Introduce to Supersymmetry

Alaksiej Kacanovic

Uniwersytet Wroclawski

May 24, 2010

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What is supersymmetry it?

Supersymmetry is expanded symmetry

<ロ> (日) (日) (日) (日) (日)

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What is supersymmetry it?

Supersymmetry is expanded symmetry

We hope find a some operator which will be transform fermions to bosons and bosons to fermions

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What is supersymmetry it?

Supersymmetry is expanded symmetry

We hope find a some operator which will be transform fermions to bosons and bosons to fermions

Will we have a new form of fields?

< 口 > < 同 >

Uniwersytet Wrocławski

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What is supersymmetry it?

Supersymmetry is expanded symmetry

We hope find a some operator which will be transform fermions to bosons and bosons to fermions

Will we have a new form of fields?

In supersymmetry field theory we can have separately bosons and fermions fields or composition of that fields which call superfield

< 口 > < 同 >

Uniwersytet Wrocławski

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Let try find super Lie algebra

What about of Coleman-Manduli "no-go" theorem?

(日)

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Let try find super Lie algebra

What about of Coleman-Manduli "no-go" theorem?

Super Lie algebra include anti-commutation relation

< ロ > < 同 > < 回 > < 回 >

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

▲ 同 ▶ ▲ 目

Alaksiej Kacanovic Introduce to Supersymmetry

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

• Q - must be operator

< 同 ▶

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

- Q must be operator
- Q must be spinor

< 同 ▶

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

- Q must be operator
- Q must be spinor

What is spinor it?

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

- Q must be operator
- Q must be spinor

What is spinor it?

Spinor is object which transform by $SL(2,\mathbb{C})$ representation

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Few important information

Q is generator of transformation call the Supercharge

- Q must be operator
- Q must be spinor

What is spinor it?

Spinor is object which transform by $SL(2,\mathbb{C})$ representation

•
$$\psi \prime_{\alpha} = N_{\alpha}{}^{\beta}\psi_{\beta}$$

• $\overline{\chi} \prime_{\dot{\alpha}} = (N^{*})_{\dot{\alpha}}{}^{\dot{\beta}}\overline{\chi}_{\dot{\beta}}$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

▲□ ▶ ▲ 三 ▶ ▲

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

•
$$[P^{\mu}, P^{\nu}] = 0$$

▲圖 ▶ ▲ 圖 ▶

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$

what is supersymmetry it?

•
$$[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} - M^{\mu\rho}\eta^{\nu\sigma} - M^{\nu\sigma}\eta^{\mu\rho})$$

Extended Lie algebra

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$
- $[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} M^{\mu\rho}\eta^{\nu\sigma} M^{\nu\sigma}\eta^{\mu\rho})$
- $[Q_{\alpha}, P^{\mu}] = 0$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$
- $[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} M^{\mu\rho}\eta^{\nu\sigma} M^{\nu\sigma}\eta^{\mu\rho})$
- $[Q_{\alpha}, P^{\mu}] = 0$
- $[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}^{\ \beta} Q_{\beta}$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$
- $[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} M^{\mu\rho}\eta^{\nu\sigma} M^{\nu\sigma}\eta^{\mu\rho})$
- $[Q_{\alpha}, P^{\mu}] = 0$
- $[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}^{\ \beta} Q_{\beta}$
- $\{Q_{\alpha}, Q^{\beta}\} = 0$

| 4 同 1 4 三 1 4 三 1

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Extended Lie algebra

Our Lie algebra is

- $[P^{\mu}, P^{\nu}] = 0$
- $[M^{\mu\nu}, P^{\rho}] = i(\eta^{\nu\rho}P^{\mu} \eta^{\mu\rho}P^{\nu})$
- $[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} M^{\mu\rho}\eta^{\nu\sigma} M^{\nu\sigma}\eta^{\mu\rho})$
- $[Q_{\alpha}, P^{\mu}] = 0$
- $[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}^{\ \beta} Q_{\beta}$
- $\{Q_{\alpha}, Q^{\beta}\} = 0$
- $\{Q_{\alpha}, \overline{Q}_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}}P_{\mu}$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

One example

How show that extended try?

イロト イヨト イヨト イ

Alaksiej Kacanovic Introduce to Supersymmetry

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

One example

How show that extended try?

for example $[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta}$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Supercharge transform like spinor

$$Q_{\prime \alpha} = (e^{-\frac{i}{2}\omega_{\mu
u}\sigma^{\mu
u}})_{lpha}{}^{eta}Q_{eta} pprox (\mathbb{I} - \frac{i}{2}\omega_{\mu
u}\sigma^{\mu
u})_{lpha}{}^{eta}Q_{eta}$$

・ロット (雪) () () (

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Supercharge transform like spinor

$$Q\prime_{\alpha} = (e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}})_{\alpha}^{\ \beta}Q_{\beta} \approx (\mathbb{I} - \frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu})_{\alpha}^{\ \beta}Q_{\beta}$$

Supercharge transform like operator

$$Q\prime_{lpha} = U^{\dagger}Q_{lpha}U$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Supercharge transform like spinor

$$Q\prime_{\alpha} = (e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}})_{\alpha}^{\ \beta}Q_{\beta} \approx (\mathbb{I} - \frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu})_{\alpha}^{\ \beta}Q_{\beta}$$

Supercharge transform like operator

$$egin{aligned} Q_{\prime_{lpha}} &= U^{\dagger} Q_{lpha} U \ ext{where} \ U &= (e^{-rac{i}{2} \omega_{\mu
u} M^{\mu
u}}) pprox (\mathbb{I} - rac{i}{2} \omega_{\mu
u} M^{\mu
u}) \end{aligned}$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Supercharge transform like spinor

$$Q\prime_{\alpha} = (e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}})_{\alpha}^{\ \beta}Q_{\beta} \approx (\mathbb{I} - \frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu})_{\alpha}^{\ \beta}Q_{\beta}$$

Supercharge transform like operator

$$egin{aligned} Q_{lpha} &= U^{\dagger} Q_{lpha} U \ ext{where} \ U &= (e^{-rac{i}{2} \omega_{\mu
u} M^{\mu
u}}) pprox (\mathbb{I} - rac{i}{2} \omega_{\mu
u} M^{\mu
u}) \end{aligned}$$

If we compare two Q'_{α}

< ロ > < 同 > < 回 > < 回 >

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

Supercharge transform like spinor

$$Q\prime_{\alpha} = (e^{-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}})_{\alpha}^{\ \beta}Q_{\beta} \approx (\mathbb{I} - \frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu})_{\alpha}^{\ \beta}Q_{\beta}$$

Supercharge transform like operator

$$egin{aligned} Q_lpha &= U^\dagger Q_lpha U \ ext{where} \ U &= (e^{-rac{i}{2}\omega_{\mu
u}M^{\mu
u}}) pprox (\mathbb{I} - rac{i}{2}\omega_{\mu
u}M^{\mu
u}) \end{aligned}$$

If we compare two $Q\prime_{lpha}$

$$Q_{lpha} - rac{i}{2} \omega_{\mu
u} (\sigma^{\mu
u})_{lpha}^{\ eta} Q_{eta} = Q_{lpha} - rac{i}{2} \omega_{\mu
u} (Q_{lpha} M^{\mu
u} - M^{\mu
u} Q_{lpha}) + \mathcal{O}(\omega^2)$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

After vanishing we have

$$[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta}$$

<ロ> (日) (日) (日) (日) (日)

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

After vanishing we have

$$[Q_{\alpha}, M^{\mu\nu}] = (\sigma^{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta}$$

... and for conjugate representation this we can show same

$$[\overline{Q}^{\dot{\alpha}}, M^{\mu\nu}] = (\overline{\sigma}^{\mu\nu})^{\dot{\alpha}}_{\ \dot{\beta}} \overline{Q}^{\dot{\beta}}$$

・ロッ ・ 一 ・ ・ ・ ・

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

How supercharge acts on field?

Few definition

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

How supercharge acts on field?

Few definition

• S - scalar field

・ロト ・回ト ・ ヨト ・

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field

< ロ > < 同 > < 三 > <

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

< ロ > < 同 > < 三 > <

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

"[[4]]

< 17 ▶

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

"[[4]]

< 17 ▶

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

•
$$Q_{\alpha}S = \psi_{\alpha}$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

"[[4]]

< 17 ▶

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

•
$$Q_{\alpha}S = \psi_{\alpha}$$

•
$$Q_{\alpha}P = \gamma_5\psi_{\alpha}$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

"[[4]]

< 17 ▶

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

•
$$Q_{\alpha}S = \psi_{\alpha}$$

•
$$Q_{\alpha}P = \gamma_5\psi_{\alpha}$$

•
$$Q_{lpha}\psi_{eta}=-(\gamma^{\mu})_{lphaeta}\partial_{\mu}S+(\gamma^{\mu}\gamma_{5})_{lphaeta}\partial_{\mu}P$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

et

Wrocławski

"[[4]]

< 17 ▶

How supercharge acts on field?

Few definition

- S scalar field
- P pseudoscalar field
- ψ_a spinorial field

•
$$Q_{\alpha}S = \psi_{\alpha}$$

•
$$Q_{\alpha}P = \gamma_5\psi_{\alpha}$$

•
$$Q_{lpha}\psi_{eta}=-(\gamma^{\mu})_{lphaeta}\partial_{\mu}S+(\gamma^{\mu}\gamma_{5})_{lphaeta}\partial_{\mu}P$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What about superfields?

We must have super-Poincare transformation

▲ 同 ▶ → ● 三

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What about superfields?

We must have super-Poincare transformation

$$U_{SP} = exp(i(\omega_{\mu\nu}M^{\mu\nu} + a_{\mu}P^{\mu} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\alpha}}\overline{Q}^{\dot{\alpha}}))$$

< 1 →

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

What about superfields?

We must have super-Poincare transformation

$$U_{SP} = exp(i(\omega_{\mu\nu}M^{\mu\nu} + a_{\mu}P^{\mu} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\alpha}}\overline{Q}^{\alpha}))$$

where θ and $\overline{\theta}$ is Grassmann parameters.

< 同 ▶

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

> et ki

What about superfields?

We must have super-Poincare transformation

$$U_{SP} = exp(i(\omega_{\mu\nu}M^{\mu\nu} + a_{\mu}P^{\mu} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\alpha}}\overline{Q}^{\alpha}))$$

where θ and $\overline{\theta}$ is Grassmann parameters.

How look like that superfield?

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

> et ki

What about superfields?

We must have super-Poincare transformation

$$U_{SP} = exp(i(\omega_{\mu\nu}M^{\mu\nu} + a_{\mu}P^{\mu} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\alpha}}\overline{Q}^{\alpha}))$$

where θ and $\overline{\theta}$ is Grassmann parameters.

How look like that superfield?

$$\begin{split} S(x^{\mu},\theta^{\alpha},\overline{\theta}_{\dot{\alpha}}) &= \varphi(x) + \theta\psi(x) + \overline{\theta}\overline{\chi}(x) + \theta\theta M(x) + \overline{\theta\theta} N(x) + \\ (\theta\sigma^{\mu}\overline{\theta})V_{\mu} + \theta\theta\overline{\theta\lambda}(x) + \overline{\theta\theta}\theta\rho(x) + \theta\theta\overline{\theta\theta} D(x) \end{split}$$

Look for super Lie algebra Extended Lie algebra How supercharge acts on field What about superfields?

> et ki

What about superfields?

We must have super-Poincare transformation

$$U_{SP} = exp(i(\omega_{\mu\nu}M^{\mu\nu} + a_{\mu}P^{\mu} + \theta^{\alpha}Q_{\alpha} + \overline{\theta}_{\dot{\alpha}}\overline{Q}^{\alpha}))$$

where θ and $\overline{\theta}$ is Grassmann parameters.

How look like that superfield?

$$\begin{split} S(x^{\mu}, \theta^{\alpha}, \overline{\theta}_{\dot{\alpha}}) &= \varphi(x) + \theta \psi(x) + \overline{\theta} \overline{\chi}(x) + \theta \theta M(x) + \overline{\theta \theta} N(x) + \\ (\theta \sigma^{\mu} \overline{\theta}) V_{\mu} + \theta \theta \overline{\theta \lambda}(x) + \overline{\theta \theta} \theta \rho(x) + \theta \theta \overline{\theta \theta} D(x) \\ \text{where} \end{split}$$

•
$$\varphi(x)$$
, $M(x)$, $N(x)$, $D(x)$ - scalar fields

•
$$V_{\mu}(x)$$
 - vector field

•
$$\psi(x)$$
, $\overline{\chi}$, $\overline{\lambda}(x)$, $ho(x)$ - spinorial field

Where we can use supersymmetry? Is it supersymmetry try? Why supersymmetry is good?

Where we can use supersymmetry?

<ロト <問 > < 注 > < 注 >

Where we can use supersymmetry?

anywhere

Example 1. Yang-Mills

We can modify Yang-Mills Lagrangian for supersymmetry invariants

(日)

Where we can use supersymmetry?

anywhere

Example 1. Yang-Mills

We can modify Yang-Mills Lagrangian for supersymmetry invariants $\mathcal{L}_{SYM} = -\frac{1}{4} Tr F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{\Psi} \mathcal{D} \Psi$

Where we can use supersymmetry?

anywhere

Example 1. Yang-Mills

We can modify Yang-Mills Lagrangian for supersymmetry invariants

$$\mathcal{L}_{SYM} = -\frac{1}{4} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{\Psi} \mathcal{D} \Psi$$

Example 2. Quantum mechanics

э

(日) (同) (三) (三)

Where we can use supersymmetry?

anywhere

Example 1. Yang-Mills

We can modify Yang-Mills Lagrangian for supersymmetry

invariants

$$\mathcal{L}_{SYM} = -rac{1}{4} Tr F_{\mu
u} F^{\mu
u} - rac{1}{2} \overline{\Psi} \mathcal{D} \Psi$$

Example 2. Quantum mechanics

We can use supersymmetric transformation on the state in non relativistic case

• □ ▶ • □ ▶ • □ ▶ •

et ki

Where we can use supersymmetry?

anywhere

Example 1. Yang-Mills

We can modify Yang-Mills Lagrangian for supersymmetry

invariants

$$\mathcal{L}_{SYM} = -\frac{1}{4} Tr F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{\Psi} \mathcal{D} \Psi$$

Example 2. Quantum mechanics

We can use supersymmetric transformation on the state in non relativistic case

$$egin{aligned} Q|B
angle \sim |F
angle \ Q|F
angle \sim |B
angle \end{aligned}$$

・ロト ・同ト ・ヨト ・

Where we can use supersymmetry? Is it supersymmetry try? Why supersymmetry is good?

ls it supersymmetry try?

<ロ> (日) (日) (日) (日) (日)

Where we can use supersymmetry? Is it supersymmetry try? Why supersymmetry is good?

ls it supersymmetry try?

We have corroboration supersymmetry in quantum mechanics

(日)

Where we can use supersymmetry? Is it supersymmetry try? Why supersymmetry is good?

ls it supersymmetry try?

We have corroboration supersymmetry in quantum mechanics

What about Standard Model?

▲ 同 ▶ → 三 ▶

Where we can use supersymmetry? Is it supersymmetry try? Why supersymmetry is good?

ls it supersymmetry try?

We have corroboration supersymmetry in quantum mechanics

What about Standard Model?

we don't know...

▲ □ ▶ ▲ □ ▶ ▲

æ

<ロ> <同> <同> < 回> < 回>

Why supersymmetry is good?

・ロト ・回ト ・ ヨト ・

Why supersymmetry is good?

Grand unification

<ロト <問 > < 注 > < 注 >

Why supersymmetry is good?

- Grand unification
- String theory

Why supersymmetry is good?

- Grand unification
- String theory
- Divergence

Why supersymmetry is good?

- Grand unification
- String theory
- Divergence
- Dark matter

Thank you for attention!

э

・ロット (雪) () () (

bibliography

- [1] J.M.Figueroa-O'Farrill "BUSSTEPP Lectures on Supersymmetry" (2001)
- [2] F.Tanedo "Supersymmetry and extra dimension" (2009)
- [3] J.Lopuszanski "Rachunek spinorow", Warsz.(1985)
- [4] S.Weinberg "Quantum Theory of Fields. III Supersymmetry." (2000)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >