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◮ superior mechanical and electronic properties

◮ fullerene C60 first dicovered in 1985 by Kroto et al.

◮ carbon aggregates tend to be more stable in a form of
onion-like structures

◮ possible use: supercapacitators, hydrogen storage

Banhart et al.,
Phys. Chem. Lett. 269 (1997), 349.
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Motivation – curvature energy

◮ experiments suggest that the maximum number of layers
is limited to ≈ 40 − 60.

? Why?
? May this be explained by mechanical instabilities

occuring after a certain growth limit?

◮ a continuum mechanics model of mechanical instability
proposed by Bitsche et al. (submitted)

◮ input: surface stress ≈ surface energy

◮ the (excess) surface energy of a fullerene (or SWNT) is
an increase of its total energy with respect to (planar)
graphene
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Fullerenes from DFT

◮ Vienna Ab-initio Simulation Package with
GGA-PAW and LDA-US pseudopotentials

◮ only pentagons and hexagons  exactly 12 pentagons,
variable number of hexagons (Euler’s formula)

(# of corners) − (# of edges) + (# of facets) = 2

◮ focus on fullerenes with icosahedral symmetry (with the
exception of C70)
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Ring shell structures

◮ parts of fullerene surfaces with dangling bonds
“saturated” with H atoms

◮ C–H bond length optimised to fit best the graphene
energy (per bond)

+/− correspond to spherical structures

− contain no pentagons

+ can easily access any desired radius
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Inter-atomic potentials

construction of classical inter-atomic potentials “coherent”
with the present DFT calculations

◮ stretching: Morse potential
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construction of classical inter-atomic potentials “coherent”
with the present DFT calculations

◮ stretching: Morse potential
◮ bending: harmonic potential
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construction of classical inter-atomic potentials “coherent”
with the present DFT calculations

◮ stretching: Morse potential
◮ bending: harmonic potential
◮ torsion

E
T (φijkl ) =

1

2
kφ (1 − cos 2φijkl)

Σ(1-cos(2φ))

40 60 80 100 120 140 160

T
or

si
on

 E
ne

rg
y 

[e
V

]

0

2

4

6

8

10
ZigZag, kφ/2=0.179 eV

Armchair, kφ/2=0.173 eV

9/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Shape of the fullerenes

C60 C240

C980 C5120

10/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Bond length distribution

C60

Bond Length [A]

1.30 1.35 1.40 1.45 1.50 1.55 1.60

H
is

to
gr

am

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ab Initio
Monte Carlo

C240

Bond Length [A]

1.30 1.35 1.40 1.45 1.50 1.55 1.60

H
is

to
gr

am

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ab Initio
Monte Carlo

C320

Bond Lengths [A]

1.30 1.35 1.40 1.45 1.50 1.55 1.60

H
is

to
gr

am

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

C2000

Bond Lengths [A]

1.30 1.35 1.40 1.45 1.50 1.55 1.60

H
is

to
gr

am
0.00

0.05

0.10

0.15

0.20

0.25

11/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Curvature energy

5 10 20 50
Radius r [Å]

0.01

0.02

0.05

0.1

0.2

0.5

E
xc

es
s 

su
rf

ac
e 

en
er

gy
 [e

V
/b

on
d]

β=−2.07

zig-zag

armchair

5 10 20 50
Radius r [Å]

C60
C70

C180

C60

C240
C980

C5120

β=−1.43
β=−1.40
β=−1.47

fullerenes (DFT)

fullerenes (MC)

Terrones et al.

5 10 20 50
Radius r [Å]

β=−2.08
β=−2.12
β=−2.51

(a) Single-wall cabon nanotubes (b) Fullerenes (c) Spherical shells

one-ring shell
two-ring shell
three-ring shell

0.05

0.1

0.2

0.5

1

2

5

E
xc

es
s 

su
rf

ac
e 

en
er

gy
 [J

/m
2 ]

◮ DFT and MC give the same exponent but different
off-sets (power-law fit: E = E0 × R

β)

12/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Curvature energy

5 10 20 50
Radius r [Å]

0.01

0.02

0.05

0.1

0.2

0.5

E
xc

es
s 

su
rf

ac
e 

en
er

gy
 [e

V
/b

on
d]

β=−2.07

zig-zag

armchair

5 10 20 50
Radius r [Å]

C60
C70

C180

C60

C240
C980

C5120

β=−1.43
β=−1.40
β=−1.47

fullerenes (DFT)

fullerenes (MC)

Terrones et al.

5 10 20 50
Radius r [Å]

β=−2.08
β=−2.12
β=−2.51

(a) Single-wall cabon nanotubes (b) Fullerenes (c) Spherical shells

one-ring shell
two-ring shell
three-ring shell

0.05

0.1

0.2

0.5

1

2

5

E
xc

es
s 

su
rf

ac
e 

en
er

gy
 [J

/m
2 ]

◮ DFT and MC give the same exponent but different
off-sets (power-law fit: E = E0 × R

β)

◮ ring shell models fail to describe individual fullerenes but
may be appropriate for (spherical) onion-like structures
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◮ geometry and energy of carbon fullerenes were studied by a
combination of the density functional theory and Monte Carlo
methods
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◮ geometry and energy of carbon fullerenes were studied by a
combination of the density functional theory and Monte Carlo
methods

◮ DFT-compatible inter-atomic potentials for MC were
constructed

◮ curvature induced excess surface energy follows a power law
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14/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Conclusions

◮ geometry and energy of carbon fullerenes were studied by a
combination of the density functional theory and Monte Carlo
methods

◮ DFT-compatible inter-atomic potentials for MC were
constructed

◮ curvature induced excess surface energy follows a power law
as a function of the structure mean radius
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14/15D. Holec et al.: Surface energy of fullerenes 19 September 2010 27th M. Born Symp., Wroc law

D. Holec, M.A. Hartmann et al., PRB 81 235403 (2010)



Introduction

Motivation

Methodology and
Results

Fullerenes treated
with DFT

Ring shell structure

Monte Carlo
simulations

Description of the
fullerenes

Curvature energy

Conclusions

Conclusions

◮ geometry and energy of carbon fullerenes were studied by a
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methods

◮ DFT-compatible inter-atomic potentials for MC were
constructed

◮ curvature induced excess surface energy follows a power law
as a function of the structure mean radius

◮ power law exponent for the surface energy per bond:
βDFT = −1.43 and βMC = −1.40

◮ perfect spherical structures using approximative shell models
yielded β ≈ −2.5
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Conclusions

◮ geometry and energy of carbon fullerenes were studied by a
combination of the density functional theory and Monte Carlo
methods

◮ DFT-compatible inter-atomic potentials for MC were
constructed

◮ curvature induced excess surface energy follows a power law
as a function of the structure mean radius

◮ power law exponent for the surface energy per bond:
βDFT = −1.43 and βMC = −1.40

◮ perfect spherical structures using approximative shell models
yielded β ≈ −2.5

◮ only stretching (two-particle) and bending (three-particle)
interactons are not able to reproduce the correct fullerene
geometries (i.e. bond-length and angle distributions leading
to extended flattened areas), for which at least the
four-particle interaction (i.e. torsion) has to be included.
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