Geometry of gauge fields

Michał Kosztołowicz

University of Wrocław

MSc Seminar for Theoretical Physics Students, Spring 2010

Outline

- Introduction
- 2 Vector bundles

Connection on a vector bundle

What is gauge theory?

- Gauge theory is a field theory in which the lagrangian is invariant under a group of local transformations
- Partial derivative is redefined:

$$\partial_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + \mathscr{A}_{\mu}$$

Transformation rules:

$$\mathscr{A}_{\mu} \rightarrow U(g)\mathscr{A}_{\mu}U(g)^{-1} + (\partial_{\mu}U(g))U(g)^{-1}$$

What is gauge theory?

- Gauge theory is a field theory in which the lagrangian is invariant under a group of local transformations
- Partial derivative is redefined:

$$\partial_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + \mathscr{A}_{\mu}$$

Transformation rules:

$$\mathscr{A}_{\mu} \rightarrow U(g)\mathscr{A}_{\mu}\,U(g)^{-1} + (\partial_{\mu}\,U(g))\,U(g)^{-1}$$

What is gauge theory?

- Gauge theory is a field theory in which the lagrangian is invariant under a group of local transformations
- Partial derivative is redefined:

$$\partial_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + \mathscr{A}_{\mu}$$

Transformation rules:

$$\mathscr{A}_{\mu}
ightarrow U(g) \mathscr{A}_{\mu} \, U(g)^{-1} + (\partial_{\mu} \, U(g)) \, U(g)^{-1}$$

Vector bundle

Definition

A vector bundle is a quadruple $(\mathcal{B}, \mathcal{M}, \pi, \mathcal{F})$, where \mathcal{B}, \mathcal{M} - smooth manifolds called total space and base respectively, \mathcal{F} -n-dimensional vector space called standard fibre and $\pi: \mathcal{B} \to \mathcal{M}$ is an onto map called projection, such that following condition is satisfied:

Let $\{\mathscr{U}_{\alpha}\}$ be the open covering of \mathscr{M} . Then, for every α there exists a diffeomorphism:

$$t_lpha:\pi^{-1}(\mathscr{U}_lpha)\longrightarrow\mathscr{U}_lpha imes\mathscr{F}$$

such that its restriction $t_{\alpha,p} \equiv t_{\alpha}|_{p} : \mathscr{B}_{p} \equiv \pi^{-1}(p) \longrightarrow \{p\} \times \mathscr{F}$ is a linear isomorphism. This diffeomorphism (together with a set \mathscr{U}_{α}) is called a local trivialization of a bundle.

Vector bundle

Example

A cylinder is an example of a vector bundle. In this case whole cylinder is identified with the total space, S^1 is a base manifold and \mathscr{R}^1 is a standard fibre. An arbitrary local trivialization is of the form $\mathscr{U}_{\alpha} \times \mathscr{R}^1$. In this special case one can choose even $\mathscr{U}_{\alpha} = \mathscr{S}^1$, what makes a cylinder being a trivial vector bundle.

Transition function

$$g_{\alpha\beta}(p) = t_{\alpha}(p) \circ t_{\beta}(p)^{-1}$$

Vector bundle

Example

A cylinder is an example of a vector bundle. In this case whole cylinder is identified with the total space, S^1 is a base manifold and \mathscr{R}^1 is a standard fibre. An arbitrary local trivialization is of the form $\mathscr{U}_{\alpha} \times \mathscr{R}^1$. In this special case one can choose even $\mathscr{U}_{\alpha} = \mathscr{S}^1$, what makes a cylinder being a trivial vector bundle.

Transition function

$$g_{\alpha\beta}(p) = t_{\alpha}(p) \circ t_{\beta}(p)^{-1}$$

Section of a vector bundle

Definition

A function $s: \mathcal{M} \longrightarrow \mathcal{B}$ such that for every $p \in \mathcal{M}$, $s(p) \in \mathcal{B}_p$ (equivalently, $\Pi \circ s = Id$) is called a section of a vector bundle. The set of all sections of a bundle \mathcal{B} will be denoted as $\Gamma(\mathcal{B})$.

Basis of sections

We say that $e_1, e_2 \dots e_n \in \Gamma(\mathcal{B})$ form a basis of sections, if every $s \in \Gamma(\mathcal{B})$ can be written as $s = s^i e_i$, where s^i are appropriate functions from $C^{\infty}(\mathcal{M})$.

Section of a vector bundle

Definition

A function $s: \mathcal{M} \longrightarrow \mathcal{B}$ such that for every $p \in \mathcal{M}$, $s(p) \in \mathcal{B}_p$ (equivalently, $\Pi \circ s = Id$) is called a section of a vector bundle. The set of all sections of a bundle \mathcal{B} will be denoted as $\Gamma(\mathcal{B})$.

Basis of sections

We say that $e_1, e_2 \dots e_n \in \Gamma(\mathcal{B})$ form a basis of sections, if every $s \in \Gamma(\mathcal{B})$ can be written as $s = s^i e_i$, where s^i are appropriate functions from $C^{\infty}(\mathcal{M})$.

Gauge transformation

Definition

We say, that $T(p) \in End(\mathscr{B}_p)$ lives in \mathscr{G} , if it is of the form $v \to gv$ for some $g \in \mathscr{G}$ and $v \in \mathscr{B}_p$. If T(p) lives in \mathscr{G} for every p, then we call T a gauge transformation.

Definition

Connection on a vector bundle is a map:

$$\mathscr{D}: \Gamma(\mathscr{B}) \longrightarrow \Gamma(T^*\mathscr{M} \otimes \mathscr{B})$$

which satisfies the following conditions:

• For any $s_1, s_2 \in \Gamma(\mathscr{B})$:

$$\mathscr{D}(s_1+s_2)=\mathscr{D}(s_1)+\mathscr{D}(s_2)$$

• For $s \in \Gamma(\mathcal{B})$ and $f \in C^{\infty}(\mathcal{M})$:

$$\mathscr{D}(\mathit{fs}) = \mathit{df} \otimes \mathit{s} + \mathit{f} \, \mathscr{D} \mathit{s}$$

Transformation rules

$$\omega' = dAA^{-1} + A\omega A^{-1}$$

Definition

Connection on a vector bundle is a map:

$$\mathscr{D}: \Gamma(\mathscr{B}) \longrightarrow \Gamma(T^*\mathscr{M} \otimes \mathscr{B})$$

which satisfies the following conditions:

• For any $s_1, s_2 \in \Gamma(\mathcal{B})$:

$$\mathscr{D}(s_1+s_2)=\mathscr{D}(s_1)+\mathscr{D}(s_2)$$

• For $s \in \Gamma(\mathcal{B})$ and $f \in C^{\infty}(\mathcal{M})$:

$$\mathscr{D}(\mathsf{f}\mathsf{s})=\mathsf{d}\mathsf{f}\otimes\mathsf{s}+\mathsf{f}\,\mathscr{D}\mathsf{s}$$

Transformation rules

$$\omega' = dAA^{-1} + A\omega A^{-1}$$

Covariant derivative

Definition

Let X be a smooth vector field on a base manifold \mathcal{M} . The covariant derivative of a section s along X is a map:

$$D_X : \Gamma(B) \longrightarrow \Gamma(B)$$

$$D_X s \equiv \langle X, Ds \rangle$$

Coordinate representation

$$(D_{\mu}s)^{\alpha} = \partial_{\mu}s^{\alpha} + s^{\beta}\omega_{\beta\mu}^{\alpha}$$

Covariant derivative

Definition

Let X be a smooth vector field on a base manifold \mathcal{M} . The covariant derivative of a section s along X is a map:

$$D_X : \Gamma(B) \longrightarrow \Gamma(B)$$

$$D_X s \equiv \langle X, Ds \rangle$$

Coordinate representation

$$(D_{\mu}s)^{\alpha} = \partial_{\mu}s^{\alpha} + s^{\beta}\omega^{\alpha}_{\beta\mu}$$

For Further Reading 1

- J. Baez, J.P. Muniain

 Gauge fields, knots and gravity

 World Scientific Publishing Co. Pte. Ltd., Singapore 1994
- .L. Fatibene, M. Francaviglia Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories Kluwer Academic Publishers, Dordrecht/Boston/London 2003
- S.S. Chern, W.H.Chen, K.S. Lam

 Lectures on differential geometry

 World Scientific Publishing Co. Pte. Ltd., Singapore 2000.