Distinctive Features in Growth on Vicinal Cu(100): Understanding the Role of Impurities by Calculating Key Energies and Simulating Morphology

T.L. Einstein,¹ Rajesh Sathiyanarayanan,¹,² Ajmi BH. Hamouda,¹,³,⁴ A. Pimpinelli,¹,³,⁵

¹Department of Physics, Univ. of Maryland, College Park, USA
²Dept. Chem. Eng., Pennsylvania State Univ., Univ. Park, USA → IBM-Bombay
³LASMEA, Univ. Blaise Pascal Clermont-2, F-63177 Aubière, France
⁴Dep’t of Physics, Faculty of Sciences, Monastir Univ., Tunisia
⁵Scientific Attaché, French Embassy, Houston, TX USA

Impurities (co-deposited) can account for unusual $\lambda_m(F)$ behavior (not Bales-Zangwill) of meandering instability on vicinal Cu [Ernst group] and for distinctive pyramidal nanostructures.

KMC predicts key energies of such impurities; with DFT we survey various possibilities and identify the likely species.

Survey of morphologies at 40 ML and submonolayer

Description in terms of capture-zone distributions & their characteristic exponent φ.

Primary support: NSF MRSEC grant DMR 05-20471
UM is “inside the Beltway”.

UM ↔ DC center: ~ 14 km.
3rd Max Born Symposium

- Born 11 Dec. 1882 Breslau (Wrocław) to Margarete Kauffmann (<textile wealth) & Gustav Born (med. prof. embryology, son of Marcus Born né Buttermilch, also MD), [unobservant, assim.] Jewish (D’s 3rd largest)

- Mother died at age 4; oldest child (sister & step-sister); frail, shy, retiring

- U. Breslau, Heidelberg U., U. Zürich, 1904 to U. Göttingen for Ph.D. & Hab. ('09), contact with Klein, Hilbert, Minkowski, Runge, Schwarzschild, Voigt; also Larmor & Thomson (U. Cambridge); student with von Kármán, Ewald, Toeplitz, Hellinger

- 1913 married Hedwig Ehrenberg (Jewish father converted to Lutheran when married), Hedi baptized; mother-in-law hounded Born to convert); 3 children inc. Irene (mom of Olivia Newton-John)

- 1915 prof. at U. Berlin, spurn Haber (b. Wrocław) offer to work on gas warfare; friends with A. Einstein; stint in army

Notable students:
- M. Delbrück
- W. Elsasser
- F. Hund
- P. Jordan
- M. Goeppert-Mayer
- L. Nordheim
- J.R. Oppenheimer
- V. Weisskopf

Nobel laureates
- E. Fermi
- W. Heisenberg
- G. Herzberg
- P. Jordan
- L. Rosenfeld
- E. Teller
- E. Wigner (TLE great-grand-advisor)

Notable assistants:
- K. Fuchs
- W. Heitler
- F. Hund
- W. Pauli
- O. Stern
- 1921 prof & Inst. Director U. Göttingen, also got chair for Franck
- Grew depressed: family lost wealth due to war & inflation, rising anti-Jewish, and Hedi had long-term affair with Göt. mathematician Gustav Herglotz (& Born knew)
- 1933 emigrated since avowed pacifist & stripped of Ph.D. & Prof. due to Jewish race
 Stokes Lecturer, U. Cambridge; Hedi back to Göt. for months
- 1936 Tait Prof. at U. Edinburgh, British citizen, FRS (’39)
- 1954 Nobel Prize w/ W. Bothe (Heisenberg: 1932); X P. Jordan: Nazi
- 1954 retired to Bad Pyrmont (Hedi’s choice, where she had rested earlier marriage & Quaker mtgs., 100 km NW of Göttingen
- 1955 signed Russell-Einstein manifesto
- 1970 died, buried in Göttingen cemetery with Nernst, Weber, von Laue, Planck, Hilbert
 tombstone: \[pq-qp =h/2\pi \]

Crater Born on moon, \(d = 15\text{km} \), at 6.0°S 66.8°E
Motivations: What role of E-S barrier effect during growth? Why does $\lambda (F)$ of Cu meandering instability differ from B-Z?

Experiment Cu(1 1 n) & Cu(0 2 24)

Driving force of meandering instability = $F (\text{flux})$

- Meandering period = $\lambda_{\text{exp't}} \propto F^{-\gamma}$, $\gamma_{\text{expt}} \approx 1/6 - 1/5$

Stabilizing force of the meandering instability

Diffusion mechanisms

- Meandering λ has Arrhenius form

Linear theory, Bales & Zangwill

Meandering wavelength: $\lambda_{\text{th}} = (D_m / F \langle \ell \rangle^2)^{1/2}$, D_m: edge diffusion

$\gamma_{\text{BZ}} = 1/2$

Maroutian et al., PRB 64 (’01) 165401
Why not Ehrlich-Schwoebel (BZ), KESE or USED?

- Measured meandering length = $\lambda_{\text{exp}} \propto F^{-\gamma}$, $\gamma \approx 1/6-1/5$

Linear theory, Bales & Zangwill, PRB 41 (’90) 5500

Meandering wavelength: $\lambda_{\text{th}} = (D_m/F\langle\ell\rangle^2)^{1/2}$,
D_m: edge diffusion

$\lambda_{\text{th}} \propto F^{-\gamma}$, $\gamma = 1/2$

- For kink Ehrlich-Schwoebel effect (KESE) [O. Pierre-Louis,…,TLE, PRB 82 (’99) 3661]:

$\lambda_{\text{th}} \propto F^{-1/4}$, i.e., $\gamma = 1/4$

but KESE predicts that zig-zag $\langle 100 \rangle$ steps are stable, contrary to exp’t.

- For unhindered step edge diffusion (USED) [F. Nita & AP, PRL 95 (’05) 106104]: $\gamma = 0.14-0.20$, small kink barrier gives good morphologies, but would need very small ES barrier, contrary to evidence (0.1–0.25 eV) and no pyramids.
Kinetic Monte Carlo of model with 2 chemical species

\[P = v_0 \exp(-E/k_B T) : \text{probability of a diffusion event} \]

\[E = E_d^{p+q\epsilon_{pq}} + (E_{ES} + E_{iES}) : \text{total energy} \]

\[p,q \equiv s \text{ (substrate/adatom)}, i \text{ (impurity)} \]

\[v_0 : \text{hopping frequency} \]

\[n = 0, 1, 2, 3 : \text{first neighbor} \]

\[E_d : \text{diffusion energy} \]

\[\epsilon : \text{attachment/detachment energy (–bond energy)} \]

\[E_{ES} : \text{ES barrier} \]

\[E_{iES} : \text{inverse ES} \]

What impurities?

- *lower mobility*
- *small conc(%)*, *higher binding*

Neglects:

- *rapid edge running*
- *vacancy transport (sliders)*

Pyramids (square bases):
- intrinsic (vacancies)?
- 2-particle model?
- extrinsic (impurities)?

Exp’t
STM
(135nm x 135nm)
$F=3 \times 10^{-3}$ ML/s

(85nm x 85nm)
$F=5 \times 10^{-3}$ ML/s

(400nm x 400nm)
$F=2 \times 10^{-2}$ ML/s

Sim.

- Appearance of pyramids
- Decrease of meandering λ

Exp’t Impurities

Sim.

800x800, $T=250K$, $F=5\times 10^{-3}$, $E_{ES}=0.10$, $Ed=0.4$, $Ea=0.15$, $L=6$, 20 ML

240x240, $T=280$, $F=5 \times 10^{-3}$, $E_{ES}=0.07$, $Ed=0.4$, $Ea=0.12$, $L=8$, 20 ML

1000x1000, $T=280$, $F=5 \times 10^{-2}$, $E_{ES}=0.07$, $Ed=0.4$, $Ea=0.12$, $L=8$, 40 ML

$E_d^i=0.6 eV$, $E_{si}=0.18 eV$
Impurities → exp’tal morphology & variation with F

Meandering: $\lambda_{\text{sim}} \propto F^{-\gamma}$, $\gamma = 1/2 - 1/5$

Sim.

Exp’t

NB: 2% OK!
Description of deposition and island growth

- Atoms deposited randomly
- Then diffuse till they meet
- Nucleate island, which grows
- But small islands can break up

$i+1$ atoms: smallest stable island: critical nucleus
So i is size of largest unstable cluster
Effect of impurities on island density (diffusion length)

- Immobile impurities: $E_d^i = 5 \text{ eV}$
- Low-mobility impurities: $E_d^i = 1.2(5) \text{ eV}$

- $\epsilon^{ss} = 0.3 \text{ eV}$
- $\epsilon^{si} = 0.4 \text{ eV}$
- $\epsilon^{ii} = 0 \text{ eV}$

$N_d : \text{islands density}$
$homo : \text{homoepitaxy}$

$N_{\text{homo}} \sim F^{\chi}$

$\chi = 1/2$

$\chi = 1/6$

Impurities (θ_i) decrease dependence of island density (diffusion length) on F
Effect of impurities on island density

\[N_{\text{homo}} \sim (F/D)^\chi \]
\[\chi = i/(i+2) \]

\(i \): critical nucleus size

\(i_{c} \): critical nucleus size

\(E_{d}^\text{im} = 5 \text{ eV} \)

\(E_{d}^\text{im} = 1.2 \text{ eV} \)

\(\phi = \exp(e_{si}/k_{B}T) - 1 \)

\(M. \text{Kotrla} \& \text{J. Krug}, \)
\(\text{Surf. Sci. 482-5 (01) 840} \)

Island density \(N \) depends on the binding energy between adatoms and impurities \((e_{si})\)
Impurity Sets

$E_{NN}^{\text{imp-imp}}$ insignificant

<table>
<thead>
<tr>
<th>Element</th>
<th>E_{NN} (eV)</th>
<th>E_d (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.350</td>
<td>0.564</td>
</tr>
<tr>
<td>O</td>
<td>-0.337</td>
<td>0.775</td>
</tr>
<tr>
<td>C</td>
<td>-0.251</td>
<td>1.827</td>
</tr>
<tr>
<td>S</td>
<td>-0.119</td>
<td>0.900</td>
</tr>
<tr>
<td>Ag</td>
<td>0.277</td>
<td>0.390</td>
</tr>
<tr>
<td>Sn</td>
<td>0.307</td>
<td>0.432</td>
</tr>
<tr>
<td>Zn</td>
<td>0.312</td>
<td>0.314</td>
</tr>
<tr>
<td>Al</td>
<td>0.422</td>
<td>0.493</td>
</tr>
<tr>
<td>Pd</td>
<td>0.343</td>
<td>0.698</td>
</tr>
<tr>
<td>Ni</td>
<td>0.384</td>
<td>0.795</td>
</tr>
<tr>
<td>Si</td>
<td>0.386</td>
<td>0.862</td>
</tr>
<tr>
<td>Co</td>
<td>0.414</td>
<td>0.891</td>
</tr>
<tr>
<td>Fe</td>
<td>0.444</td>
<td>0.909</td>
</tr>
<tr>
<td>Mn</td>
<td>0.474</td>
<td>0.879</td>
</tr>
<tr>
<td>W</td>
<td>0.639</td>
<td>0.913</td>
</tr>
</tbody>
</table>

KMC $\Rightarrow E_{NN} \approx 1.2 \times 0.35$ eV

$vapor$-phase $E_d \approx 1.6 \times 0.56$ eV

VASP-GGA
PAW-PBE
400eV cut-off
4x4x14 supercell
6 atomic layers
(5x5x1) k mesh

full or empty d-band
incipient magnets?
mid-transition elements

Which of these??
Graph of Impurity Sets

<table>
<thead>
<tr>
<th>Element</th>
<th>E_{nn} (eV)</th>
<th>E_d (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.350</td>
<td>0.564</td>
</tr>
<tr>
<td>O</td>
<td>-0.337</td>
<td>0.775</td>
</tr>
<tr>
<td>C</td>
<td>-0.251</td>
<td>1.827</td>
</tr>
<tr>
<td>S</td>
<td>-0.119</td>
<td>0.900</td>
</tr>
<tr>
<td>Ag</td>
<td>0.277</td>
<td>0.390</td>
</tr>
<tr>
<td>Sn</td>
<td>0.307</td>
<td>0.432</td>
</tr>
<tr>
<td>Zn</td>
<td>0.312</td>
<td>0.314</td>
</tr>
<tr>
<td>Al</td>
<td>0.422</td>
<td>0.493</td>
</tr>
<tr>
<td>Pd</td>
<td>0.343</td>
<td>0.698</td>
</tr>
<tr>
<td>Ni</td>
<td>0.384</td>
<td>0.795</td>
</tr>
<tr>
<td>Si</td>
<td>0.386</td>
<td>0.862</td>
</tr>
<tr>
<td>Co</td>
<td>0.414</td>
<td>0.891</td>
</tr>
<tr>
<td>Fe</td>
<td>0.444</td>
<td>0.909</td>
</tr>
<tr>
<td>Mn</td>
<td>0.474</td>
<td>0.879</td>
</tr>
<tr>
<td>W</td>
<td>0.639</td>
<td>0.913</td>
</tr>
</tbody>
</table>

Notes:
- **vapor-phase**
- **full or empty d-band**
- **incipient magnets?**
- **mid-transition elements**
Effect of impurities in step-flow regime

$\gamma = 0.45 \pm 0.05$ for pure Cu

$\lambda \propto F^{-\gamma}$

40 ML at $F = 0.05$ ML/s

Cu + 2% impurity (co-dep)

- (a) Cu+C
 - 0.35(6)
 - 5nm

- (b) Cu+Al
 - 0.62(2)
 - 3nm

- (c) Cu+Ni
 - 0.43(6)

- (d) Cu+W
 - 0.17(2)

- Pure Cu
- Cu + 2% Fe
Estimates of γ ($\lambda_m \sim F^{-\gamma}$) and possibility of pyramid formation

<table>
<thead>
<tr>
<th>Imp.</th>
<th>Cu</th>
<th>C (Set 1)</th>
<th>Al (Set 2)</th>
<th>Ni (Set 3)</th>
<th>W (Set 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.45 ± 0.05</td>
<td>0.35 ± 0.06</td>
<td>0.50 ± 0.06</td>
<td>0.41 ± 0.05</td>
<td>0.17 ± 0.02</td>
</tr>
</tbody>
</table>

2% codeposited impurities
zoomed: 7% of previous images
40ML, $F=0.05\text{ML/s}$ at $T=425K$
Why tungsten (W) from this set of impurities?

• W has best energies
• W has proper value of γ
• Mn unlikely to be part of apparatus, so Fe or W
• W heating element used in experiment (T. Maroutian)
• In experiment, pyramids began to appear for $F > 10^{-2}$ ML/s
• As raise T to raise F, more W from wire

Low W vapor pressure, not sure if direct sight to sample (B. Poelsema)
But perhaps H coats W, hampering sticking. (T. Seyller)

Sadly, apparatus no longer intact and available to examine

NB: Not S, since experimenters carefully desulfurized Cu. (T. Maroutian)
Height-height correlation functions

\[G(x, t) = \langle [h(r + x \hat{e}_x, t) - h(r, t)]^2 \rangle \]

\[x \sim \xi^{1/z} \quad \text{indep of } x(\propto t^{2\beta}) \]

\[\propto x^{2\alpha} \]

\begin{tabular}{|c|c|}
\hline
Imp & Slope \\
\hline
Cu & 0.92 \\
C & 1.03 \\
Al & 0.93 \\
Ni & 0.96 \\
W & 1.13 \\
\hline
\end{tabular}

\[\text{decreasing } \lambda_m \]
2) Embedding (emb), 3) hopping (hop), and 4) exchange (exc) diffusion barriers on Cu (001) computed with VASP.

Exchange moves not in our minimal model nor our algorithm.

Quandary: reconcile meandering & small ES (E_{exc}).

<table>
<thead>
<tr>
<th></th>
<th>E_d</th>
<th>E_{emb}</th>
<th>$E_{\text{hop}} (E_{\text{ES}})$</th>
<th>E_{exc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.550/0.0</td>
<td>0.695/0.0</td>
<td>0.695 (0.145)/0.408</td>
<td>0.510/0.408</td>
</tr>
<tr>
<td>Fe</td>
<td>0.911/0.0</td>
<td>0.427/0.756</td>
<td>1.316 (0.405)/0.544</td>
<td>0.295/0.980</td>
</tr>
<tr>
<td>Mn</td>
<td>0.865/0.0</td>
<td>0.397/0.863</td>
<td>1.334 (0.469)/0.613</td>
<td>0.233/1.088</td>
</tr>
<tr>
<td>W</td>
<td>0.880/0.0</td>
<td>0.262/1.690</td>
<td>1.845 (0.965)/0.882</td>
<td>0.094/1.767</td>
</tr>
</tbody>
</table>

Energies in eV After t: $E_{\text{init}} - E_{\text{fin}}$.

Evolution of Island Structures: Simulations of Circular Islands
Mulheran & Blackman, PRB 53 (’96) 10261

Can be more fruitful to study distribution of areas of capture zones (CZ) [Voronoi cells] than of island sizes!

\[s = \frac{\text{capture zone area}}{\text{average cap. zone area}} \]
Single-parameter distributions with mean = 1, same variance, in order of increasing skewness

- **Gaussian:** \(P_{\sigma}(s) = (2\pi \sigma^2)^{-1/2} \exp[-(s-1)^2/2\sigma^2] \)
 Mean-field-like; modest \(\sigma^2 \), significant probability for \(s < 0 \)

- **Generalized Wigner:** \(P_{\varphi}(s) = a_{\varphi} s^\varphi \exp(-b_{\varphi} s^2), \)
 \(\text{var.} = [(\varphi+1)/2b_{\varphi}]^{-1}, \quad b_{\varphi} = [\Gamma(1+\varphi/2)/\Gamma(1/2+\varphi/2)]^2 \)
 Describes fluctuations of broad range of systems, inc. nuclear energy levels, chaotic orbits, based on symmetry for \(\varphi = 1,2,4 \) (orthogonal, unitary, or symplectic \(\mathcal{H} \), via random matrix theory) generalizable to repelling fermions in 1D, terrace-width distributions on vicinal surfaces (with related to strength of dimensionless \(\ell^{-2} \) elastic repulsion between steps, etc.

- **Gamma:** \(P_{\varphi}(s) = [\alpha/\Gamma(\alpha)] s^{\alpha-1} \exp(-\alpha s), \text { var.} = \alpha^{-1} \)
 Exact for random point deposition in 1D [Kiang, Z. Astrophys. 64 (’66) 433], but does not generalize to larger islands or higher D; used for foams & froths by Weaire et al.

- **Log-normal:** \(P_{\sigma}(s) = (2\pi \sigma^2)^{-1/2} s^{-1} \exp[-(\ln(s)+\sigma^2/2)^2/2\sigma^2] \),
 \(\text{var.} = \exp(\sigma^2)-1, \)
 product of many indep. positive random variables

\[b \approx i + 2 = i + 1 \text{ in mean field} \]
Calogero–Sutherland Model’s Ground State & Random Matrices

Calogero-like Hamiltonian:

\[\mathcal{H} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + \frac{2}{2} \beta \left(\frac{\beta}{2} - 1 \right) \sum_{1 \leq i < j \leq N} (x_j - x_i)^{-2} + \omega^2 \sum_{j=1}^{N} x_j^2 \]

\[\rightarrow \infty, \omega \rightarrow 0; \text{ in Calogero } \mathcal{H}, x_j^2 \rightarrow (x_j - x_i)^2. \]

\[\Psi_0 = \prod_{1 \leq i < j \leq N} |x_j - x_i|^{\epsilon/2} \exp \left(-\frac{1}{2} \omega \sum_{k=1}^{N} x_k^2 \right) \]

The ground state density \(\Psi_0^2 \) is recognized as a joint probability distribution from the theory of random matrices for Dyson’s Gaussian Hamiltonian:

\[-\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + \frac{2}{2} \beta \left(\frac{\beta}{2} - 1 \right) \frac{\pi^2}{L^2} \sum_{i<j} \left[\sin \frac{\pi (x_j - x_i)}{L} \right]^{-2} \]

\[\Psi_0 = \prod_{i<j} \left| \sin \frac{\pi (x_j - x_i)}{L} \right|^{\epsilon/2}, \quad x_j > x_i \]

\[\theta_i \equiv 2\pi x_i/L \quad \Rightarrow \quad \Psi_0^2 = \prod_{i<j} |e^{i\theta_j} - e^{i\theta_i}|^\epsilon \]

The ground state density of C-S models corresponds to exact \(P(s) \) of RMT for cases \(\epsilon = 1, 2, \& 4 \). But \(\epsilon = 1 + (1 + 4\bar{A})^{1/2} \) need not have these values. \(P_\epsilon(s) \) is a good approx. of exact \(P \) for these 3 values so why not for all \(\epsilon > 0 \)?!
Phenomenological mean-field theory

CZ does “random walk” with 2 competing effects on ds/dt:

1] Neighboring CZs hinder growth \Rightarrow external pressure leads to force opposing large s
 Also noise since atom can go to “wrong” island

2] Non-symmetric confining potential, newly nucleated island has non-tiny CZ, comparable to neighbors so force stops fluctuations of CZ to tiny values

3] Nucleation rate
 \propto adatom density x density of critical nuclei
 \propto (adatom density)$^{(i+1)}$ [Walton relation]

4] New CZ in region of very small CZs will have size comparable to those nearby, so very small also

5] Combine to Langevin eq. $ds/dt = K\left(\frac{(i+1)}{s} - Bs\right) + \eta$
 Leads to Fokker-Planck eq. with stationary sol’n $P_\infty(s)$
 cf. AP, HG, & TLE, Phys. Rev. Lett. 95 ('05) 246101
Comparison with refined simulations for compact islands: $\varphi \approx i+2$-
Mean field argument [AP& TLE, PRL 99 (’07) 226102] predicted $\varphi = i + 1$

- numerical data [Li, Han, Evans, PRL Comment 104 (’10) 149601 & pvt.;
 points islands–Shi, Shim, Amar, PRE 79 (’09) 011602]

 $P_{i+2}(s)$ [Pimpinelli & Einstein, PRL Reply 104 (’10) 149602] GWS
 $P_{i+2\pm 1}(s)$
 $G_{2i+5}(s)$ gamma distribution

Fractal/ramified islands not yet scrutinized

Best fit of extensive data: between $P_{i+2}(s)$ & $G_{2i+5}(s)$

View i as an effective parameter
Applications to actual (not MC) experiments

- Pentacene/SiO$_2$
- Pentacene-PentaceneQuinone
- Alq$_3$ on passivated Si(100)
- InAs *quantum dots* on GaAs(001)
Growth-morphology differences are already visible at submonolayer coverage.

- Pure Cu: nr. islands \(N_i\) does not change with coverage
- Cu with C: single impurity atoms + large islands
- Cu with Al: very similar to pure Cu
Growth-morphology differences are already visible at submonolayer coverage.

- Cu with Ni: small islands, nr. of islands (N_i) increases with coverage (θ)
- Cu with W: similar to Ni but more small islands

Lattice = 800×800
$T = 425$ K,
$F = 5 \times 10^{-2}$ ML/s
Impurity Conc. = 2%
How do impurities affect island nucleation?

- Number of islands (N_i): rapid increase → slow increase → decrease (coalescence)

- Average island size (AIS) increases with θ throughout the regime for all impurities

<table>
<thead>
<tr>
<th>Impurity sets</th>
<th>O, C, S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>Ag, Sn, Zn, Al</td>
</tr>
<tr>
<td>Set 3</td>
<td>Pd, Ni, Si</td>
</tr>
<tr>
<td>Set 4</td>
<td>Co, Fe, Mn, W</td>
</tr>
</tbody>
</table>

Codeposition of impurities from different (same) sets leads to significantly different (similar) island nucleation and growth behavior in the sub-monolayer regime.
Distribution of Capture-zone Areas

- GWD gives good fits to CZ-area distribution in the presence of different impurities (NB: extension from standard single-species).
- ϱ increases with θ for all cases except Cu with set-1 impurities – due to repulsive E_{NN}, single impurity atom islands?
- In general, higher E_d and higher E_{NN} values lead to smaller ϱ, due to reduction in the critical cluster size (i).

$$P_e(s) = a_se^{-bs^2}$$

<table>
<thead>
<tr>
<th>Impurity sets</th>
<th>Set 1</th>
<th>Set 2</th>
<th>Set 3</th>
<th>Set 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O, C, S</td>
<td>Ag, Sn, Zn, Al</td>
<td>Pd, Ni, Si</td>
<td>Co, Fe, Mn, W</td>
</tr>
</tbody>
</table>

![Graph showing distribution of capture-zone areas and impurity sets.](image-url)
REFERENCES:

Role of Codeposited Impurities During Growth: I. Explaining Distinctive Experimental Morphology on Cu(0 0 1), Ajmi BH. Hamouda, Rajesh Sathiyanarayanan, A. Pimpinelli, and TLE, submitted to PRB.

Role of Codeposited Impurities During Growth: II. Dependence of Morphology on Binding and Barrier Energies, Rajesh Sathiyanarayanan, Ajmi BH. Hamouda, A. Pimpinelli, and TLE, submitted to PRB

CZD & Wigner, AP & TLE, Phys. Rev. Lett. 99 (’07) 226102 ; 104 (’10) 149602 (& 149601)
Conclusions - 1

kMC study of the effect of impurities on vicinal-surface step-flow growth → Agreement with Cu exp’t: morphology & $\lambda(F)$.

• **Comparison** with exp’t on vicinal Cu supports the hypothesis that many previously unexplained features of the meandering instability are due to impurities.

• **Impurities**: responsible for *qualitative* & *quantitative* modification of the surface morphology:
 - *nucleation centers* → pyramids
 - *diffusion less dependent on F* → wavelength

• **DFT (VASP) study**: *impurity & concentration*
 Mid-transition (Fe, Mn, W) rather than gases

• Experimental apparatus info strongly suggests that W is the culprit
Conclusions - 2

• Based on their E_{NN} and E_d values (relative to the values for Cu), impurity atoms can be classified into sets.

• Our simulations show that codeposition of impurities from different sets with Cu result in significantly different surface morphologies for growth:
 – in the step-flow mode ($\theta = 40$ ML) and
 – in the submonolayer regime ($\theta \leq 0.7$ ML).

• Generalized Wigner distribution fits well the distribution of capture-zone areas for pure Cu and Cu codeposited with impurities. However, the exact connection between the fit parameter ρ and i is not clearly known.

• Growth morphologies can be controlled through the codeposition of appropriate impurity atoms.

• Dramatic effect of impurities on growth → self-nanostructuring / stabilizing.
(Let’s Get) Physical
Olivia Newton-John

I'm saying all the things that I know you'll like,
Makin' good conversation
I gotta handle you just right,
You know what I mean
I've been patient, I've been good,
Tried to keep my hands on the table
I took you to an intimate restaurant,
Then to a suggestive movie
It's gettin' hard this holdin' back,
You know what I mean
There's nothin' left to talk about,
Unless it's horizontally
I'm sure you'll understand my point of view,
We know each other mentally
You gotta know that you're bringin' out
The animal in me

Let's get physical, physical,
I wanna get physical, let's get into physical
Let me hear your body talk,
Your body talk, let me hear your body talk

Let's get animal, animal,
I wanna get animal, let's get into animal
Let me hear your body talk,
Your body talk, let me hear your body talk.