Lattice Boltzmann Method

Mateusz Bancewicz
student of Physics
at Wroclaw University

June 12, 2015

Abstract
The flow of a fluid is described by Navier-Stokes equation[1]. Unfortunately, it can be solved analytically only for small group of problems. In this project I will use Multiple Relaxation Time Lattice Boltzmann method to reproduce von Karman vortex street.

1 Model description
Lattice Boltzmann method evolved out of Lattice Gas Automata, which simulated a gas through particles at discrete points in space, represented by boolean variables. LBM replaces the boolean variables of LGA with the discretized probability distribution functions f which eliminates the need for ensemble averaging.

1.1 Lattice Boltzmann equation
Let us start with the continuous Boltzmann equation which describes time evolution of our hydrodynamic system,
$$\frac{\partial f}{\partial t} + \vec{e} \cdot \nabla f = \Omega_k,$$
where f is distribution function, \vec{e} is velocity and Ω_k is collision operator. In simplest case Ω_k is linear operator in BGK approximation:
$$\frac{\partial f}{\partial t} + \vec{e} \cdot \nabla f = \frac{1}{\tau} (f - f_{eq}),$$
$\tau = 3 \cdot \nu + 0.5$ is the relaxation rate towards equilibrium, where ν is kinematic viscosity. This equation replaces Navier-Stokes in CFD simulation. For our simulation we need to discretize this formula.

$$f_i(x_i + e_i \delta t, t + \delta t) = f_i(x_i, t) - \frac{\delta t}{\tau} (f_i - f_{eq}).$$

Now we have to decide how to discretize our distribution function. There are couple of possibilities for 2D case (Figure 1), I chose D2Q9.

![Figure 1: Two dimensional lattice models. From left to right: D2Q4, D2Q5, D2Q7, D2Q9.][2]
Last step is to find the formula for equilibrium distribution. It is basically an expansion of Maxwell distribution for low Mach numbers.

\[f_{eq}^i = \rho \omega_i \left(1 + 3(e_i \cdot \vec{v}) - \frac{3}{2} (\vec{v} \cdot \vec{v}) + \frac{9}{2} (e_i \cdot \vec{v})^2 \right) \]

where weights \(\omega_i \) are \(\frac{4}{9} \) for \(i = 0 \) (rest particle), \(\frac{1}{9} \) for \(i = 1,2,3,4 \) and \(\frac{1}{36} \) for \(i = 5,6,7,8 \).

<table>
<thead>
<tr>
<th>Navier-Stokes equation</th>
<th>Lattice Boltzmann equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\nabla p + \mu \nabla^2 u)</td>
<td>(\frac{\partial f}{\partial t} + e \cdot \nabla f = -\frac{1}{\tau} (f - f^{eq}))</td>
</tr>
<tr>
<td>second-order PDE</td>
<td>first-order PDE</td>
</tr>
<tr>
<td>need to treat the non-linear convective term (u \cdot \nabla u)</td>
<td>avoids convective term, convection becomes simple advection</td>
</tr>
<tr>
<td>need to solve Poisson equation for the pressure (p)</td>
<td>pressure (p) is obtained from equation of state</td>
</tr>
</tbody>
</table>

Figure 2: Comparison between Navier-Stokes equation and Lattice Boltzmann equation. [2]

1.2 Macroscopic quantities

Since we know particle distribution \(f \) in every time step obtaining quantities like density \(\rho \),

\[\rho = \sum_{i=0}^{8} f_i \]

velocity \(\vec{v} \)

\[\rho = \sum_{i=0}^{8} e_i \cdot f_i \]

and momentum \(\vec{m} \) is straightforward.

\[\vec{m} = \rho \cdot \vec{v} \]

2 Model implementation

The base class in my simulation is called Node (see the code below)

```cpp
class Node{
  public:
    // for BGK and MRT model
    double f[9]; // distribution function
    double fEq[9]; // equilibrium distribution function
    Vec2 velocity;
    double density;
    bool isFluid;
    // only for MRT collision model
    double m[9]; // moments
    double mEq[9]; // equilibrium moments
};
```

To increase stability of LBM I use MRT (Multiple relaxation time, which is described here [3]) collision operator instead of standard BGK.

2.1 Boundary conditions

At the inlet I have parabolic velocity profile which is realized using Zou/He velocity boundary condition[4]. At the outlet I assume \(\frac{\partial u}{\partial n} = 0 \) (which is not the best solution for unsteady flows[5]), where \(n \) is the normal vector of the outlet. The upper and lower boundaries and circular cylinder are solid, I use mid-grid bounce-back rule on them[6].
2.2 Visualization

There are three modes for field visualization in my program:

(a) velocity field (press u on keyboard):
 - red color corresponds to velocity in the right direction,
 - blue color corresponds to velocity in the left direction,
 - green color corresponds to absolute value of velocity y component,
(b) speed field (press s),
(c) vorticity field (press v) - best for vortex street visualization.

Moreover pressing 'a' releases marked particles which are advected by the velocity field.

3 Simulation results

3.1 Flow behind a circular cylinder

Let me introduce a Reynolds number

\[Re = \frac{u \cdot L}{\nu} \]

where \(u \) is the max velocity at the inlet, \(L \) is the characteristic length (diameter of the cylinder) and \(\nu \) is the kinematic viscosity.

To visualize vortex street we need to put particles in time-dependent velocity field. Literature[7] suggest that we should expect vortex to shed circle 60 Reynolds number.

I simulated flow for 30, 40, 50, 60, 80, 100, and 150 Reynolds number and put particles after 20 000 time step. The domain size is 402 x 83. Maximum of inlet velocity parabolic profile is 0.15.

Figure 3: Flow behind a circular cylinder. Re = 30. Advected particles created streaklines.

Figure 4: Flow behind a circular cylinder. Re = 40. Advected particles created streaklines.
Figure 4: Flow behind a circular cylinder. $Re = 50$. Advected particles created streaklines.

Figure 6: Flow behind a circular cylinder. $Re = 60$. Advected particles created streaklines.

Figure 7: Flow behind a circular cylinder. $Re = 80$. Advected particles created streaklines.

Figure 8: Flow behind a circular cylinder. $Re = 100$. Advected particles created streaklines.

Figure 8: Flow behind a circular cylinder. $Re = 150$. Advected particles created streaklines.
References

[2] Igor Mele,

[3] Joost Geerdink, Entropic and multiple relaxation time lattice Boltzmann methods compared for time harmonic flows, MSc, University of Amsterdam, 2008

