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Abstract

The aim of this article is to give a mathematical formulation of Yang-
Mills gauge theory. Formalism of vector bundles and interpretation of a
field as a section of a vector bundle will be introduced. Using this language
notion of gauge transformation will be given and finally a connection on
a vector bundle will be defined, an object to be recognised as a gauge
potential.

1 Introduction

A gauge theory is a field theory in which the lagrangian is invariant under a
group of local transformations. Starting with the lagrangian which invariance
is only global, we can achieve a local invariance at the expense of introducing a
gauge field A,,. It is used in a redefinition of a partial derivative inserted in the
lagrangian:

O — Dy=0,+ A,

Transformation rules of this new field are given as follows:
Ay =U(9)AuU(9)™" + (0.U(9))U (9) ™"

where U(g) is a local gauge transformation.
The rest of this paper will be dedicated to introducing a mathematical object
that has above mentioned properties.

2 Vector bundles

Definition 1 A wvector bundle is a quadruple (B, M, w, F), where B, M- smooth
manifolds called total space and base respectively, F - n dimensional vector space
called standard fibre and w: B — M is an onto map called projection, such that
following condition is satisfied:
Let {Uy} be the open covering of M. Then, for every « there exists a
diffeomorphism
to i M Uy) — Uy x F



such that its restriction top, = tolp : By = 7 1(p) — {p} X F is a linear
isomorphism. This diffeomorphism (together with a set U, ) is called a local
trivialization of a bundle.

It is worth emphasizing that it is enough there exists at least one open
covering satisfying condition from the definition to be able to talk about a
vector bundle. This covering dooes not need to be an atlas from differentiable
structure on M. The notion of a fibre, defined as B, = 7~ !(p), is a subset
of total space. In arbitrary local trivialization, such that p € U,, this fibre is
isomorphic to the standard fibre F.

The idea of a vector bundle appears naturally in mathematics, what is easily
seen in a following

Example 2 A cylinder is an example of a vector bundle. In this case whole
cylinder is identified with the total space, S is a base manifold and R' is a
standard fibre. An arbitrary local trivialization is of the form U, x RY. In this
special case one can choose even U, = S, what makes a cylinder being a trivial
vector bundle.

It is instructive to consider a different vector bundle that in local trivial-
ization looks like U, x R, namely a Mobius strip. It is obvious that although
locally identical globaly it is a different object than a cylinder.

Suppose now that there are two trivializations (tn,U,) and (t3,Ug) of the
same vector bundle, such that U, U Ug # (. It makes sense to introduce a
transition function, defined as g 5(p) = ta(p) o tg(p)~! for p € U, U Us. This
mapping transforms vectors from a fibre while changing a local trivialization. In
gauge theory one demands that it is not an arbitrary isomorphism, but rather
an isomorphism from a certain group G, called gauge group.

The notion of a vector bundle can be generalized using construction that
can be made of a single vector space. Consider for example a dual space F*.
Then, there is a well defined notion of a dual vector bundle B*. One can think
of it simply as a vector bundle which fibre is a dual space F*. In a similar way
one can construct tensor bundle B ® B* etc.

3 Section of a vector bundle

Definition 3 A function s : M — B such that for every p € M s(p) € B,
(equivalently, Il o s = id ) is called a section of a vector bundle. The set of all
sections of a bundle B will be denoted as T'(B)

That means that a section is a function that for every point p from the base
manifold picks out a single vector from a fibre 77! (p). Shortly speaking, section
of a vector bundle is a vector field over a base manifold.

There always exists a global section of a vector bundle (that is defined on the
whole M, not only on a certain open subset). For example, one can consider
the zero section - it maps every point into zero vector and is independent of



local trivialization, since zero vector is always mapped into zero vector by an
isomorphism.

In a natural way there can be an addition and a multiplication by a function
from C*°(M) introduced in the set I'(5). We define:

(s +5")(p) = s(p) +5'(p)

(fs)(p) = f(p)s(p)

for arbitrary s,s’ € I'(B) and f € C°°(M). Using above it makes sense to talk
about a linear dependence of sections:

Definition 4 We say that ey, ez ... e, € T'(B) form a basis of sections, if every
s € I'(B) can be written as ‘
s = s'e;

where s are appropriate functions from C°°(M).

A Dbasis of sections can be only defined for trivial bundles. That means
that for an arbitrary vector bundle we can have a basis only localy (for local
trivializations).

4 Gauge transformation

Using above introduced formalism notion of a gauge transformation can be
defined. For this purpose one needs a section of an endomorphism bundle which
is the same as just mentioned tensor bundle B* ® B, due to the isomorphism
V*®V = End(V), where V is an arbitrary, finite dimensional vector space. Let
T € I'(B* @ B). It can be shown that T'(p) € B, ® B, = End(B,), so it is a
linear map acting on vectors from B,. Thus, given a section s € I'(B) T defines
a new section T'(s) € T'(B) as follows:

T(s)(p) =T(p)s(p)

After this introduction a definition can be given:

Definition 5 We say, that T'(p) € End(B,) lives in G, if it is of the form
v — gv for some g € G and v € B,. If T(p) lives in G for every p, then we call
T a gauge transformation.

Since a vector field is defined as a section of a vector bundle and a field
equation is a differential equation in general, one needs to know how to differ-
entiate sections. It is not a straightforward problem, since a first guess to define
it as for usual functions would require an operation of addition of vectors form
different fibres - an operation that is not cannonicaly given. For this reason a
notion of connection is provided.



5 Connection on a vector bundle

5.1 Definition and transformation rules
Definition 6 Connection on a vector bundle is a map
D:T(B) —T'(T"M®B)
which satisfies the following conditions:
1. For any s1,s2 € T'(B)

D(Sl + 82) = D(Sl) + D(SQ)

2. For s € I'(B) and f € C*(M)

D(fs) = df ® s + fDs

Suppose now that (Us,ts) is a local trivialization of T*M ® B and u’ are
local coordinates on Y. Then du’ ® e, forms a basis of TyM @ B, for every
p € U, where e, is a basis of sections of vector bundle B on U. Since De,, is a
local section on U of T*M ® B, it can be written locally as

De,, = wgidui ®eg

where w?; are smooth functions on U.
Using notation _
wg = wgiduz

one obtains
Dey =wl @ep

It is convienient to introduce a matrix notation, that is

el
S=1:
€n
w% Wl
wi wy
Then we end up with a simple realtion
DS=w®s (1)

where w is called the connection matrix. If a basis of sections is chosen, connec-
tion is locally given by a matrix w. Change of a basis of sections corresponds
to a transformation of physical fields. We want to figure out transformation



properties of the connection matrix. For this reason consider change of a basis
of sections given by a matrix A

S = AS
Putting it into (1) one finds
DS'=D(AS)=dA®@ S+ ADS =dA® S+ A(w® S) = (dA+ Aw)® S =
=([dAA'  AwA oS = ® s
An improtant formula for a transformation of connection is then derived:
W =dAATY + AwAT?!

One immediately notices that this is precisely a transformation rule of a
potential of a gauge field. That is why those objects are identified.

5.2 Covariant derivative

Having a notion of a connection introduced, we can give a following

Definition 7 Let X be a smooth vector field on a base manifold M. The co-
variant derivative of a section s along X is a map Dx : T'(B) — T'(B)

Dxs=< X,Ds >
If X = 0,, we denote Dy, = D,,. We can rewrite D, s in terms of basis sections
eq of T'(B) as follows:
D,s=<0,,Ds >=<0,,D(s%q) >=< 0,,ds" @ eq + s*Dey >=
=< 0y, ds” ®eq >+ < 0y, s%fj ®eg >=ds*(0y)eq + s%fj(au)eﬁ =
= 0u5%q + "W eg = (0,8 + sﬂwg‘“)ea
As a result, we arrive at a desired formula for a coordinate representation of the

covariant derivative:
(Dps)® = 0,s™ + sﬂwgu
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