Vacancy thermodynamics and diffusion-controlled processes in intermetallics for functional and construction material technologies

M. Kozłowski¹, A. Biborski¹, R. Kozubski¹, Ł. Zosiak¹, S. Brodacka¹, V. Pierron-Bohnes², Ch. Goyhenex²

1. Interdisciplinary Centre for Materials Modelling, M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Krakow, Poland,

2. Institut de Physique et Chimie des Matériaux de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France

Recently studied systems

BCC-based **B2** construction material

FCC-based **L1**₂ magnetic functional material

NiAl Research by means of modeling - A. Biborski

FePt

Research by means of modeling - M. Kozlowski

General experimental and modeling research of intermetallic systems carried out in group of prof. R. Kozubski IF,UJ

Phenomena studied in B2

"Order-order" kinetics slower in B2 NiAl than in $L1_2 Ni_3 Al$ experimental observations (Kozubski et al.).

But equilibrium vacancy concentration being around 5 orders of magnitude higher in B2 phase – up to $\sim 10^{-2}$ (Scheafer et al.)

Phenomena studied in B2

But equilibrium vacancy concentration being around 5 orders of magnitude higher in B2 phase – up to $\sim 10^{-2}$ (Scheafer et al.)

B2 model approach

Modeling of "order-order" kinetics in triple-defect type B2 superstructure at equilibrium vacancy concentration

Set model interatomic potentials that promote triple defect

Determine chemical potentials that result in equilibrium vacancy concentration

"Order-order" kinetics via vacancy mechanism

B2 model approach

Set model interatomic potentials that promote triple defect

Selected pair-wise interactions promoting triple-defect behaviour:

 $V_{AB} = -0.125 V_{AA} = -0.120 V_{BB} = -0.050 [eV]$

$$V_{VV} = -0.000 V_{AV} = 0.040 V_{BB} = -0.040 [eV]$$

Lattice-gas decomposition SGCMC simulations

Desired system presents co-existance of phases

Refining procedures performed successfully resulting in equilibrium thermal vacancy concentration as a function of temperature

Lattice-gas decomposition SGCMC simulations

Atom-rich solution (crystal at thermal and chemical equilibrium)

"Order-order" kinetics Kinetic Monte-Carlo simulations

LRO evolution

SGCMC with **phase decomposition procedure** is the successful method for determination of **equilibrium vacancy concentration** in binary systems.

It is possible to adjust energies in the system to generate **triple-defect** and observe **"order-order" kinetics** similar to the **experimental**

Perspective – use realistic potentials and generate quantitative agreement with experiment.

Atomic ordering in L1₀ FePt thin layers

L1₀ FePt layers – basic concepts

Two models:

ISING-type – discrete pair interactions based on CEM ABOP – advanced many-body interactions MD-like

Superstructure variants:

c-variant

a(b)-variant

ISING model Monte Carlo simulations

• **Ising** system with pair interaction energies up to the second nearest neighbour.

$$E_{Conf} = \sum_{i,j,r} N_{ij} V_{ij}(r)$$

- Potentials developed CEM (Cluster Expansion Method)
- Atomic migration simulated by **jumps to nn vacancies** with probabilities determined within **Glauber** dynamics.

ISING model - L1, FePt c-variant layers

FePt L1_o c-variant \rightarrow a-variant superstructure reorientation

Fe-covered surface

Pt-covered surface

Simulated L1₀ FePt c-variant layer after 5×10^7 MC steps at T = 1000K 🔴 - Fe, 🔵 - Pt, 🛛 <u>[</u>[[] - vacancy.

ISING model - L1, FePt c-variant layers

Fe-covered surface

Pt-covered surface

Energetic instability

c-variant c \perp surface

a(b)-variant c || surface

$$\Delta E_{uc} = 2V_{FePt} - V_{FeFe} - V_{PtPt} < 0$$

- FePt L1₀ unit cell

Driving force

Energetically **favorable** reorientation at **Fe**

No energy **change** during domain **growth**

Energetically unfavorable

8

Reorientation kinetics

- 0. homogeneous disordering (generation of antisite defects).
- 1. nucleation of a- and b-variant $L1_0$ domains within the surface layer of the $L1_0$ unit cells
- 2. growth of the nucleated a- and bvariant $L1_0$ domains inward the layer
- 3. relaxation of the microstructure of aand b-variant $L1_0$ domains

ABOP – MC/SR simulations

Monte Carlo / Static Relaxations (MS + Lattice optimization)

MC – atomic migrations by means of Glauber algorithm.

$$P_{i \to j} = \frac{\exp\left(-\frac{\Delta E}{k_B T}\right)}{1 + \exp\left(-\frac{\Delta E}{k_B T}\right)} \quad \stackrel{\text{for } j}{=} \quad \stackrel{$$

MS – molecular statics for surface relaxations

$$E = \sum_{i < j} f_{ij}^{\mathbf{c}}(r_{ij}) \left[V_{ij}^{\mathbf{R}}(r_{ij}) - \frac{b_{ij} + b_{ji}}{2} V_{ij}^{\mathbf{A}}(r_{ij}) \right]$$

Lattice optimization – evolution of tetragonal distortion

ABOP model results – FePt L1₀ layers

1000K

Vacancies stay at the surface

ABOP model FePt c-variant L1₀ layers

Samples 10x10x10 unit cells, initially c-variant $L1_0$,1 vacancy. Isotermal simulation. Results averaged over 8 runs

Metastable superstructure – localized surface disordering

Metastable superstructure – localized surface disordering

ABOP model FePt a-variant L1₀ layers

Samples 10x10x10 unit cells, initially a-variant $L1_0, 1$ vacancy. Isotermal simulation. Results averaged over 8 runs

Stastable superstructure – localized surface disordering

L1₀ FePt layers summary I

c-variant

 $E_c > E_a$

a-variant

In all considered models configurational energy of c-variant L1₀ ordered FePt layer is lower than in a-variant layer.

L1₀ FePt layers summary II

c-variant **ISING**: $\Delta E_{APsurf} < 0$ at the surface of **ABOP**: $\Delta E_{APsurf} > 0$

Only in ISING model nucleation of a-variant at the surface of cvariant is energetically favorable.

L1₀ FePt layers summary III

ISING: $\Delta E_{Vsurf} < 0$ **ABOP**: $\Delta E_{Vsurf} < 0$

In ABOP model energy of vacancy migration towards the surface determines the ordering kinetics.

Experimental data instead of conclusion

CEMS-measured evolution of concentration of particular L1₀ variants in FePt layered sample annealed at 773°C.

Alphard

Atomistic modeling platform

- Dynamic lattice-based simulations
- MC, MD, MS, etc.
- wide range of potentials
- In-depth lattice parameters monitoring and control
- Script-like simulations design

sourceforge.net/projects/alphard

Thank you for your attention

