# Geometry of gauge fields 

Michal Kosztolowicz

June 15, 2010


#### Abstract

The aim of this article is to give a mathematical formulation of YangMills gauge theory. Formalism of vector bundles and interpretation of a field as a section of a vector bundle will be introduced. Using this language notion of gauge transformation will be given and finally a connection on a vector bundle will be defined, an object to be recognised as a gauge potential.


## 1 Introduction

A gauge theory is a field theory in which the lagrangian is invariant under a group of local transformations. Starting with the lagrangian which invariance is only global, we can achieve a local invariance at the expense of introducing a gauge field $\mathcal{A}_{\mu}$. It is used in a redefinition of a partial derivative inserted in the lagrangian:

$$
\partial_{\mu} \longrightarrow D_{\mu}=\partial_{\mu}+\mathcal{A}_{\mu}
$$

Transformation rules of this new field are given as follows:

$$
\mathcal{A}^{\prime}{ }_{\mu}=U(g) \mathcal{A}_{\mu} U(g)^{-1}+\left(\partial_{\mu} U(g)\right) U(g)^{-1}
$$

where $U(g)$ is a local gauge transformation.
The rest of this paper will be dedicated to introducing a mathematical object that has above mentioned properties.

## 2 Vector bundles

Definition $1 A$ vector bundle is a quadruple $(\mathcal{B}, \mathcal{M}, \pi, \mathcal{F})$, where $\mathcal{B}, \mathcal{M}$ - smooth manifolds called total space and base respectively, $\mathcal{F}-n$ dimensional vector space called standard fibre and $\pi: \mathcal{B} \rightarrow \mathcal{M}$ is an onto map called projection, such that following condition is satisfied:

Let $\left\{\mathcal{U}_{\alpha}\right\}$ be the open covering of $\mathcal{M}$. Then, for every $\alpha$ there exists a diffeomorphism

$$
t_{\alpha}: \pi^{-1}\left(\mathcal{U}_{\alpha}\right) \longrightarrow \mathcal{U}_{\alpha} \times \mathcal{F}
$$

such that its restriction $\left.t_{\alpha, p} \equiv t_{\alpha}\right|_{p}: \mathcal{B}_{p} \equiv \pi^{-1}(p) \longrightarrow\{p\} \times \mathcal{F}$ is a linear isomorphism. This diffeomorphism (together with a set $\mathcal{U}_{\alpha}$ ) is called a local trivialization of a bundle.

It is worth emphasizing that it is enough there exists at least one open covering satisfying condition from the definition to be able to talk about a vector bundle. This covering dooes not need to be an atlas from differentiable structure on $\mathcal{M}$. The notion of a fibre, defined as $\mathcal{B}_{p}=\pi^{-1}(p)$, is a subset of total space. In arbitrary local trivialization, such that $p \in \mathcal{U}_{\alpha}$, this fibre is isomorphic to the standard fibre $\mathcal{F}$.

The idea of a vector bundle appears naturally in mathematics, what is easily seen in a following

Example 2 A cylinder is an example of a vector bundle. In this case whole cylinder is identified with the total space, $\mathcal{S}^{\infty}$ is a base manifold and $\mathcal{R}^{1}$ is a standard fibre. An arbitrary local trivialization is of the form $\mathcal{U}_{\alpha} \times \mathcal{R}^{1}$. In this special case one can choose even $\mathcal{U}_{\alpha}=\mathcal{S}^{\infty}$, what makes a cylinder being a trivial vector bundle.

It is instructive to consider a different vector bundle that in local trivialization looks like $\mathcal{U}_{\alpha} \times \mathcal{R}^{1}$, namely a Mobius strip. It is obvious that although locally identical globaly it is a different object than a cylinder.

Suppose now that there are two trivializations $\left(t_{\alpha}, U_{\alpha}\right)$ and $\left(t_{\beta}, U_{\beta}\right)$ of the same vector bundle, such that $U_{\alpha} \cup U_{\beta} \neq \emptyset$. It makes sense to introduce a transition function, defined as $g_{\alpha \beta}(p)=t_{\alpha}(p) \circ t_{\beta}(p)^{-1}$ for $p \in U_{\alpha} \cup U_{\beta}$. This mapping transforms vectors from a fibre while changing a local trivialization. In gauge theory one demands that it is not an arbitrary isomorphism, but rather an isomorphism from a certain group $\mathcal{G}$, called gauge group.

The notion of a vector bundle can be generalized using construction that can be made of a single vector space. Consider for example a dual space $\mathcal{F}^{*}$. Then, there is a well defined notion of a dual vector bundle $\mathcal{B}^{*}$. One can think of it simply as a vector bundle which fibre is a dual space $\mathcal{F}^{*}$. In a similar way one can construct tensor bundle $\mathcal{B} \otimes \mathcal{B}^{*}$ etc.

## 3 Section of a vector bundle

Definition $3 A$ function $s: \mathcal{M} \longrightarrow \mathcal{B}$ such that for every $p \in \mathcal{M} s(p) \in \mathcal{B}_{p}$ (equivalently, $\Pi \circ s=i d)$ is called a section of a vector bundle. The set of all sections of a bundle $\mathcal{B}$ will be denoted as $\Gamma(\mathcal{B})$

That means that a section is a function that for every point $p$ from the base manifold picks out a single vector from a fibre $\pi^{-1}(p)$. Shortly speaking, section of a vector bundle is a vector field over a base manifold.

There always exists a global section of a vector bundle (that is defined on the whole $\mathcal{M}$, not only on a certain open subset). For example, one can consider the zero section - it maps every point into zero vector and is independent of
local trivialization, since zero vector is always mapped into zero vector by an isomorphism.

In a natural way there can be an addition and a multiplication by a function from $C^{\infty}(\mathcal{M})$ introduced in the set $\Gamma(\mathcal{B})$. We define:

$$
\begin{aligned}
\left(s+s^{\prime}\right)(p) & \equiv s(p)+s^{\prime}(p) \\
(f s)(p) & \equiv f(p) s(p)
\end{aligned}
$$

for arbitrary $s, s^{\prime} \in \Gamma(\mathcal{B})$ and $f \in C^{\infty}(M)$. Using above it makes sense to talk about a linear dependence of sections:

Definition 4 We say that $e_{1}, e_{2} \ldots e_{n} \in \Gamma(\mathcal{B})$ form a basis of sections, if every $s \in \Gamma(\mathcal{B})$ can be written as

$$
s=s^{i} e_{i}
$$

where $s^{i}$ are appropriate functions from $C^{\infty}(\mathcal{M})$.
A basis of sections can be only defined for trivial bundles. That means that for an arbitrary vector bundle we can have a basis only localy (for local trivializations).

## 4 Gauge transformation

Using above introduced formalism notion of a gauge transformation can be defined. For this purpose one needs a section of an endomorphism bundle which is the same as just mentioned tensor bundle $\mathcal{B}^{*} \otimes \mathcal{B}$, due to the isomorphism $\mathcal{V}^{*} \otimes \mathcal{V} \cong \operatorname{End}(\mathcal{V})$, where $\mathcal{V}$ is an arbitrary, finite dimensional vector space. Let $T \in \Gamma\left(\mathcal{B}^{*} \otimes \mathcal{B}\right)$. It can be shown that $T(p) \in \mathcal{B}_{p}^{*} \otimes \mathcal{B}_{p} \cong \operatorname{End}\left(\mathcal{B}_{p}\right)$, so it is a linear map acting on vectors from $\mathcal{B}_{p}$. Thus, given a section $s \in \Gamma(\mathcal{B}) T$ defines a new section $T(s) \in \Gamma(B)$ as follows:

$$
T(s)(p)=T(p) s(p)
$$

After this introduction a definition can be given:
Definition 5 We say, that $T(p) \in \operatorname{End}\left(\mathcal{B}_{p}\right)$ lives in $\mathcal{G}$, if it is of the form $v \rightarrow g v$ for some $g \in \mathcal{G}$ and $v \in \mathcal{B}_{p}$. If $T(p)$ lives in $\mathcal{G}$ for every $p$, then we call $T$ a gauge transformation.

Since a vector field is defined as a section of a vector bundle and a field equation is a differential equation in general, one needs to know how to differentiate sections. It is not a straightforward problem, since a first guess to define it as for usual functions would require an operation of addition of vectors form different fibres - an operation that is not cannonicaly given. For this reason a notion of connection is provided.

## 5 Connection on a vector bundle

### 5.1 Definition and transformation rules

Definition 6 Connection on a vector bundle is a map

$$
\mathcal{D}: \Gamma(\mathcal{B}) \longrightarrow \Gamma\left(T^{*} \mathcal{M} \otimes \mathcal{B}\right)
$$

which satisfies the following conditions:

1. For any $s_{1}, s_{2} \in \Gamma(\mathcal{B})$

$$
\mathcal{D}\left(s_{1}+s_{2}\right)=\mathcal{D}\left(s_{1}\right)+\mathcal{D}\left(s_{2}\right)
$$

2. For $s \in \Gamma(\mathcal{B})$ and $f \in C^{\infty}(\mathcal{M})$

$$
\mathcal{D}(f s)=d f \otimes s+f \mathcal{D} s
$$

Suppose now that $\left(\mathcal{U}_{\beta}, t_{\beta}\right)$ is a local trivialization of $T^{*} \mathcal{M} \otimes \mathcal{B}$ and $u^{i}$ are local coordinates on $\mathcal{U}$. Then $d u^{i} \otimes e_{\alpha}$ forms a basis of $T_{p}^{*} \mathcal{M} \otimes \mathcal{B}_{p}$ for every $p \in \mathcal{U}$, where $e_{\alpha}$ is a basis of sections of vector bundle $\mathcal{B}$ on $\mathcal{U}$. Since $\mathcal{D} e_{\alpha}$ is a local section on $\mathcal{U}$ of $T^{*} \mathcal{M} \otimes \mathcal{B}$, it can be written locally as

$$
\mathcal{D} e_{\alpha}=\omega_{\alpha i}^{\beta} d u^{i} \otimes e_{\beta}
$$

where $\omega_{\alpha i}^{\beta}$ are smooth functions on $\mathcal{U}$.
Using notation

$$
\omega_{\alpha}^{\beta}=\omega_{\alpha i}^{\beta} d u^{i}
$$

one obtains

$$
\mathcal{D} e_{\alpha}=\omega_{\alpha}^{\beta} \otimes e_{\beta}
$$

It is convienient to introduce a matrix notation, that is

$$
\begin{gathered}
S=\left(\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right) \\
\omega=\left(\begin{array}{ccc}
\omega_{1}^{1} & \cdots & \omega_{1}^{n} \\
\vdots & \ddots & \\
\omega_{n}^{1} & \cdots & \omega_{n}^{n}
\end{array}\right)
\end{gathered}
$$

Then we end up with a simple realtion

$$
\begin{equation*}
\mathcal{D} S=\omega \otimes S \tag{1}
\end{equation*}
$$

where $\omega$ is called the connection matrix. If a basis of sections is chosen, connection is locally given by a matrix $\omega$. Change of a basis of sections corresponds to a transformation of physical fields. We want to figure out transformation
properties of the connection matrix. For this reason consider change of a basis of sections given by a matrix $A$

$$
S^{\prime}=A S
$$

Putting it into (1) one finds

$$
\begin{gathered}
\mathcal{D} S^{\prime}=\mathcal{D}(A S)=d A \otimes S+A \mathcal{D} S=d A \otimes S+A(\omega \otimes S)=(d A+A \omega) \otimes S= \\
=\left(d A A^{-1}+A \omega A^{-1}\right) \otimes S^{\prime}=\omega^{\prime} \otimes S^{\prime}
\end{gathered}
$$

An improtant formula for a transformation of connection is then derived:

$$
\omega^{\prime}=d A A^{-1}+A \omega A^{-1}
$$

One immediately notices that this is precisely a transformation rule of a potential of a gauge field. That is why those objects are identified.

### 5.2 Covariant derivative

Having a notion of a connection introduced, we can give a following
Definition 7 Let $X$ be a smooth vector field on a base manifold M. The covariant derivative of a section $s$ along $X$ is a map $D_{X}: \Gamma(B) \longrightarrow \Gamma(B)$

$$
D_{X} s \equiv<X, D s>
$$

If $X=\partial_{\mu}$, we denote $D_{\partial_{\mu}} \equiv D_{\mu}$. We can rewrite $D_{\mu} s$ in terms of basis sections $e_{\alpha}$ of $\Gamma(B)$ as follows:

$$
\begin{gathered}
D_{\mu} s=<\partial_{\mu}, D s>=<\partial_{\mu}, D\left(s^{\alpha} e_{\alpha}\right)>=<\partial_{\mu}, d s^{\alpha} \otimes e_{\alpha}+s^{\alpha} D e_{\alpha}>= \\
=<\partial_{\mu}, d s^{\alpha} \otimes e_{\alpha}>+<\partial_{\mu}, s^{\alpha} \omega_{\alpha}^{\beta} \otimes e_{\beta}>=d s^{\alpha}\left(\partial_{\mu}\right) e_{\alpha}+s^{\alpha} \omega_{\alpha}^{\beta}\left(\partial_{\mu}\right) e_{\beta}= \\
=\partial_{\mu} s^{\alpha} e_{\alpha}+s^{\alpha} \omega_{\alpha \mu}^{\beta} e_{\beta}=\left(\partial_{\mu} s^{\alpha}+s^{\beta} \omega_{\beta \mu}^{\alpha}\right) e_{\alpha}
\end{gathered}
$$

As a result, we arrive at a desired formula for a coordinate representation of the covariant derivative:

$$
\left(D_{\mu} s\right)^{\alpha}=\partial_{\mu} s^{\alpha}+s^{\beta} \omega_{\beta \mu}^{\alpha}
$$

## References

[1] J. Baez, J.P. Muniain: Gauge fields, knots and gravity, World Scientific Publishing Co. Pte. Ltd., Singapore 1994.
[2] L. Fatibene, M. Francaviglia: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories, Kluwer Academic Publishers, Dordrecht/Boston/London 2003.
[3] S.S. Chern, W.H.Chen, K.S. Lam: Lectures on differential geometry, World Scientific Publishing Co. Pte. Ltd., Singapore 2000.
[4] Ch. N. Yang: Selected papers (1945-1980) with commentary, World Scientific Publishing Co. Pte. Ltd., Singapore 2005.

