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Abstract

The Lattice Boltzmann Method algorithm is simplified by assuming constant numerical viscosity (the relaxation time is fixed at
τ = 1). This leads to the removal of the distribution function from the computer memory. To test the solver the Poiseuille and
Driven Cavity flows are simulated and analyzed. The error of the solution decreases with the grid size L as L−2. Compared to the
standard algorithm, the presented formulation is simpler and shorter in implementation. It is less error-prone and needs significantly
less working memory in low Reynolds number flows. Our tests showed that the algorithm is less efficient in multiphase flows. To
overcome this problem, further extension and the moments-only formulation was derived, inspired by the Multi-Relaxation Time
(MRT) approach for single component multiphase flows.
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1. Introduction

Computational fluid dynamics (CFD) is useful in many
branches of science and technology, including those related to
main civilization challenges of the utmost importance for the
whole society e.g. weather forecast, climate, sport, medicine,
oil recovery, and food industry [1, 2, 3]. The most popular com-
putational methods for CFD simulations are based on the direct
discretization of the Navier-Stokes equations using appropri-
ate numerical methods, e.g. finite differences, finite volumes,
or finite elements [4]. They are usually difficult to implement
and require large computer resources as well as some tedious
preprocessing of the input data (e.g. generation and storage of
complex computational grids). In this context, the mesoscopic
Lattice Boltzmann Method (LBM), based on the kinetic theory
of gases, has recently been gaining more and more attention as
a versatile and simple fluid solver that offers a wide range of
potential applications [5]. One of the main limitations of the
original LBM algorithm is a relatively high computer memory
demand, as one has to store the distribution function for all fluid
nodes. This limits the size of the samples that can be simulated
in a single machine. Also, an increased number of memory ac-
cesses and complex memory access patterns in the propagation
of distribution function may form a bottleneck for the parallel
acceleration of the LBM [6]. It was shown that in a GPU im-
plementation the efficiency of the LBM solver saturates with
the filling memory fraction [7]. Therefore, much research has
been focused on improving memory efficiency of the LBM al-
gorithm, including modifications of the main LBM algorithm
[8, 9] or data format and algorithms for sparse environments
where most of the cells are getting fully blocked by obstacles
[10, 11].
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In the standard LBM BGK algorithm the relaxation time τ
may range from nearly 1/2 up to 1 (highly viscous flows), how-
ever, the choice τ = 1 is often made in the single relaxation time
BGK approximation [12, 13, 14]. For example, τ = 1 was cho-
sen in the gray LBM model used for porous media flows [15], to
compute the first predictor step and fictitious viscosity solution
in the simulation of the mold filling process [16], in the LBM
multicomponent flow simulation with comparison to Finite Vol-
ume Methods [17] or in the immersed-boundary LBM for par-
ticles suspended in fluids [18]. It was shown that the value of
τ influences the accuracy of the LBM solver in flow through
narrow pores [13], and, τ = 1 case was in the best agreement
with advanced multi-relaxation time schemes [19]. This is also
a special case for multiphase flows where EDM (Exact Differ-
ence Method) agrees well with the Shan-Chen method in terms
of measured gas density error (which is minimum at τ = 1 for
the Shan-Chen model) [20]. Moreover, it was reported as the
best choice for the Shan-Chen two immiscible fluid simulation
[21]. Also, it was shown that setting τ = 1 in BGK LBM pro-
vides optimal accuracy in time if solutions are compared to di-
rect Navier-Stokes equations [22]. Setting τ = 1 is also crucial
for the fractional step formulation of LBM for high Reynolds
flows [23].

Here we fix the viscosity of the model and set the relaxation
time to τ = 1 (from now We will use the codename LBM-
Tau1) and modify the original LBM algorithm to a simpler,
more compact and memory-efficient (an approach found i.e.
in [24, 25]). we provide a complete algorithm and first test
it against Poiseuille flow with error scaling analysis. Then, we
continue the with the flow tests at varying Reynolds number
and formulate criteria to calculate grid size necessary for stable
simulations. We further develop the solver and use the multi
relaxation time (MRT) version of the model at τ = 1 and com-
pare its efficiency to the standard algorithm. we show, that this
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approach leads to a significant memory drop and analyze this
effect for various conditions and LBM models.

2. The Model

The Lattice Boltzmann Method use the multi-dimensional
velocity distribution function fk(x, t) to describe the state of
the fluid. Function fk(x, t) corresponds to the probability that
a molecule at position x at time t, is moving with velocity ek.
The original LBM algorithm consists of two steps: propagation
and relaxation of the distribution function. It may be written as
a discrete analogon to the Boltzmann transport equation (here
with a linear approximation for the collision term) [26]:

fk(x + ek, t + 1) = fk(x, t) −
fk(x, t) − f eq

k (x, t)
τ

, (1)

where k is the direction on the lattice, f eq is the equilibrium dis-
tribution function, ek is the lattice vector and τ is the relaxation
time. By varying τ, the kinematic viscosity of the fluid may be
controlled [26]

v = c2
s (τ − 0.5) , (2)

where cs is the sound speed (dependent on the variant of the
model, e.g. cs = 1/

√
3 for two dimensional D2Q9 model [26]).

The equilibrium f eq is expressed in terms of macroscopic den-
sity % and velocity u of the flow field:

f eq
k = ωk%

(
1 + 3ek · u +

9
2

(ek · u)2 −
3
2

u2
)
, (3)

where ωk are direction weights [27]. To include body force
we may modify directly the momentum used for calculation
of equilibrium (see e.g. [28]). The following sums over the
distribution function let us compute density and velocity:

%(x, t) =
∑

k

fk(x, t), (4)

u(x, t) =
∑

k

ek fk(x, t). (5)

To save computer memory and eliminate the distribution
function, we will first fix the relaxation time at τ = 1 [29, 25].
With this assumption the transport equation (see Eq. (1)) sim-
plifies to:

fk(x + ek, t + 1) = f eq
k (x, t). (6)

Now, instead of keeping the values of fk in memory, we plug
Eq. (6) into (4) and (5). Thus, a new formulation will consist of
computing macroscopic fields from the equilibrium distribution
only

%(x, t)|τ=1 =
∑

k

f eq
ik (x + ek, t), (7)

u(x, t)|τ=1 =
∑

k

f eq
ik (x + ek, t) · ek. (8)

where f eq is the Maxwell-Boltzmann distribution defined by
Eq. 3. With the above two equations, we can write down an
algorithm in which step by step the equilibrium distribution is

feq2
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wall

fluid

Figure 1: Calculation of the equilibrium function next to the no-slip wall.

computed from the macroscopic velocity and density and then
use these values to make another iteration. In this way, the stor-
age of fk is eliminated.

For simplicity, we restrict our discussion to the D2Q9 model
[26] (a two dimensional LBM model with nine lattice velocities
ek), where

ek ∈ {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1),
(−1, 1), (−1,−1), (1,−1)}, (9)

for k = 0 . . . 8 respectively.
To complete the picture, we need to account for the boundary

conditions at the no-slip (zero tangent velocity) walls. For fluid
nodes located next to a no-slip wall, the normal components
of the equilibrium distribution function must be reversed (see
Fig. 1) and used in equations (7) and (8). If we are at fluid node
at x and the node x + ek is of the no-slip type (a solid wall) we
must use the following expression for f eq

ik in Eqs. (7) and (8)

f eq
ik (x + ek) = f eq

k (x, u = 0, v = 0) = ωk · %(x). (10)

For example, for the wall located at the north, we need to re-
verse three populations that move towards the wall: f eq

6 (x),
f eq
2 (x) and f eq

5 (x) (see Fig. 1). Thus, for the north wall being
no-slip we will have

%τ1 (x, t) = f eq
3 (x + e1) + f eq

1 (x + e3) + f eq
2 (x + e4)+

f eq
6 (x + e8) + f eq

5 (x + e7) + f eq
6 (x) + f eq

2 (x) + f eq
5 (x). (11)

The first five terms on the right-hand side in the above equation
are standard incoming populations from neighboring nodes,
whereas the three last terms are the populations reflected from
the northern wall and computed in-place at the node x. This
procedure is used for all nodes adjacent to the walls. However,
we do not need to write down an explicit expression for each
orientation of the wall - it may be implemented by a simple ex-
pression in the algorithm. One has to check, if the neighboring
node is a wall or not and choose Eq. (3) or (10) for equilibrium,
accordingly.

2.1. The LBMTau1 algorithm

Using the procedure introduced in the previous section and
summarized by Eqs. (7) and (8), we formulate a complete al-
gorithm for the LBMTau1 solver. Here Rc, Uc and Vc are the
macroscopic density, velocity (x) and velocity (y) fields at even
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(c=0) or odd (c=1) time steps. Thus, subscript c is equal to 0
or 1 and denotes the grid number (we keep two copies of the
grid to ping-pong data in the memory). Variables i, j and ip, jp

are grid coordinates. Within the algorithm, we use the macro-
scopic density, velocity, lattice vector components ek,x and ek,y

and the grid direction weights ωik to calculate the equilibrium
distribution function f eq

ik .

Algorithm 1 Complete time step of the LBMTau1 algorithm.
initialize flags and fields for fluid and solid nodes
for all fluid nodes (i, j) do

Uc(i, j)← 0
Vc(i, j)← 0

5: Rc(i, j)← 0
for all directions k do

ip ← i + ek,x (neighbour in the direction k)
jp ← j + ek,y

ik ← direction inverse to k
10: if (ip, ip) is fluid node then

r ← R1−c(ip, jp)
u←

(
U1−c(ip, jp) + fx

)
/r

v←
(
V1−c(ip, jp) + fy

)
/r

f eq
ik ← ωikr·

15: (1 − 3
2 (u2 + v2) + 3(ex

iku + ey
ikv) + 9

2 (ex
iku + ey

ikv)2)
else

f eq
ik ← ωkR1−c(i, j)

end if
end for

20: Rc(i, j)← Rc(i, j) + f eq
ik

Uc(i, j)← Uc(i, j) + ex
ik f eq

ik
Vc(i, j)← Vc(i, j) + ey

ik f eq
ik

end for
Visualization (optional)

The algorithm starts with the initialization of macroscopic
fields (line 1). At this point, we set up the flags for each node
(flags denote if the node is occupied by fluid or solid). Also, the
initial velocity and density fields are set up here (we start from
zero velocity condition and density set to one). Next, we start
the main loop over all fluid nodes (line 2) and for each of them
compute the equilibrium distribution function from the local ve-
locity and density. We also include the body force (lines 12-13
of the Algorithm 1). In the case of solid walls, we compute
the equilibrium function by reflecting its normal components
and assume zero velocity (no-slip boundary condition, line 17).
Finally, we update the density and velocity by adding the pop-
ulations that are incoming or being reflected from neighboring
cells (lines 20-22). Implementation of this algorithm is straight-
forward - it contains D + 1 tables (where D is the dimension of
the model), two loops, and one conditional (see the exemplary
C/C++ implementation in Appendix A).

3. Validation and Results

To verify the solver we run the steady-state flow in a straight
rectangular two-dimensional channel and two-dimensional lid-
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Figure 2: The velocity profile in the Poiseuille Flow simulated using the LBM-
Tau1 algorithm (points) compared to the analytical solution (solid line). The
profile was taken along the y-axis perpendicular to the flow direction.
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Figure 3: Scaling of the relative error between LBMTau1 and analytical solu-
tion (Poiseuille Flow). The solid line represent best fit to L−2 scaling taken at
L >= 40.

driven cavity flows (standard tests performed in computational
fluid dynamics). First, for the channel flow, we use the periodic
conditions at the left and right system edges and the no-slip at
the top and bottom walls. The external body force f = 2.5 ·
10−5 (lattice units) was used to generate a steady flow along the
channel axis. we used a 200× 100 grid. To verify if the steady-
state was reached we monitored the changes of velocity in the
middle of the channel and used the convergence condition:

|un−1 − un|

|un|
< ε, (12)

where ε = 10−7. The resulting velocity profile along the chan-
nel crossection is given in Fig. 2. we find an excellent agree-
ment between the numerical and analytical solutions. To
quantify the agreement we repeat the simulations at varying
grid size L and calculate the percentage error of the solution
e = 100 · |u−ũ|

|ũ| , where ũ is the analytical value of velocity in the
middle of the channel. we find that the error follows the power
law and scales with the grid size as L−2 (see Fig. 3).
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Figure 4: The lid-driven cavity test run at Re=3200 calculated using the LBM-
Tau1 code (see Appendix A) on a 1100 × 1100 grid. Visualization was made
using massless tracers advected on top of the velocity field.

Next, we run the standard lid-driven cavity flow in which the
fluid is enclosed in a rectangular cavity with a top lid moving
at a constant velocity [30]. The Dirichlet boundary condition
vlid = (u0, 0) at the top boundary is applied. The no-slip con-
dition is applied at the left, right, and bottom boundaries. We
performed the simulation on a 1100 × 1100 grid and velocity
u0 = 0.4844 at Re=3200. The simulation was continued as
long as relative changes in the volumetric flux across vertical
cross-section located at half of the system were larger than 1%.
We checked the change between two timesteps at ∆t = 1000
interval. In Fig. 4 we draw the streamlines on top of the fi-
nal velocity field. The main vortex in the middle of the cavity,
as well as vortex structures in corners of the cavity, are visible.
The quantitative comparison with the multigrid method is given
in Fig. 5.

The final test of a time-dependent multiphase flow is the mul-
tiphase Shan-Chen model [32] in the LBMTau1 solver with the
random initial conditions. The implementation of the Shan-
Chen model was straightforward and we observed an expected
phase separation effect (see Fig. 6). However, due to the two-
fold loop over all neighbours of each computational node (once
we need to go over neighbours and then over neighbours of each
neighbour), we observed a significant drop in efficiency in the
multiphase algorithm, if compared to standard LBM.

4. Moments-only multirelaxation time LBMTau1

The significant bottleneck of LBMTau1 in terms of perfor-
mance is an unnecessary evaluation of f eq in each lattice node,
which is mostly visible in the multiphase flows as found in the
previous section. Let us look at evolution equation Eq. (6) at
τ = 1 (or ω = 1), which could be rewritten as

f j(x, t + ∆t) = f eq
j (ρ(x − e j, t),u(x − e j, t)),
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Figure 5: Velocity profiles in lid-driven cavity at Re = 3200. LBMTau1 results
(solid dots) are compared to the literature benchmark data [31] (open circles).

Figure 6: LBMTau1 implementation of the multiphase simulation using the
Shan-Chen model.
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to underline dependence on macroscopic variables. In the
Multi-Relaxation Time (MRT) scheme, if we take the raw mo-
ments matrix M = Mi j, and multiply the evolution equation, we
obtain

Mi j f j(x, t + ∆t) = Mi j f eq
j (ρ(x − e j, t),u(x − e j, t)).

Here, by definition the density is defined as:

ρ = M1 j f j,

whereas momentum reads:

ρu = Mk j f j , k = 2, 3[, 4].

As a consequence, the evolution equation is reduced to:

ρ(x, t + ∆t) = M1 j f eq
j (ρ(x − e j, t),u(x − e j, t)),

ρu(x, t + ∆t) = Mk j f eq
j (ρ(x − e j, t),u(x − e j, t)) , k = 2, 3[, 4].

Now we can derive closed formulas, and skip explicit evalu-
ation of f eq entirely. The main reason for speedup in such a
case is that we do not evaluate unnecessary degrees of freedom
of the system (higher-order moments) as they are relaxed to
equilibrium either-way. Nevertheless, the number of arithmetic
operations involved in the evaluation of density and momentum
using those closed statements could be significant. To optimize
further, those statements could be simplified using heuristic ap-
proaches and the computer algebra system of choice. State-
ments for the evolution of D2Q9 lattice, optimized by using
PolyAlgebra package (part of TCLB software [33]) are given
in supplementary material.

This approach could be used to optimize the Shan-Chen type
multiphase models. If we consider interaction potential force in
form :

FS C = ψ(x)
∑

i

αiψ(x + ei)G(ei), (13)

then for τ = 1, evolution equation could be once again written
as: as

f j(x, t + ∆t) = f eq
j (ρ(x − e j, t),u(x − e j, t),FS C(x − e j, t)).

which gives similar final result:

M f j(x, t + ∆t) = M f eq
j (ρ(x − e j, t),u(x − e j, t),FS C(x − e j, t)).

For a single component multiphase model, two approaches to
evaluate FS C could be used. In the first, one stores ψ for latter
use in neighbouring nodes in Eq. (13) loops. In the second,
one recalculates ψ of neighbouring nodes in-place anytime it is
necessary. We found, that the first method significantly speeds
up the algorithm at memory cost of additional scalar field.

4.1. Performance evaluation

To evaluate the computational performance of presented
models, we used a model of fluid drop enclosed in a periodic
domain. For an inter-particle force, we used the equation pro-
posed by Kupershtokh [34], which provide superior stability
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Figure 7: Iteration speed expressed in iteration per second for two types of
solvers: LBMTau1 (crosses) and standard LBM implementation (filled circles).
Both solvers were implemented in the TLCB framework [33].

compared to original Shan-Chen scheme remaining identical
from the implementation point of view, especially when τ = 1.
Details of both methods could be found in [34, 32].

A drop of liquid is placed in a periodic domain filled with
vapor. We used L × L grids at L from 128 to 8192. The final,
largest grid used has filled almost completely the GPU mem-
ory of the NVIDIA GPU V100 card used for all tests. Thus,
it was impossible to calculate final, largest grid using standard
LBM (which clearly showed the advantage of LBMTau1 for-
mulation). The simulation was run for several iterations until
average velocity reached a steady state.

To quantify solver efficiency we plot the drop test iteration
speed in function of the size of the system (in lattice units) in
Fig. 7. We compare the two types of solver [33, 35]: classical
"d2q9_kuper" model where standard SCMP multiphase model
is implemented (see [36] for details) and the LBMTau1 variant
"auto_scmpTau1_d2q9" where no distribution function is used.
Both simulations are carried out at the same viscosity and in
the same two-dimensional square domain. The memory usage
of both solvers is compared in Fig. 8.

4.2. Convergence and accuracy of LBMTau1 and standard
LBM

The LBM method converges to the Navier-Stokes equation
in terms of the small parameter ε used in the expansion, e.g.
Chapman-Enskog procedure. Two scalings are possible: acous-
tics one ε = ∆x = ∆t and diffusive one ε = ∆t = ∆x2. To
investigate theoretical memory usage at preserved accuracy we
restrict ourselves to cases belonging to the same viscous scal-
ing series. For two viscosities, νLB and νLB1 = 1/6 the Reynolds
number puts a restriction on a both ∆x and ∆t. For two grids,
denoted by LB (variable viscosity) and LB1 (τ = 1), it is re-
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quired to
ULB1LLB1

νLB1
=

ULBLLB

νLB
,

where additionally diffusive scaling is defined as

ε = ∆t = ∆x2 → 0.

We could now consider theoretical memory usage concerning
non-fixed viscosity LBM. We define NLB as grid resolution and
TLB as the number of iterations (simulation time). By compar-
ing Reynolds number for LB and LB1 cases, one gets

TLBN2
LB

TLB1N2
LB1

= 6νLB.

On the other hand, from diffusive scaling time and spatial reso-
lution are constrained by

TLBN2
LB =

(
∆t · ∆x2

)−1
= ε−2,

which after substitution into Eg. 4.2 gives(
εLB1

ε

)2
= 6νLB.

From that we recover the spatial resolution ratio as

NLB

NLB1
=

∆xLB1

∆xLB
=

√
εLB1

εLB
= (6νLB)1/4 .

The ratio of the number of volume elements for LB case in
relation to LB1 is equal to

ND
LB = ND

LB1 (6νLB)D/4 ,

where D denotes the number of spatial dimensions. If we now
consider floating-point variables for D2Q9 LB case (we do not

consider constant factors in front of both expressions, e.g. dou-
ble buffering, AA or SSS buffers):

ND
LBQ,

and for D2Q9 LBMTau1 case

ND
LB1 (D + 1) .

Memory ratio is equal to

ND
LB1 (D + 1)

ND
LBQ

=
D + 1

Q (6νLB)D/4 .

For the D2Q9 model it is, thus, beneficial to have a larger grid
with τ = 1 as long as the second grid has a viscosity

1
54

< νLB, (τ > 0.55).

Similarly, for D3Q19 case, it is beneficial to have larger grids
and τ = 1 as long as we compare with the standard algorithm at
viscosity

1
6

(
4

19

)4/3

(≈ 0.021) < νLB, (τ > 0.563).

Those limits show that LBMTau1 is particularly efficient at low
Reynolds number flows, where high spatial resolution is re-
quired, i.e. in porous media. The larger grid likely will require
a larger number of time steps (approximately square root of the
spatial divisions ratio). This drawback could be partially com-
pensated by faster iterations in LBMTau1. This, however is im-
plementation, and model, dependent and rather hard to estimate
theoretically.

5. Discussion

In this paper, a memory-saving algorithm for a simplified
(fixed viscosity) LBM method is formulated and tested for
flows with the relaxation time τ = 1. This results in an imme-
diate relaxation of the local distribution function [29] and put
some limitations on the range of parameters that may be used
in the model. The Reynolds number is defined as

Re = u0L/µ, (14)

where the viscosity µ = 1/6 (see Eq. 2). By changing u0 or
L we control the Reynolds number which is now limited by the
resolution of the grid only. To understand the limit we may esti-
mate the Courant-Friedrichs-Lewy (CFL) condition. For veloc-
ity measured in the lattice units per time step we require, that u0
(velocity of the top lid) fulfill u0 << 1. Taking small u0 stabi-
lizes simulation, but at the same time slows down computation
and require more memory as larger grids are required (u0 and L
are the only parameters that may be changed in Eq. 14). If we
write the CFL condition as

u0 = (Re/L) · µ << 1, (15)
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The data were obtained empirically by running several simulations for a given
grid size. The least square fits (solid and dashed lines) to functions of the type
Re(L) = aLb gave: a=3.7, b=0.89 for τ = 1.5, a=12, b=0.8 for τ = 1, a=19,
b=0.87 for τ = 0.7 and a=43, b=0.93 for τ = 0.55.

and because µ = 1/6, to fulfill CFL criteria we should keep
Re/L << 6. To check and validate this condition we run a se-
ries of simulations for the lid-driven cavity at L from 50 to 1000
for increasing Reynolds number. If the simulation becomes un-
stable (and the solver crashed) after at least 1000 time steps,
then the previous Re is taken as the maximum possible for the
given lattice size. We repeated the procedure for various τ and
collect the data in Fig. 9. The data for the smallest viscosity
and L < 100 agrees with [37]. We notice that the lower relax-
ation time τ is, the higher Reynolds number may be achieved.
However, for the relaxation time, τ = 0.55 the low resolution of
the lattice leads to an inaccuracy in the solutions, especially in
the regions where small vortices appear and in the center of the
main vortex (data not shown). We found that if we keep τ = 1
then all converged solutions are of acceptable accuracy (see e.g.
Fig. 5). This finding agrees with the conclusions based on the
linear stability theory where τ = 1 was suggested too [22]. In
practice, one could estimate the maximum Reynolds number
using the grid size L directly from the plot in Fig. 9 or an em-
pirical function fit to Re(L) = aLb given in the figure caption.
The results for Re=3200 (see Fig. 5) confirmed the stability of
the solver for larger Reynolds numbers and large grids. There
is only one outlier point for u velocity component at x ≈ 0.46
that has probably been a typo in the original tables provided in
[31].

The main advantage of a new formulation is its relatively low
memory consumption. For example, if we use the AB lattice
access pattern in standard LBM (where an additional copy of
the main lattice is kept in memory) the memory consumption is
estimated from [38]

MLBM = (2Q + N f )c, (16)

where Q represents lattice velocity directions (i.e. Q=9 in the
standard D2Q9 model), N f is the number of macroscopic fields

(density, velocity, etc.) and c are bytes per single number (c =

4 for float, c = 8 for double-precision data). We may write
that N f = D + 1, where D is the dimension of the model (D
components of velocity plus density). Thus, in our case, if we
eliminate the distribution function in the LBMTau1 algorithm,
it will need only

MLBM1 = 2N f c (17)

bytes of the memory (the factor 2 appears because we store
two copies of the macroscopic fields - one from the current and
one from the previous time step). In D2Q9 model N f = 3
and Q = 9. Thus, using equations (16) and (17) we have
MLBM = 21c and MLBM1 = 6c respectively. This means the
LBMTau1 algorithm needs ∆M ≈ 76% less memory than the
original implementation. A similar calculation for the three-
dimensional D3Q27 model gives ∆M ≈ 86%. In practice,
for the 2D 1000x1000 lid-driven cavity flow in Fig. 4 we need
m = 1000 · 1000 · 84 = 84 MB (megabytes) of memory in the
standard LBM to store all simulation data. In LBMTau1, how-
ever, for the same grid size, we used only m = 1000 ·1000 ·24 =

24 MB. One should keep in mind, however, that in the basic
LBMTau1 implementation this memory drop is true for low
Reynolds number flows only (see Fig. 9) as higher Reynolds
number may be achieved at smaller grids in the standard LBM.
This problem, however, may be solved using i.e. fractional step
approach for viscosity boost [23], which we leave for future
research.

The actual memory gain measured from solver statistics for
SCMP model (see Fig. 8) is lower than in theoretical discus-
sions (theoretical ≈ 44%, averaged ≈ 40%). This is due to the
solver internal buffering designed for multi GPU communica-
tion. Additionally, to speed up computations LBMTau1 variant
of SCMP uses one additional global variable for inter-particle
potential which sets a higher theoretical limit on memory gain.
The theoretical limit could be lowered to 30% at expense of
additional computations and speed loss.

Apart from reduction of memory consumption, LBMTau1
could be optimized in terms of floating-point operations per lat-
tice update as well. In the case of Shan-Chen type models, the
proposed approach could outperform a classical model for the
same parameter set. Such properties render such rewritten LBM
a good candidate for low Re number flows with boundaries that
could benefit from high grid resolution - for example, porous
media flows.

We suggest that the LBMTau1 algorithm may provide a good
starting point for fast and memory-efficient implementations of
a solver in parallel environments, including graphics proces-
sors (GPUs), as the number of memory accesses decreases with
decreasing memory demand of the main algorithm. However,
to provide complete parallel implementation, one would need
to consider memory access patterns used to compute macro-
scopic fields, which may not be the most efficient in the basic
LBMTau1 implementation. To improve the parallel efficiency,
we suggest using one of the improved memory layout algo-
rithms and data exchange algorithms used for the standard Lat-
tice Boltzmann implementations. That includes an AA pattern
in which one, instead of two buffers is used (thus, the two-factor
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reduction is achieved) and leads to 20% performance gain com-
pared to standard layout [39]. Recently, the structure of arrays
shifts and swap (SSS pattern) method based on the AA mem-
ory layout was also introduced [40]. It comprises of an addi-
tional, separated array of directions for density function on the
grid and has confirmed improved parallel efficiency as data ac-
cess pattern is conserved between odd and even time steps [40].
The approach studied in this paper may be directly compared to
the swap algorithm [41], where speedup is less than 1.5 with a
memory drop around 2 times if compared to the standard two-
lattice approach. The main advantage of using LBMTau1 if
compared to these schemes is the memory reduction achieved
by removing the distribution function.

6. Conclusions

The presented LBMTau1 version of the LBM algorithm out-
performs the original algorithm in terms of memory usage and
is useful in large scale, low Reynolds number flows. This is im-
portant especially in systems where memory storage matters.
This includes multiscale media e.g. porous and artery systems,
where the flow at the microscale correlates with macroscopic
properties of the medium.

Finally, it is rather surprising, how simple it is to implement
a basic version of the LBMTau1 solver. The main function con-
sists of a few lines of a simple C code (see Appendix A). The
ratio of the work needed to achieve useful results is relatively
low, especially compared to any standard CFD solver. Thus, we
believe, the solution provided in this paper may be also attrac-
tive in computational physics education. From a practical point
of view, the LBMTau1 algorithm discussed here should be use-
ful in applications where the original BGK Lattice Boltzmann
was combined with the relaxation time τ = 1. For example, in
[12, 14, 15, 16, 18, 20, 21, 22, 23, 42, 43, 44, 45, 46] it is possi-
ble to save more than 75% of the memory by using LBMTau1
described here.
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Appendix A. The LBMTau1 C code for lid-driven cavity

1 float U[2][L][L], V[2][L][L], R[2][L][L];
2 int F[L][L];
3 const int ex[9]={0,1,0,−1,0,1,−1,−1,1};
4 const int ey[9]={0,0,1,0,−1,1,1,−1,−1};
5 const int inv[9]={0,3,4,1,2,7,8,5,6};
6 const float w[9]={4/9.,1/9.,1/9.,1/9.,1/9.,1/36.,1/36.,1/36.,
7 1/36.};
8 float U0=0.5;
9

10 void init()

11 {
12 for(int i=0; i<L ; i++)
13 for(int j=0; j<L ; j++)
14 {
15 U[0][i][j]=V[0][i][j]=0;
16 U[1][i][j]=V[1][i][j]=0;
17 R[0][i][j]=R[1][i][j]=1;
18 F[i][j]=0;
19

20 if(j==0 or i==0 or i==L−1) F[i][j] = 1;
21 if(j==L−1) U[0][i][j] = U[1][i][j] = U0;
22 }
23 }
24

25 void LBMTau1(int c)
26 {
27 float r,u,v,f;
28

29 for(int i=0; i<L; i++)
30 for(int j=0; j<L−1; j++)
31 if(F[i][j]==0)
32 {
33 U[c][i][j]=V[c][i][j]=R[c][i][j]=0;
34

35 for(int k=0; k<9; k++)
36 {
37 int ip=i+ex[k], jp=j+ey[k], ik=inv[k];
38

39 if(F[ip][jp]==0)
40 {
41 r=R[1−c][ip][jp];
42 u=U[1−c][ip][jp]/r;
43 v=V[1−c][ip][jp]/r;
44

45 f=w[ik]*r*(1−(3/2.)*(u*u+v*v)+3.*(ex[ik]*u+ey[ik]*v)
46 +(9/2.)*(ex[ik]*u+ey[ik]*v)*(ex[ik]*u+ey[ik]*v));
47 }
48 else
49 f=w[ik]*R[1−c][i][j];
50

51 R[c][i][j] += f;
52 U[c][i][j] += ex[ik]*f;
53 V[c][i][j] += ey[ik]*f;
54 }
55 }
56 }
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