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Abstract

The aim of the article is to show how the notion of reference frame
was evolving from ancient times to nowadays. The definitions of Aristo-
tle’s spacetime, Galilei spacetime, spacetime in special relativity will be
given. Finally, general reference frame will be defined in general relativity
formalism.

1 Aristotle’s spacetime

Definition 1 Elementary event is a physical phenomenon in a small area in
space lasting very shortly. Features of this event are not important.

Definition 2 Set of all elementary events is called spacetime. By a world
line of a material point one will understand a history of this point in spacetime.

Till Galilei and Newton’s time it was believed that space and time are ab-
solute quantities; it means that any two events have unambiguously defined
distance between them in space and unambiguously defined distance in time.
One supposed that among all possible reference frames there exists a frame
which is at rest and in this frame one should measure the distances. The as-
sumption about existence of spatialy distinguished reference frame and absolute
time means that the spacetime E one can present as a Cartesian product:

Definition 3 Aristotle’s spacetime is a set:

E = T × S = {(t, x); t ∈ T, x ∈ S} (1)

where T = E1 is a time axis and S = E3 is a three-dimensional position space.
En means n-dimensional Euclidean space.

It can be seen that in Aristotle’s physics one can consider an absolute dis-
tance between two events is space S even when the events are not simultane-
ous. What is more, Aristotle assumed existence of a notion of absolute rest,
what means that there exists a distinguished reference frame which is always
at rest. Refering to the mathematical model (1), straight lines in E = T × S
consisting of points which relative distances vanish, it means sets of events:
{(t, x);x = const}, represent world lines of objects at absolute rest.
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2 Galilei spacetime

In the seventeenth century one rejected the assumption about existence of ref-
erence frame distinguished by nature. In consequence one gave up the idea of
Aristotle’s spacetime model.

The difference between Aristotle’s and Galilei spacetime is that in the lat-
ter spatial distance between two events is defined only when those events are
simultaneus. The space became relative, so the distance between two events,
which do not take place in the same time, depends on a choice of reference
frame, but the time is still absolute. It means that the difference of times be-
tween two events does not depend on reference frame choice. However, there
was distinguished preferred class of frames in which all measurements of forces
acting on the body give the same results. They are called inertial frames, so
the following statement is true:

A particle not subject to any force moves with constant velocity.

It is obvious that this statement is false if the particle is looked at from an
accelerated frame, which are called non-inertial frames.

For that reason, inertial frames are consequently very special and are used
as the basic frames. They are attributed with Cartesian coordinates ~x =
(x1, x2, x3) and the variable t is used to indicate time.

If there are two frames, θ and θ’ that coincide at t = 0 and later θ’ is moving
with constant velocity ~u, the value of the position, seen from θ’, will be:

~x′ = ~x− ~u · t (2)

where t = t′. This simple law is the same for the composition of velocity,
obviously.

If a third frame θ” displaces itself with constant velocity with respect to θ’,
it will move with constant velocity with respect to θ and will be inertial too.
For that reason, all inertial frames are equivalent, that is the relation of being
inertial is reflexive, symmetric and transitive.

One can sum up:
There exist preferential reference systems, called by definition inertial frames,
in which:

• The laws of nature are the same in all of inertial frames (Galilean rela-
tivity)

• There exist preferential reference systems for which, given initial inertial
frame, all the other inertial systems are in uniform rectilinear motion with
respect to it (inertia).

3 Einstein’s and Minkowski’s spacetime

At the end of nineteenth century there was a problem with the unobservable
ether which for the light would be the same as air is for sound. A lot of ex-
periments shown that the speed of light is the same in all inertial frames at all
times and in all directions, independently of the motion of the source and the
observer. So the speed of light does not obey the classical velocity law.
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In 1905 Einstein postulated a generalization of Galilean Principle of Rela-
tivity which is called Einstein’s Principle of Relativity:

1. Physical laws have the same form in all inertial frames.

2. The speed of light is finite and equal in all inertial frames.

Although one can see that the first postulate has the form similar to Galilean
Principle of Relativity (PR), there is an essential difference. It should be remem-
bered that Galilean PR is realized in classical mechanics, in terms of Galilean
transformations and the classical velocity addition law, which does not hold
for light signals. The realization of Einstein’s PR is given in terms of Lorentz
transformation, so there is a new connection between two inertial frames and a
new law for the addition of velocities. When one of the systems is moving with
constant velocity ~u along ~x axis, the transformation law will be:

~x′ =
~x− ~u · t√

1− u2

c2

t′ =
t− u·x

c2√
1− u2

c2

y′ = y z′ = z (3)

⇓

~u′x =
~ux − ~u√
1− ~ux~v

c2

(4)

4 General Relativity

In Newtonian-Galilean mechanics and in special relativity, the law of inertia
distinguishes a special class of equivalent frames of reference (inertial systems).
Due to the universality of gravitation, only the free fall of electrically neutral
test bodies can be regarded as particularly distinguished motion in the presence
of gravitational fields. Such bodies experience, however, relative acceleration.
Hence the law of inertia is not longer valid and the concept of an inertial system
cannot be defined globally. This implies the principle of equivalence:
At every point in an arbitrary gravitational field we can choose a locally inertial
frame in which the laws of physics take the same form as in special relativity.

In general relativity, the principle of inertia is replaced with the principle
of geodesic motion, whereby objects move in a way dictated by the curvature
of spacetime. As a consequence of this curvature two objects moving at a
particular rate of velocity with respect to each other will not continue to do
so. It means that inertial frames of reference does not exist globally as they
do in Newtonian mechanics and special relativity. However, the general theory
reduces to the special theory over sufficiently small regions of spacetime, where
curvature effects become less important and the earlier inertial frames arguments
can come back into play.

While the notion of an inertial reference frame in a Minkowski space is easy
to define, the notion of general reference frame in a general spacetime is not.
Reference frame is understood as a coordinate system, which mathematically is
a local chart χ defined in some open domain U of spacetime manifold V .
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If one changes the spatial coordinates in a way that does not depend on the
time coordinate:

x′0 = f((xµ)), x′j = f j((xk)); (j, k = 1, 2, 3), (5)

then any element of matter which has time-independent spatial coordinates in
that system, will obviously remain ,,at rest“ in the new system of coordinates.

Let us consider a case in which only spatial coordinates change, it means:

x′0 = x0, x′j = f j((xk)) (6)

This is due to the fact, that the Hamiltonian operator H in a curved spacetime
is invariant only under purely spatial changes. This fact applies to any wave
equation of relativistic quantum mechanics that its wave function ψ transforms
either as a scalar or as a four-vector. In other words, the Hamiltonian operator
depends on the reference frame and on the choice of the time coordinate. Refer-
ence frame will be essentially an equivalence class of charts modulo the relation
(6).

A formal definition of general reference frame, which will be introduced be-
low, allows to associate rigorously with each reference frame the unique ,,space”
M , which is a three-dimentional differentiable manifold.

Equation (6) introduces a relation between two coordinate systems or charts
χ and χ′ on the spacetime V . That relation involves the transition map:

F ≡ χ′ ◦ χ−1 with X′ ≡ F (X) ≡ (x′µ) ≡ Fµ(X); X ≡ (xµ) (7)

It should be noticed that the domain of the map F is the intersection of
two charts χ(Dom(χ) ∩Dom(χ′)). Therefore, to define an equivalence relation
between charts based on (6), one have to limit oneself to charts whose domains
all contain some open subset U∩V . Now it can be given a definition of a general
reference frame F :

Definition 4 (and theorem) Let V be a differentiable manifold of dimension
N + 1 (N ≥ 1) and let A be the atlas that defines the manifold structure on
V . For any open set U ⊂ V , define the subset AU ≡ {χ ∈ A; Dom(χ) ⊃ U} of
the atlas A. Let the open set U be such that AU is non-empty and, for any two
charts χ, χ′∈AU , set:

χRUχ′ iff [∀X ∈ χ(U), F 0 = x0 and
∂F j

∂x0
(X) = 0 (j = 1, ..., N)], (8)

where F ≡ χ′ ◦χ−1 is the transition map, which domain χ(Dom(χ)∩Dom(χ′))
contains χ(U). Then RU is an equivalence relation on AU . The equivalence
classes for this relation are called reference frames (over the domain U).

Proof. To prove the theorem, one has to show that the relation RU is
reflexive, symmetric and transitive.

• By definition, U ⊂ Dom(χ), whence χ(U) ⊂ χ(Dom(χ)), for all χ ∈ AU .
It follows that ∀χ ∈ AU , χRUχ, since F = χ ◦ χ−1 = Idχ(Dom(χ)) in that
case. That is, the relation RU is reflexive.
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• If χRUχ′, let X′ ∈ χ′(U), so that the transition map G ≡ χ ◦χ′−1 = F−1

(because F ≡ χ′ ◦ χ−1) is defined in a neighborhood of X′. It is obvious
that X ≡ G(X′) = χ ◦ χ′−1(X′) = χ(χ′-1(X′)) = X ∈ χ(U), ) and in a
similar way: X′ ≡ F(X). In particular, x′0 = F 0(X) = x0 ≡ G0(X′).
Furthemore, keeping in mind that G(X′) = G(F (X)), one has:

0 =
∂G j

∂x0
=
∂G j

∂x ′ν
∂F ν

∂x0
=
∂G j

∂x ′0
∂F 0

∂x0
+
∂G j

∂x ′i
∂F i

∂x0
=
∂G j

∂x ′0
, (9)

hence χ′RUχ and the relation RU is symmetric.

• If χRUχ′ and χ′RUχ′′, for F = χ′ ◦ χ−1, one has:

∀X ∈ χ(U ), F ′0 (X′) = x0 and
∂F ′j

∂x ′0
(X) = 0 (10)

as well as (setting F ′ ≡ χ′′ ◦ χ′−1):

∀X′ ∈ χ′(U ), F ′0 (X′) = x ′0 and
∂F ′j

∂x ′0
(X′) = 0 , (11)

and therefore, with F ′′ = χ′′ ◦ χ−1 = F ′ ◦ F ,

∀X ∈ χ(U ), X′ ≡ F (X) ∈ χ′(U ) and

F ′′0(X) = (F ′ ◦ F )0 (X) = F ′0 (F (X)) = F ′0 (x0 , (x ′j )) = x0 . (12)

Moreover, one can write

∀X ∈ χ(U ),

∂F ′′j

∂x0
=
∂F ′j

∂x′0
∂F 0

∂x0
+
∂F ′j

∂x′i
∂F i

∂x0
= 0 · ∂F 0

∂x0
+
∂F ′j

∂x ′i
· 0 = 0 . (13)

Equations (12) and (13) show that χRUχ′′, so the relation RU is also
transitive.
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