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1 Introduction

The quest for a better understanding of the properties of nuclear matter under ex-
treme conditions as, e.g. in relativistic heavy ion collisions or in the cores of neuron
stars has led to the investigation of equations of state (EOS) allowing for a transi-
tion to quark matter. However, these developments of theory have been performed
only within the so called two phase approaches, where the nuclear and the quark
matter branches were modeled by separate equations of state, respectively. In the
present paper, we want to propose an approach, where nucleons appear as bound
states of their quark constituents and we will study the effects of surrounding dense
nuclear matter on the possibility of the formation of these bound states. In particular,
we want to study the effect that at a critical density or temperature a bound state
merges the continuum of scattering states, which is well–known, e. g. from solid state
physics as the metal–insulator transition or pressure ionisation effect (Mott effect).
For the problem under consideration, the disappearance of the nucleon pole in the
three–quark propagator and the occurence of a resonance in the continuum will be
described. The appropriate theory is the Green–function approach, which was re-
cently developed in order to generalize the so called Beth–Uhlenbeck approach [1],
such that medium effects on the formation of bound as well as scattering states in a
many particle system can be treated on an equal footing. However, in quark matter
systems a special feature due to Quantum Chromodynamics in the low energy regime,
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V0 [GeV−2] β [fm−1] C [GeV] EB [GeV] nMott[n0]; SNM nMott[n0]; PNM
250 2.73902 0.143152 0.204252 4.46062 2.23005
500 2.08783 0.262325 0.323425 5.96763 2.65924
650 1.91431 0.324144 0.385244 5.61316 2.80667

Table 1: Parameter set for the quark-diquark potential model of a nucleon with mass
MN = 938.9 MeV and r.m.s. radius < r2 >= 0.7 fm2. The quark mass is mq = 350
MeV, the diquark mass is md = 650 MeV

is the confinement property of effective quark interactions which prevents the quark
constituents from appearing as free particles. Therefore, an appropriate description
of bound state formation in quark matter in the low–energy (confinement) regime has
to be formulated including correlations in the surrounding medium. This confining
property of strong interactions can be modeled by a confinement potential. We show
for a confining model potential in momentum space representation, that the free one–
particle states cannot be occupied. The quarks do appear only in correlated states
such as hadronic bound or resonant states. The treatment within the thermodynamic
Green–function approach is based on the analysis of the thermodynamic T–matrix
which can be obtained from a solution of the Bethe–Goldstone equation. Since our
aim is to study the effect of thermodynamic quark deconfinement, we concentrate
ourselves on the treatment of the bound–resonance transition within a nonrelativistic
constituent quark–diquark model of nuclear matter. The generalization of the pre-
sented approach to the treatment of the nucleon as a three–quark bound state and
the consideration of effects due to chiral symmetry restoration is possible along the
lines of the present approach.

2 Beth-Uhlenbeck EoS and nucleonic Mott effect

Fig. 1 shows the importance of Pauli blocking for the occurrence of a Mott effect
for nucleons (left panel). In the right panel of that figure it is shown how the Mott
dissociation of nucleons is depending on the asymmetry: for neutron star matter the
phase transition to quark matter shall occur at lower densities than in symmetric
nuclear matter. This statement is quite independent of the parametrization of the
potential (see Tab. 1) used to describe the nucleons as bound states of quarks.
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Figure 1: Binding energy EB and continuum edge u(p = 0, PF ) for nucleons in sym-
metric nuclear matter (solid lines) and pure neutron matter (dashed lines) as a func-
tion of the density at T = 0. The nucleon dissociation (Mott transition) occurs at the
densities where the binding energy merges the corresponding continuum edge. Left
panel: The role of the Pauli blocking for the Mott effect is shown. Right panel: The
Mott densities are almost independent of the choice of the potential parameter V0,
see also Table 1.
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[6] G. Röpke, M. Schmidt, L. Mnchow and H. Schulz, Nucl. Phys. A399 (1983) 587.
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