Multi-Scale Simulation of Assembly at Gas-Solid Interfaces: Al/Al(110)

Kristen A. Fichthorn Penn State University

Sponsored by NSF DMR-0514336







Yogesh Tiwary's PhD

# Patterned Substrates Are Useful!

#### Templates for Molecular Assembly

C60 on Ag/Pt(111) K. Ait-Mansour et al., J. Phys. Chem. C 113, 5292 (2009).

J. Howe, ..., K. Fichthorn, *PRB* **81**, 121410 (2010).





**Superhydrophobic Properties** 

Cicada Wing W. Lee et al., Langmuir **20**, 7665 (2004).



**Optoelectronic Properties** Ge/Si(001) Quantum Dots O.G. Schmidt et al., Appl. Phys. Lett. **77**, 4139 (2000).

We want to Design Their Assembly From the Bottom Up!

H. Wu, ..., K. F. *J. Chem. Phys.* **133** 054704 (2010).

# Hut Formation in Al(110) Homoepitaxy



# Describing Multi-Scale Self-Assembly in Al(110) Homoepitaxy

**First-Principles DFT** VASP Code Diffusion Barriers Adatom Interactions

Y. Tiwary and K. Fichthorn, *Phys. Rev. B* **75**, 235451 (2007); *Phys. Rev. B* **78**, 205818 (2008); *Phys. Rev. B* **81**, 195421 (2010); *Phys. Rev. B* (submitted).

Ab initio Accelerated MD Modified VASP Code Diffusion Pathways

K. A. Fichthorn et al., *J. Phys. Cond. Matt.* **21**, 084212 (2009).



# Pair Interactions on Al(110) DFT GGA



E<sub>I1</sub> = -0.091 eV

E<sub>c1</sub>= 0.049 eV

All long-range pair interactions are repulsive!

Y. Tiwary and K. Fichthorn, *Phys. Rev. B* **75**, 235451 (2007) How Can We Have Huts???

# Attractive Trios...



| T1 = -0.006  eV     | 78 = 0.011   |
|---------------------|--------------|
| T2 = -0.060         | 79 = 0.019   |
| 73 = -0.044         | T10 = -0.005 |
| T4 = -0.021         | T11 = 0.015  |
| 75 = 0.032          | T12 = 0.004  |
| 76 = -0.019         | T13 = 0.017  |
| <i>T</i> 7 = -0.025 | T14 = -0.017 |

Trios Can Stabilize Cross-Channel Bonding, But...

Y. Tiwary and K. Fichthorn, *Phys. Rev. B* **75**, 235451 (2007).

# High-Order Many-Body Interactions Are Significant!!



Many-Body (Elastic) Interactions Make the Lattice-Gas Approach Unwieldy...

Y. Tiwary and K. Fichthorn, *Phys. Rev. B* **78**, 205818 (2008).

# The Connector Model

Combine groups of many-body interactions into structural units with a single interaction energy



# The Connector Model isAccurate and EfficientConnector vs. DFT



# Connector Model Compares Favorably To Fitted Cluster Expansion Model

$$CV = \sqrt{\frac{1}{M} \sum_{i=1}^{M} \left[ \{ E^{DFT}(i) - E^{-CE}(i) \}^2 \right]}$$

#### M Atom Configurations n terms in CE

A. van de Walle and G. Ceder, J. Phase. Equilib. 23, 348 (2002).

G. L. W. Hart, V. Blum, M. J. Walorski, and A. Zunger, Nature Mat. 4, 391 (2005).

N. A. Zarkevich and D. D. Johnson, Phys. Rev. Lett. 92, 255702 (2004).

R. Drautz and A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006).

Y. Tiwary and K. Fichthorn, *Phys. Rev. B* **78**, 205818 (2008).

|            | Interaction Energy $(eV)$ |        |        |        |        |        |           |  |
|------------|---------------------------|--------|--------|--------|--------|--------|-----------|--|
|            | FLG                       | n-18   | n-14   | n-10   | n—6    | n-4    | Connector |  |
| N1         | -0.091                    | -0.086 | -0.092 | -0.095 | -0.093 | -0.094 |           |  |
| N2         | 0.050                     | 0.050  | 0.052  | 0.053  | 0.053  | 0.062  |           |  |
| N3         | 0.043                     | 0.047  | 0.046  | 0.044  | 0.025  |        |           |  |
| N4         | 0.045                     | 0.045  | 0.040  | 0.045  | 0.039  | 0.041  |           |  |
| N5         | 0.036                     | 0.009  |        | -      | -      |        |           |  |
| <i>N</i> 6 | 0.010                     | 0.010  | 0.010  | 0.009  | 0.011  |        |           |  |
| T1         | -0.006                    | -0.015 |        | -      | -      |        |           |  |
| T 2        | -0.057                    | -0.067 | -0.062 | -0.062 | -0.033 | -0.021 |           |  |
| T3         | -0.049                    | -0.030 | -0.015 | -0.008 |        |        |           |  |
| <b>T</b> 4 | -0.026                    | -0.038 | -0.030 | -0.032 | -      |        |           |  |
| T5         | 0.005                     | 0.003  | 0.000  | -      |        |        |           |  |
| T6         | -0.025                    | 0.002  | 0.014  | -      |        |        |           |  |
| $Q_1$      | 0.071                     | 0.093  | 0.081  | 0.052  | -      | -      | -         |  |
| $Q^2$      | 0.042                     | 0.067  | 0.050  | 0.039  | -      |        |           |  |
| $Q^3$      | 0.051                     | 0.044  | 0.023  | -      | -      | -      | -         |  |
| Q4         | 0.034                     | 0.023  |        | -      |        |        |           |  |
| $Q^{5}$    | 0.027                     | 0.022  |        | -      |        |        |           |  |
| F1         | -0.045                    | -0.058 | -0.023 | -      | -      |        |           |  |
| CV         | 0.014                     | 0.021  | 0.009  | 0.009  | 0.013  | 0.020  | 0.007     |  |
| (eV/atom)  | 0.030                     | 0.014  | 0.018  | 0.018  | 0.018  | 0.022  | 0.006     |  |
|            |                           |        |        |        |        |        |           |  |

# Are Huts Thermodynamically Stable?

Hut Formation Energy

 $\gamma$  = Surface Energy (eV/atom)

N = # atoms

$$\Delta E_{hut} = E_{substrate+hut} - E_{substrate+ML} = \left( N_{111}^{f} \gamma_{111} + N_{100}^{f} \gamma_{100} + N_{edge}^{f} \gamma_{110} \right) - N_{110}^{u} \gamma_{110}$$

 $\gamma_{110}$  = 0.665 eV/atom,  $\gamma_{100}$  = 0.454 eV/atom,  $\gamma_{111}$  = 0.342 eV/atom



#### If $\Delta E_{hut} < 0$ , Hut Favored Over Layer

#### Huts Are Not Energetically Favored



# Al Diffusion on Al(110)

#### **Climbing-Image Nudged-Elastic Band Method**

G. Henkelman, B.Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000)



R. Stumpf and M. Scheffler, Phys. Rev. B 53, 4958 (1996).
W. Zhu et al., Phys. Rev. Lett. 92, 106102 (2004).
Y. Tiwary and K. Fichthorn, *Phys. Rev.* B 81 195421 (2010)

# Al Diffusion on Al(110)

#### **Climbing-Image Nudged-Elastic Band Method**

G. Henkelman, B.Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000)



### Accelerated Ab Initio MD



Climbing-Image Nudged Elastic Band Method

VS.

**Accelerated** AIMD





 $E_{\rm B} = 0.38 \, {\rm eV}$ 

Cross-Channel Diffusion Is Faster!

K. Fichthorn et al.,
J. Phys. Cond. Matt.
21, 084212 (2009).



 $E_{B} = 0.33 \text{ eV}$ 

### The Boost in ab initio MD



# Diffusion Up and Down Steps: Diagonal Dominance



# Barriers for Single-Atom Hops (eV)



#### **Co-operation Between Atoms**



Atoms Pull Others Up





Atoms Push Others Up



0.47 vs. 0.67 eV (isolated)

0.50 vs. 0.58 eV (isolated)

#### Transition-State Interactions are Important!

Y. Tiwary and K. Fichthorn , Phys. Rev. B **81**, 195421 (2010).



#### Kinetic Monte Carlo: Coarse-Graining MD

K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95, 1090 (1991).



**Rare Events:** 
$$k_{TST} = \left\langle \frac{v}{2} \right\rangle \frac{\int \delta(\mathbf{R} - \mathbf{R}^{\dagger}) \exp(-V(\mathbf{R})/k_B T)}{\int \exp(-V(\mathbf{R})/k_B T)}$$

## KMC Simulations of Al(110) Homoepitaxy

Dimensions in nm T=200 K; θ=20 ML T=150 K; θ=20 ML 60 40 40 5 30 0 20 4 40 20 30 20 10 0 20 10 Ehrlich-Schwoebel 10 0 1 Barrier; Nucleation 1 2 3 0 4 on Top Terraces 10/101 T=250 K; θ=10 ML Ê 2 ۰ [100] 0.7 Up: (110)→(111) Rates : (sec1) Dormant (<100) ←Up: (110)→(100) Active (100 - 1,000) Very Active (1,000 - 100,000 Down (111) Step Super Active (>100,000) Up (111) Step 250 200 Up (100) Step 150 Down (100) Step 100 10 50 8Õ 60 40 20 Motion on (100) Planar (110) Steps; Downward 0.3 150 200 250 300 350 400 100 **Moves Dominate** 0 2 4 6 Temperature (K)

# KMC Simulations: Rising Huts

T=350 K,  $\theta$ =10 ML (F=150 ML/min,  $\theta$ =0.25 ML)

#### T=400 K, $\theta$ =10 ML (F=350 ML/min, $\theta$ =0.25 ML)



### KMC: Controlling Hut Density via Flux



Now All We Need is Good Hut Placement

### Hut Positioning: Pulsed Dual-Beam Laser Interference



Laser Interference Parameters:

#### **Temperature:**

#### Fringe Width or Wavelength (532 nm):

Distance (nm)

Energy Density of Laser Wavelength of I (5 mJ/cm<sup>2</sup> = 50 K) Interference An

Wavelength of Laser (266 nm) Interference Angle (29°)

## **Temperature Profile: Pulsed Two-Beam Interference**

$$\rho c_p \frac{\partial T}{\partial t} = k \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right) + q$$



T(x,z,t): Temperature,  $\rho$ : Density,  $c_p$ : Specific heat,

k: Thermal conductivity

**Power**  
Generation 
$$q = \alpha \frac{E(x)}{\sigma \sqrt{2\pi}} exp\left(-\frac{(t-t_p)^2}{2\sigma^2}\right) (1-R)exp(-z\alpha)$$

t<sub>p</sub>: Pulse width of laser beam, a: Absorption coefficient, R: reflectivity

 $\frac{2\pi x}{x}$ 

Interference Intensity

 $E(x) = 2E_o \mid \cos \left($ 

 $E_{0}$ : Energy density of incident laser beam

**Fringe Width** 

$$\Lambda = \lambda / [2Sin(\theta)]$$

- $\lambda$ : wavelength of laser
- $\theta$ : Interference angle

Lasagni et al., Appl. Surf. Sci. 247, 32 (2005)



### **KMC Simulation of Hut Placement**

Dual/Four-Beam Laser Interference , F=1 ML/min,  $\theta$ =5 ML





# **KMC Simulation of Hut Placement**



Tune Hut Morphology by Adjusting Temperature



#### T=300-360 K, F=200 ML/min, θ=5 ML

# Conclusions

 Al(110) [and possibly other fcc(110)] Homoepitaxy is Interesting: Increased Roughening with Increasing Temperature: HUTS

Many-Body Interactions and Diffusion are Key
 Connector Model
 Ab initio Accelerated Molecular Dynamics

Ab initio Accelerated Molecular Dynamics

•Hut Placement by Pulsed Dual- or Four-Beam Laser Interference