Structure and Stability of Grain Boundaries in Iron

<u>T. Ossowski¹</u>, J. Kuriplach², E. Zhurkin³, M. Hou⁴, A. Kiejna¹

¹ University of Wrocław, Wrocław, Poland
² Charles University, Prague, Czech Republic
³ Saint-Petersburg State Polytechnical University, St. Petersburg, Russia
⁴ Université Libre de Bruxelles, Brussels, Belgium

Outline

- Motivations
- Methods
- Results
- Conclusions

Motivation

- Fe and its alloys: one of the most popular materials
- Real materials: grains, grain boundaries and interfaces
- Fe-Cr promising system for nuclear applications
- Vacancies or/and Cr segregation/depletion: mechanical and corrosion properties of materials are not clear from experiment
- *ab initio* DFT calculations: $\sum 5(210)$ and $\sum 3(111)$ one configuration
- Molecular Dynamics: $\sum 5(210) \rightarrow 5$ different configurations
- $\sum 5(210)$: geometry from DFT stable in MD
- Verification of MD geometries by DFT
- Vacancies and impurities at GBs

Methods

- Tilted grain boundaries $\sum 5(210)$ and $\sum 3(111)$.
- Supercells, periodic conditions
- *ab initio* DFT calculations
 - VASP
 - GGA PW91 and PBE
 - spin-polarised
 - supercells (40 and 30 atoms)
 - full relaxation
- Molecular Dynamics (MD)
 - boxes of 8400 and 1728 atoms
 - interatomic potential of P. Olsson et
 - al. Phys. Rev. B 72, 214119 (2009)
 - damped MD (0 K)

DFT calculations

E. Wachowicz et al., Phys. Rev. B, 81, 094104 (2010).

- symmetric
- $E_{_{GB}} = 1.57 \text{ J/m}^2$

- shift ~0.6 Å in $[1\overline{2}0]$ direction
- E_{G B} = 2.00 J/m²

Fe ∑5(210): DFT and MD

Fig. Different side views of Fe Σ 5(210) GB geometry from DFT and MD

Geometry from DFT is the same as from MD (0 K).

 GB energy:
DFT: 2.00 J/m² MD: 1.42 J/m²

Molecular Dynamics

• Fe $\sum 5(210)$: 5 different, stable structures

DFT calculations of MD configs.

MD and DFT order: $E_{GB}^{cIV} < E_{GB}^{cII} < E_{GB}^{cII} < E_{GB}^{cIII}$

	GB energy (J/m ²)		
Configuration	MD	DFT	
Cl	1.42	2.00	
cll	1.26	1.75	
cIII	1.54	2.02	
cIV	1.12	1.66	
cV	1.64	→ CI	
MD: E_c^c	$E_{B}^{IV} < E_{GB}^{cII} < E_{GB}^{cI}$	$<\!E_{GB}^{cIII}<\!E_{GB}^{cV}$	
DFT: E_{c}^{c}	$E_{BB}^{IV} < E_{GB}^{cII} < E_{GB}^{cI}$	$<\!E_{GB}^{cIII}$	

- Configrations cI-cIV confirmed to exist in *ab initio*
- Interatomic potential apllied in MD describes very well interactions at GBs

DFT: GGA PW91 and PBE XC

	GB energy (J/m ²)		
Configuration	PBE	PW91	
C	2.03	2.00	
cll	1.71	1.75	
cIII	2.11	2.02	
cIV	1.63	1.66	
cV	\rightarrow Cl	\rightarrow C	

DFT order:
$$E_{GB}^{cIV} < E_{GB}^{cII} < E_{GB}^{cI} < E_{GB}^{cIII}$$

Exchange-correlation does not influence energies and structures

GB energy from DFT and MD

General trend of GB energy is the same in DFT as in MD, most stable cIV configuration

• For symmetric $\sum 3$ (111) configuration: E_{GB} (MD) = 1.31 J/m², E_{GB} (DFT) = 1.57 J/m²

Vacancies and Cr at $\sum 5(210)$ from MD

	Binding energy [eV]	
position	E _b (V)	E _b (Cr)
D	+0.41	-0.05
Е	+0.29	-0.07
F	+0.49	-0.11
G	-0.05	+0.27

- Vacancies prefer sites near GB but not certain at the boundary (G)
- Cr atoms can be bound to certain positions at the GB
- Confirmation by means of *ab initio*: work in progress

Cr at Fe GBs

E. Wachowicz et al., Phys. Rev. B, 81, 094104 (2010).

Cr segregates at both considered grain boundaries

Cr enhances cohesion of Fe Gbs

SUMMARY

- We found most stable geometries for selected grain boundaries in Fe
- Very good agreement between DFT and MD results
- *Ab initio* calculations confirmed quality of potential describes interatomic interactions in MD simulations
- Cr additions prefer sites at GBs in Iron and are cohesion enhancers
- Vacancies prefer sites near boundaries (MD)
- Additional DFT results needed for Cr and vacancies at GBs (work in progress)