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Abstract

The aim of this article is to give a mathematical formulation of Yang-
Mills gauge theory. Formalism of vector bundles and interpretation of a
field as a section of a vector bundle will be introduced. Using this language
notion of gauge transformation will be given and finally a connection on
a vector bundle will be defined, an object to be recognised as a gauge
potential.

1 Introduction

A gauge theory is a field theory in which the lagrangian is invariant under a
group of local transformations. Starting with the lagrangian which invariance
is only global, we can achieve a local invariance at the expense of introducing a
gauge field Aµ. It is used in a redefinition of a partial derivative inserted in the
lagrangian:

∂µ −→ Dµ = ∂µ +Aµ
Transformation rules of this new field are given as follows:

A′µ = U(g)AµU(g)−1 + (∂µU(g))U(g)−1

where U(g) is a local gauge transformation.
The rest of this paper will be dedicated to introducing a mathematical object

that has above mentioned properties.

2 Vector bundles

Definition 1 A vector bundle is a quadruple (B,M, π,F), where B,M- smooth
manifolds called total space and base respectively, F - n dimensional vector space
called standard fibre and π : B →M is an onto map called projection, such that
following condition is satisfied:

Let {Uα} be the open covering of M. Then, for every α there exists a
diffeomorphism

tα : π−1(Uα) −→ Uα ×F
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such that its restriction tα,p ≡ tα|p : Bp ≡ π−1(p) −→ {p} × F is a linear
isomorphism. This diffeomorphism (together with a set Uα) is called a local
trivialization of a bundle.

It is worth emphasizing that it is enough there exists at least one open
covering satisfying condition from the definition to be able to talk about a
vector bundle. This covering dooes not need to be an atlas from differentiable
structure on M. The notion of a fibre, defined as Bp = π−1(p), is a subset
of total space. In arbitrary local trivialization, such that p ∈ Uα, this fibre is
isomorphic to the standard fibre F .

The idea of a vector bundle appears naturally in mathematics, what is easily
seen in a following

Example 2 A cylinder is an example of a vector bundle. In this case whole
cylinder is identified with the total space, S∞ is a base manifold and R1 is a
standard fibre. An arbitrary local trivialization is of the form Uα ×R1. In this
special case one can choose even Uα = S∞, what makes a cylinder being a trivial
vector bundle.

It is instructive to consider a different vector bundle that in local trivial-
ization looks like Uα × R1, namely a Mobius strip. It is obvious that although
locally identical globaly it is a different object than a cylinder.

Suppose now that there are two trivializations (tα, Uα) and (tβ , Uβ) of the
same vector bundle, such that Uα ∪ Uβ 6= ∅. It makes sense to introduce a
transition function, defined as gαβ(p) = tα(p) ◦ tβ(p)−1 for p ∈ Uα ∪ Uβ . This
mapping transforms vectors from a fibre while changing a local trivialization. In
gauge theory one demands that it is not an arbitrary isomorphism, but rather
an isomorphism from a certain group G, called gauge group.

The notion of a vector bundle can be generalized using construction that
can be made of a single vector space. Consider for example a dual space F∗.
Then, there is a well defined notion of a dual vector bundle B∗. One can think
of it simply as a vector bundle which fibre is a dual space F∗. In a similar way
one can construct tensor bundle B ⊗ B∗ etc.

3 Section of a vector bundle

Definition 3 A function s : M −→ B such that for every p ∈ M s(p) ∈ Bp
(equivalently, Π ◦ s = id ) is called a section of a vector bundle. The set of all
sections of a bundle B will be denoted as Γ(B)

That means that a section is a function that for every point p from the base
manifold picks out a single vector from a fibre π−1(p). Shortly speaking, section
of a vector bundle is a vector field over a base manifold.

There always exists a global section of a vector bundle (that is defined on the
whole M, not only on a certain open subset). For example, one can consider
the zero section - it maps every point into zero vector and is independent of
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local trivialization, since zero vector is always mapped into zero vector by an
isomorphism.

In a natural way there can be an addition and a multiplication by a function
from C∞(M) introduced in the set Γ(B). We define:

(s+ s′)(p) ≡ s(p) + s′(p)

(fs)(p) ≡ f(p)s(p)

for arbitrary s, s′ ∈ Γ(B) and f ∈ C∞(M). Using above it makes sense to talk
about a linear dependence of sections:

Definition 4 We say that e1, e2 . . . en ∈ Γ(B) form a basis of sections, if every
s ∈ Γ(B) can be written as

s = siei

where si are appropriate functions from C∞(M).

A basis of sections can be only defined for trivial bundles. That means
that for an arbitrary vector bundle we can have a basis only localy (for local
trivializations).

4 Gauge transformation

Using above introduced formalism notion of a gauge transformation can be
defined. For this purpose one needs a section of an endomorphism bundle which
is the same as just mentioned tensor bundle B∗ ⊗ B, due to the isomorphism
V∗⊗V ∼= End(V), where V is an arbitrary, finite dimensional vector space. Let
T ∈ Γ(B∗ ⊗ B). It can be shown that T (p) ∈ B∗p ⊗ Bp ∼= End(Bp), so it is a
linear map acting on vectors from Bp. Thus, given a section s ∈ Γ(B) T defines
a new section T (s) ∈ Γ(B) as follows:

T (s)(p) = T (p)s(p)

After this introduction a definition can be given:

Definition 5 We say, that T (p) ∈ End(Bp) lives in G, if it is of the form
v → gv for some g ∈ G and v ∈ Bp. If T (p) lives in G for every p, then we call
T a gauge transformation.

Since a vector field is defined as a section of a vector bundle and a field
equation is a differential equation in general, one needs to know how to differ-
entiate sections. It is not a straightforward problem, since a first guess to define
it as for usual functions would require an operation of addition of vectors form
different fibres - an operation that is not cannonicaly given. For this reason a
notion of connection is provided.
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5 Connection on a vector bundle

5.1 Definition and transformation rules

Definition 6 Connection on a vector bundle is a map

D : Γ(B) −→ Γ(T ∗M⊗B)

which satisfies the following conditions:

1. For any s1, s2 ∈ Γ(B)

D(s1 + s2) = D(s1) +D(s2)

2. For s ∈ Γ(B) and f ∈ C∞(M)

D(fs) = df ⊗ s+ fDs

Suppose now that (Uβ , tβ) is a local trivialization of T ∗M⊗ B and ui are
local coordinates on U . Then dui ⊗ eα forms a basis of T ∗pM⊗ Bp for every
p ∈ U , where eα is a basis of sections of vector bundle B on U . Since Deα is a
local section on U of T ∗M⊗B, it can be written locally as

Deα = ωβαidu
i ⊗ eβ

where ωβαi are smooth functions on U .
Using notation

ωβα = ωβαidu
i

one obtains
Deα = ωβα ⊗ eβ

It is convienient to introduce a matrix notation, that is

S =

e1
...
en



ω =

ω1
1 · · · ωn1
...

. . .
ω1
n · · · ωnn


Then we end up with a simple realtion

DS = ω ⊗ S (1)

where ω is called the connection matrix. If a basis of sections is chosen, connec-
tion is locally given by a matrix ω. Change of a basis of sections corresponds
to a transformation of physical fields. We want to figure out transformation
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properties of the connection matrix. For this reason consider change of a basis
of sections given by a matrix A

S′ = AS

Putting it into (1) one finds

DS′ = D(AS) = dA⊗ S +ADS = dA⊗ S +A(ω ⊗ S) = (dA+Aω)⊗ S =

= (dAA−1 +AωA−1)⊗ S′ = ω′ ⊗ S′

An improtant formula for a transformation of connection is then derived:

ω′ = dAA−1 +AωA−1

One immediately notices that this is precisely a transformation rule of a
potential of a gauge field. That is why those objects are identified.

5.2 Covariant derivative

Having a notion of a connection introduced, we can give a following

Definition 7 Let X be a smooth vector field on a base manifold M. The co-
variant derivative of a section s along X is a map DX : Γ(B) −→ Γ(B)

DXs ≡< X,Ds >

If X = ∂µ, we denote D∂µ
≡ Dµ. We can rewrite Dµs in terms of basis sections

eα of Γ(B) as follows:

Dµs =< ∂µ, Ds >=< ∂µ, D(sαeα) >=< ∂µ, ds
α ⊗ eα + sαDeα >=

=< ∂µ, ds
α ⊗ eα > + < ∂µ, s

αωβα ⊗ eβ >= dsα(∂µ)eα + sαωβα(∂µ)eβ =

= ∂µs
αeα + sαωβαµeβ = (∂µsα + sβωαβ µ)eα

As a result, we arrive at a desired formula for a coordinate representation of the
covariant derivative:

(Dµs)α = ∂µs
α + sβωαβ µ
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