

Lattice dynamics of Co-deficient and Fe-doped CoO

Urszula D. Wdowik, Krzysztof Parlinski

Institute of Technology, Pedagogical University, Cracow, Poland

27th Max Born Symposium: Multiscale Modeling of Real Materials, Wroclaw, 17-20 Sept. 2010

Introduction	Method	Defect-free CoO	Co-deficient CoO	Fe-doped CoO	Summary and conclusions
Perfect C	coO				

- HT paramagnetic ($Fm\bar{3}m$) $a_{exp} = 4.26$ Å, $E_g = 2.5 2.8$ eV
- LT small trigonal distortion along <111> below $T_N = 293$ K 2^{nd} kind of AF ordering, AFII structure

Calculations with DFT+U

- Charge-transfer insulator
- DFT+U formalism required (strongly correlated electron system)
- Interactions between correlated states U & J

VASP code

- spin-polarized DFT, PAW PP
- AFII structure (64-atom sc.)
- Exchange-interactions: GGA+U

U = 7.1 eV, J = 1 eV

 Trigonal distortion of 0.3° (R3m)

Phonons

- Direct method PHONON software by K. Parlinski
- Harmonic approximation

Phonon dispersion relations for U = 0 eV and U = 3 eV

- Imaginary frequencies of acoustic modes ⇒ instability of CoO
- significant underestimation of HF forces ⇒ artificial mode softening
- small $U_{eff} \Rightarrow$ too low repulsion in Co-3d shell

CoO with point defects

Cationic vacancies - native defects in CoO

- Co deficiency in 'almost stoichiometric' samples: 0.1-3%
- uncharged, singly and doubly charged vacancies
- nonstoichiometry depends on temperature and oxygen partial pressure

Simulation of point defects (vacancies, impurities)

- supercell approach
- In remove atoms ⇒ vacancies
- In replace host atoms by different kind of atoms ⇒ impurities

CoO with 3% vacancies/impurities

- Co @ $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ removed from 64-atom supercell \Rightarrow Co_{0.97}O
- Co @ $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ replaced by Fe atom \Rightarrow CoO + 3% Fe

Description of phonons within supercell

CoO

primitive unit cell $N = 2 \Rightarrow 6$ branches

CoO as 64-atom supercell

• $N_s = 64 \Rightarrow 192$ branches ?

Co_{0.97}O

۲ supercell - already primitive unit cell $N_S = 63 \Rightarrow 189$ branches

- dimensions of D(k) increase to 3N_S
- number of phonon dispersion curves increases to 3Ns
- size of BZ conjugated with supercell shrinks
- selection of a different kind of unit cell 1 number of phonon dispersion curves is blown up

Phonon form factor and filter

$$\mathcal{F}^{(p)}(\mathbf{k},j) = \frac{1}{\mathbf{k}^2} \left| \sum_{\mu} \frac{\mathbf{k} \cdot \mathbf{e}(\mathbf{k},j;\mu)}{\sqrt{M_{\mu}}} \right|^2$$

$$\int_{\Omega} d\Omega F^{(p)}(\mathbf{k},j) = \frac{1}{3} F^{(s)}(\mathbf{k},j)$$

Fake phonon modes $F^{(p)}(\mathbf{k}, j) = 0$

Filter

$$\mathcal{F}^{(s)}(\mathbf{k},j) = \left|\sum_{\mu} \frac{\mathbf{e}(\mathbf{k},j;\mu)}{\sqrt{M_{\mu}}}\right|^2$$

Fe-doped CoO

Summary and conclusions

Application of filter to stoichiometric CoO

Inelastic neutron scattering experiments

J. Sakurai, W.J.L. Buyers, R.A. Cowley, and G. Dolling, Phys. Rev. 167, 510 (1968)

Fe-doped CoO

Summary and conclusions

Application of filter to non-stoichiometric CoO

$\mathbf{Co}_{0.97}\mathbf{O}$

acoustic branches at small k not affected by vacancies ↓ long wavelength phonons insensitive to point defects

missing Co ↓ additional O vibrations (new modes)

perturbed phonons with wavelength \sim size of region disturbed by vacancy

Oxygens surrounding vacancies

_	_		-	
- E - 1	nointi	FOOLO		

	ω_{TO}	$\omega_{ m LO}$
CoO	10.25	15.73
Co _{0.97} O	9.81	15.87
Co _{0.94} O	9.61	16.08
Neutron	10.50	15.75
Infrared	10.50	16.40

- vacancies affect the highest frequency LO modes
- no change in low-frequency acoustic region

Fe-doped CoO

Mean-squared displacements vs temperature

Experiment: W. Jauch et al., PRB 65, 125111 (2002); S. Sasaki et al., Proc. Jpn. Acad. B 55, 43 (1979)

Fe-doped CoO

Summary and conclusions

Lattice dynamics of Fe-doped CoO

- additional modes
- mass defect negligible
- change in Φ_{ij} at Fe site
- Φ_{ij}(Co) = 160.4 N/m const. vs U_{Fe}

Force constant at Fe site

U_{Fe} (eV)	Φ _{ij} (N/m)
5.1	196.5
6.1	204.9
7.1	213.3

Dynamics of Fe impurity

Splitting of ω_{TO} into modes corresponding to:

- oxygens vibrating around Co ω_{TO} = 10.51 THz (const. vs U_{Fe})
- oxygens vibrating around Fe ω_{TO} = 9.72 THz

Oxygens neighboring Fe			
U _{Fe} (eV)	$\omega_{ m TO}$ (THz)		
5.1	9.67		
6.1	9.68		
7.1	9.72		

Defect-free CoO Co-de

Co-deficient CoO

Fe-doped CoO

Summary and conclusions

Debye-Waller factors in Fe-doped CoO

Mőssbauer exp.: K. Ruebenbauer and U.D. Wdowik, J. Phys. Chem. Solids 65, 1785 (2004)

• $U_{ij}(Fe) < U_{ij}(Co) < U_{ij}(O)$

 5% increase in U_{ij}(Fe) with decreasing U_{Fe}

Low T (10 K)

- U_{ij}(Co) > U_{ij}(Fe) by 7% mass + force const. defect
- U_{ij}(Co), U_{ij}(O) in (Fe)CoO 4% higher than U_{ij} in CoO

Summary and conclusions

- Filter allows to present phonon-dispersion curves to be more close to dispersion relations of a real defected sample
- Point defects influence mainly optical phonon region. Long-wavelength acoustic phonons are practically not affected by defects, i.e., small concentration of defects does not disturb those crystal properties which are due to the low-frequency acoustic phonons
- Average U_{ij} of ions increase with increasing vacancy concentration (decreased intensity of scattered radiation)
- Oifferences in the vibrational dynamics of a dopant and host atoms arise from the difference in their force constants
- Details can be found in: PRB 75, 104306 (2007) PRB 78, 224114 (2008) J.Phys.:Condens. Matter 21, 125601 (2009)