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Abstract

The basic introduction to the theory of open quantum systems has

been presented, following the brief overview of standard Hamiltonian sys-

tems typically encountered in quantum mechanics. The rudimentary facts

concerning open systems have been explained and empirically justi�ed to-

gether with a few examples focused on the applications to the description

of decoherence.

1 Dynamics of Quantum Hamiltonian Systems

1.1 Dynamics of Pure States

In the quantum mechanics, for a physical system to be described in terms of
a Hilbert space H, one postulates that a state ψ ∈ H of the system evolves in
time under the action of a one-parameter strongly continuous group of unitary
operators.

De�nition 1. A family of unitary maps Ut ∈ B(H), t ∈ R+ (the set of non-
negative reals), sharing the two following properties

• UsUt = Us+t, for s, t ∈ R+,

• Utφ→ φ as t→ 0 for φ ∈ H,

is called a one-parameter strongly continuous semigroup of unitary operators.

Although rather abstract, the de�nition appears to be su�ciently motivated
by the following requirements. Since the Schrödinger equation is linear, the
time evolution should be governed by the family of linear maps that preserve
the norm of a vector in the Hilbert space. The continuity property assures that
the evolution of all expectation values is continuous in time. The semigroup
property seems to be self-explanatory [1].

The following deep result shows that a strongly continuous semigroup of
unitary operators is fully described by its generator and can be extended to a
group.

Theorem 1 (Stone). Let Ut ∈ B(H) be a strongly continuous one-parameter
semigroup of unitary operators. There exists a hermitian operator H, not nec-
essary bounded, such that

Ut = e−itH , t ∈ R+,
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and the semigroup has the strongly continuous extension to the group

U−1
t = U−t = eitH .

Thus, the dynamics of a closed quantum system is reversible and is com-
pletely described by the Hamiltonian.

The proof of the theorem can be found in [2].

1.2 General Quantum Hamiltonian Systems

In general, the states of a quantum system are represented by so-called density
matrices, i.e. positive linear operators of unit trace.

De�nition 2. A linear operator ρ ∈ B(H) is called positive, if for any φ ∈ H

(φ, ρφ) ≥ 0.

or, equivalently, if it is self-adjoint and its spectrum is a subset of R+.

We de�ne the trace of a positive operator to be trρ =
∑N
n=1(en, ρen), where

{en}Nn=1 is an orthonormal basis in H and N = dimH.
Once a strongly continuous group of unitary operators, Ut = e−itH , has been

established, the evolution of the system can be seen from the two equivalent
perspectives. Either a density matrix (a state) ρ changes in time while all the
operators remain the same, or the dynamical group acts on the set of observables
leaving the states unchanged. Thus, in the Schrödinger picture

ρ→ ρt = UtρU
∗
t = e−itHρeitH ,

whereas the Heisenberg picture describes the evolution by

A→ At = U∗t AUt = eitHAe−itH .

Whichever picture we chose, the evolution of measurable quantities stays the
same, i.e.

trρtA = trρAt.

2 The Irreversible Dynamics of Open Quantum

Systems

2.1 Quantum Dynamical Semigroups

Let us adopt the Heisenberg picture of a quantum dynamics and denote by
M ⊂ B(H) the subset �generated by all relevant observables� 1, which actually

1This rather vague notion has a precise mathematical realisation in the concept of von
Neumann algebras.

De�nition 3. Let M be a subalgebra of B(H) and let M′ be its commutant

M′ = {y ∈ B(H) : xy = yx, x ∈ M}.
We say that M is a von Neumann algebra, if M = M′′.

This particular type of operator algebras has many desired properties, e.g. if M contains a
hermitian operator x, then all the projections that constitute the spectral decomposition of x
belong to M as well. Of course, B(H) is a perfect example of a von Neumann algebra.

For more information about von Neumann algebras and their application to mathematical
physics, see for example [2].
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constitutes the system.
We are now able to generalise the de�nition of a strongly continuous semi-

group of unitary operators in such a way, that it will include irreversible dy-
namics of quantum open systems.

De�nition 4. A family of maps Tt : M → M, t ∈ R+, is called a quantum
dynamical semigroup, if

• Tt is a positive linear map for every t ∈ R+,

• Tt → 1, as t→ 0 in an appropriate sense, and Tt(1) = 1,

• TsTt = Ts+t, s, t ∈ R+.

A strongly continuous group of unitary operators is a special case of the
above de�nition for TtA = U∗t AUt. The de�nition provides the most general
framework for studying time evolution of a quantum system interacting with its
environment.

Since the maps Tt are not necessary isometries, the Stone's theorem is no
longer applicable and we may expect that dynamical semigroups are suitable to
describe the irreversible evolution of a quantum system.

This time, there is no obvious reason, why a dissipative dynamics should
satisfy the semigroup property. Indeed, let us consider a joint system consisting
of a quantum system (S) and its environment (E). Since the compound system
is genuinely quantum and closed, its time evolution should be governed by the
Hamiltonian

H = HS ⊗ 1E + 1S ⊗HE +HI . (1)

The time evolution of the reduced density matrix is then given by

ρt = trE
(
e−itH(ρ0 ⊗ ωE)eitH

)
, (2)

where trE denotes the partial trace with respect to the environment degrees of
freedom.

In general, (2) is a hopeless integro-di�erential equation. It is often possible,
however, to apply to it the so-called Markov approximation, which leads to a
semigroup dynamics. The Markov approximation is usually applied by assuming
that the system is only weakly coupled to the environment. For this reason,
the environment quickly forgets any internal self-correlations resulting from the
integration with the system, which gives rise to the semigroup dynamics

Ts+tA = Tt(TsA).

2.2 Generators and Markovian Master Equation

Since, by de�nition, a quantum dynamical semigroup is in a sense continuous
with respect to the parameter t ∈ R+, one may expect the semigroup to possess
a generator. It is in fact true that the generator de�ned below always exists and
its domain is a dense subspace of H.
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De�nition 5. Let Tt : M → M, t ∈ R+ be a quantum dynamical semigroup.
The operator S, de�ned on an appropriate domain D(S) ⊂M by the following
relation

SA =
d

dt
TtA

∣∣∣
t=0
≡ lim

t→0

TtA−A
t

,

is called the generator of the semigroup Tt.

The paper by Kossakowski [3] was among the �rst ones addressing the issue
of quantum dynamical semigroups and their generators.

As an example, let TtA = eitHAe−itH . Then

d

dt
eitHAe−itH

∣∣∣
t=0

= iHeitHAe−itH − eitHAe−itH(−iH)
∣∣∣
t=0

= i[H,A].

Thus, SA = i[H,A], or in the Schrödinger picture Sρ = −i[H, ρ].

Because, obviously, TtS = STt for all t ∈ R+, the following equation holds
true

d

dt
ρt = Sρt, (3)

which is called the Markovian master equation. One may expect the approach
to the dynamical description of a open quantum system given by a Markovian
master equation to be largely equivalent to the one employing a semigroup of
operators. In practice, the study of almost all real-life examples of quantum
dynamical semigroups is reduced to the study of their generators derived from
the given master equations.

2.3 The Born-Markov Master Equation

The most important type of the Markovian master equation, a type used ex-
tensively in applications, is the so-called Born-Markov master equation. Let us
formulate the two basic assumptions that lead to this particular type of dynam-
ics.

• The Markov approximation. The assumption already mentioned above
which states that an open quantum system is su�ciently weakly coupled
to its environment, so that the �memory e�ects� of the environment are
negligible in the long run.

• The Born approximation. The system-environment coupling is su�ciently
weak and the environment is su�ciently large so the system-environment
state remains approximately in the product state

ρSEt = ρSt ⊗ ρEt ,

and the state of the environment, ρEt , remains approximately constant over
the course of time.

By imposing the above approximations to the dynamics given by the Hamil-
tonian (1) with the interaction part of the form

HI =
∑
α

Ŝα ⊗ Êα, (4)
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where Ŝα and Êα are unitary operators acting on the state space and the en-
vironment space respectively, we are able to derive the general form of the
Born-Markov equation

d

dt
ρSt = −i[HS , ρSt ]−

∑
α

{
[Ŝα, B̂αρSt ] + [ρSt Ĉα, Ŝα]

}
. (5)

The operators B̂α and B̂α are de�ned as

B̂α ≡
∫ ∞

0

∑
α

Cαβ(τ)ŜIα(−τ)dτ,

Ĉα ≡
∫ ∞

0

∑
β

Cαβ(−τ)ŜIβ(−τ)dτ,

where Cαβ are scalar functions and the superscript 'I' denotes the so-called
interaction picture. For the detailed explanation of the above formulae together
with the derivation of (5), see [4].

The particularly simple form of the quantum dynamics given by the Born-
Markov master equation (5) allows many models to be solved exactly. Among
other features the dynamics determined by this type of equation can display,
one of the most interesting is decoherence.

3 Decoherence

In the course of the time evolution, an open quantum system becomes heavily,
and in practice irreversibly, entangled with its environment. This may lead to
the decay of the o�-diagonal elements of the reduced density matrix representing
the initial state of the system

ρ =
∑
n,m

cnc
∗
mψnψ

∗
m −→

∑
n

|cn|2ψnψ∗n

This e�ect of damping quantum coherence is usually assumed as the opera-
tional de�nition of decoherence. Let us observe that a unitary dynamics cannot
result in the system displaying decoherence.

Four Aspects of Decoherence In general, the e�ect of decoherence can
manifest itself in four di�erent ways. Perhaps the most important one is the
appearance of the classical properties in a quantum system as a result of the
irreversible dynamical evolution [5], [6].

Other aspects include the dynamical appearance of superselection rules [7],
[8] and preferred basis of pointer states [9]. It is even possible for an open
quantum system to exhibit entirely new and purely quantum behaviour after
decoherence takes place [10].
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3.1 Examples of Decoherence Models

In the Born-Markov approximation the most general form of a master equation
is known as the Lindblad equation.

d

dt
ρt = −i[H ′S , ρt]−

1
2

∑
µ

κµ

[
L̂µ, [L̂µ, ρt]

]
,

where H ′S is a �Lamb-shifted� Hamiltonian HS and L̂µ are Lindblad generators,
directly dependent on the interaction part HI of the Hamiltonian [4].

Many models of quantum systems displaying decoherence can be reduced to
only few canonical ones.

Quantum Brownian Motion The model consists of a particle moving in
one dimension and interacting linearly with an environment of independent
harmonic oscillators in thermal equilibrium at the temperature T . The master
equation for the quantum Brownian motion takes the form

d

dt
ρt = −i[H ′S , ρt]−

−
∫ ∞

0

dτ
{
ν(τ)

[
X̂, [X̂(−τ), ρt]

]
− iη(τ)

[
X̂, [X̂(−τ), ρt]

]}
.

X̂(τ) = eiτHS X̂e−iτHS ,

and ν(τ), η(τ) are referred to as the noise kernel and the dissipation kernel
respectively [4].

Spin-Boson Model The spin-boson model corresponds to a single qubit cou-
pled to the environment of harmonic oscillators. The role of qubit systems in
quantum computing has led to additional interest of the spin-boson model. Re-
cently, the model has been used to analyse the role of quantum decoherence
in biological systems [11]. The spin-boson model master equation takes the
following form

d

dt
ρt = −i[H ′S , ρt]− D̃ [σz, [σz, ρt]] + ζσzρtσy + ζ∗σyρtσz, (6)

where D̃, ζ are number coe�cients related to the form of the interaction Hamil-
tonian HI .

Spin-Environment Models The central system of this model consists of
a two-level quantum system (e.g. a spin- 12 particle) linearly coupled to the
environment being a collection of other spins.

*
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As a summary, let us remark once again that the time reversible dynamics
of closed quantum systems is by no means su�cient to describe various phe-
nomena related to the complex interactions between a quantum system and its
environment. In the Markovian approximation, an approximation concerning a
quantum system weakly coupled to its environment, the study of the irreversible
dynamics of open quantum systems employs tools such as quantum dynamical
semigroups, their generators and master equations. In this formalism, one is able
to prove the appearance of decoherence in many models of particular physical
interest.
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