian, which is used in such cases, is the following:

L0 = −m c−g μν x  ẋ μ ẋν  e Aμ x  ẋ μ (14)

where c is speed of light and m is the rest mass of the object. Here the variables are xμ. For a 

clock, the proper time is a measurable physical quantity. Therefore we have to find another 

Lagrangian, which includes the proper time as dynamic variable (in addition to position xμ). 

The other condition is that the new Lagrangian must have the same equations of motion as  

original Lagrangian L0. As a candidate we consider

L = M  τ̇ − −g μν x  ẋμ ẋν /c   e Aμx  ẋ μ (15)

The dynamic variables are τ, M and xμ. After calculating equations of motion it can be found 

that τ can be identified with proper time of the object, and, in order to have the same equation 

as one derived from L0, M must be identified with the constant mc2.

We assume now, for simplicity, that the fields are static in the following sense: functions gμν 

and Aμ depend only on spatial coordinates x1, x2, x3, and we have gi0 = 0. It doesn't affect the 

generality. Then our Lagrangian can be written as

L = M  τ̇ −  f x 2 − g i jx  ẋ i ẋ j /c2  ce A0x   e Aix  ẋi (16)

where f is defined by g00 = −f2.

The dynamic variables are τ, M, xi (i = 1, 2, 3) and the dot denotes differential with respect to 

t. The momentums conjugate to those variables are

p τ ≡ ∂ L
∂ τ̇

= M (17)
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pM ≡ ∂ L
∂ Ṁ

= 0 (18)

p i ≡ ∂L
∂ ẋ i = −M 1

2 f 2 − gk j ẋk ẋ j /c2 −g k j

c2 δi
k ẋ j  ẋk δ i

j e Ak δi
k =

= M
c2

g i j ẋ j

 f 2 − g j k ẋ j ẋk /c2
 e Ai

(19)

IV. HAMILTONIAN FORMALISM

We can calculate the Hamiltonian:

H 0 ≡ pτ τ̇  pM Ṁ  p i ẋi − L =

= f M 2  c2 g i j pi − e Ai p j − e A j − ce A0
(20)

In our case,  there exist  two constraints:  ϕ1 ≡ M − pτ = 0 and  ϕ2 ≡ pM = 0.  Taking these 

constraints into account we have to consider the total Hamiltonian  H ≡ H0 +  u1ϕ1 +  u2ϕ2, 

where u1 and u2 are undetermined Lagrange's multipliers. These multipliers can be determined 

by consistency conditions – time-derivatives of the constraints (defined by Poisson's brackets 

with H) must be weakly equal to zero:

{ϕ 1, H } ≈ 0 , {ϕ 2, H } ≈ 0 (21)

This requires the Hamiltonian to be

H = H 0 −
f M M − pτ 

M 2  c2 g i j pi − e Ai p j − e A j
(22)

Dirac's bracket, for our case, is

{A , B}D = {A , B} {A ,ϕ 1}{ϕ 2 , B}− {A ,ϕ 2}{ϕ 1 , B} (23)

We can easily calculate Dirac's brackets between canonical variables τ, pτ, M, pM, xi, pi:

{τ , pτ }D = {τ , pτ}  {τ ,M − p τ}{pM , pτ }− {τ , pM }{M − p τ , pτ} =
= 1  −1⋅0 − 0⋅0 = 1 (24)

{τ ,M }D = {τ ,M } {τ ,M − pτ}{pM ,M }− {τ , pM }{M − pτ , M } =
= 0  −1⋅−1 − 0⋅0 = 1 (25)

{x i , p j}D = δ j
i (26)

the others = 0 (27)

7



The following set of variables:

ϕ1 ≡ M − pτ,  ϕ2 ≡ pM,  T ≡ τ − pM,  E ≡ pτ,  xi,  pi (i = 1, 2, 3)

are independent variables and therefore they are canonical. In mathematical terms, conjugate 

variables form part  of a  symplectic  basis.  The variables  T,  E,  xi,  pi can be interpreted as 

canonical variables on the submanifold defined by the constraints ϕ1 = 0 and ϕ2 = 0.

On the submanifold we have M = pτ and pM = 0, what gives T = τ and E = M (= mc2). Then the 

Dirac's brackets take form

{τ ,E }D = 1 , {x i , p j}D = δ j
i , the others = 0 (28)

It follows from the above that the rest energy E = mc2 is the general momentum conjugate to 

the proper  time.  If  we quantize our system by Dirac's  procedure,  there are corresponding 

operators:

τ , E , x i , pi i = 1 ,2,3 (29)

which satisfy following commutation relations:

[ τ , E ] = [ x i , pi] = i ℏ (30)

We can now substitute value of the commutator [ τ , E ] to the Robertson relation (4), and it 

leads us to the uncertainty relation

c2 Δ mΔ τ ≥ ℏ
2 (31)

This relation can be easily translated into  ΔEΔt ≥ ℏ/2 when the velocity is small (the rest 

energy will be approximately equal to the total classical energy E, and the proper time will be 

approximately equal to the Newtonian time t).

V. CONCLUSIONS

It seems possible [8] to apply the above reasoning to any object (not necessarily a clock). The 

concept of the proper time of a particle can be always introduced by the equation

d τ = d t 2 − d x
c 

2

(32)

where t , x are the coordinates of the particle observed from an inertial system. Hence it is 

defined for every particle irrespective of whether the particle has some function as a clock or 

not.
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The conjugate variable to the proper time is necessarily the rest energy, and therefore there 

exists uncertainty relation for proper time and rest mass, independent of the structure of the 

object. Of course, as in the case of position-momentum, this does not invalidate other forms 

of the time-energy uncertainty relation derived in other ways, for example a consideration of 

the  Fourier  relationship  between  energy  and  time  wavepacket  widths.  Moreover,  many 

different reasonings lead to the conclusion, that, besides the energy operator, there must exist 

a time operator, although its meaning and exact form still need clarification. For example, 

Pauli [14] gave a powerful and well-known argument against the existence of a time operator, 

based on considerations of the boundedness of the energy operator. Pauli writes ”we conclude 

therefore that the introduction of a time operator  t  must be abandoned fundamentally and 

that the time t in quantum mechanics has to be regarded as an ordinary real number.” Despite 

this,  beginning  with  the  seminal  paper  of  Aharonov  and  Bohm  [15],  there  have  been 

numerous attempts to define an operator for time.

Another problem is that in our quantization, the operators τ , E , x i  and p i  (i = 1, 2, 3) can 

be represented in the Hilbert space composed of square-integrable functions of τ, x1, x2 and x3. 

In  particular,  the  operator  E  is  represented  by  the  differential  operator  −i ℏ∂/∂ τ ,  and 

therefore the rest  energy  E  cannot have any discrete spectrum. Furthermore,  this  Hilbert 

space includes some states in which the mean values of E  are negative. The problems of the 

continuous  mass  spectrum and of  the  negative  mass  are  inevitable  in  above formulation. 

These problems are discussed from a rather different viewpoint in [8].
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