cosmology within the noncommutative approach to the standard model of particle physios

the planck scale meeting wroclaw, 29 june- 4 july 2009
mairi sakellariadou
King's college London

outline

- motívation
cosmology
partícle physícs
- Noncommutative Geometry (NCG)
- success of the NCG approach to the standard model
- cosmologícal consequences
noncommutative corrections to Einstein's equations nelson, sakellaríadou arxív:0812.1657 inflation through the Higgs field nelson, sakellaríadou arxív:0903.1520
- conclusíons

motívation

cosmology

Eu cosmological models can be tested with many very accurate astrophysical data, whíle high energy experiments (LHC) will test some of the theoretical pillars of these models

cosmology

Eu cosmological models can be tested with many very accurate astrophysical data, while high energy experiments (LHC) will test some of the theoretical pillars of these models
despíte the golden era of cosmology, a number of questions:

- origín of $D E / D M$
- search for natural and well-motivated inflationary model
are stíll awaitíng for a definite answer
main theoretical approaches upon which cosmological models have been buílt:
- string theory
- loop quantum gravity
main theoretical approaches upon which cosmological models have been buílt:
- string theory
- Loop quantum gravity
- Noncommutatíve geometry

NCG approach to the Standard Model (SM), leading to all detailed structure of SM and implying physical predictions at unification scale
chamseddine, connes, marcollí 2007
laws of physics at low energíes:

$$
S_{\text {Einstein-Hilbert }}+S_{\text {Standard Model }}
$$

particle physics
laws of physics at low energies:

$S_{\text {Einstein-Hilbert }}+S_{\text {Standard Model }}$

depends on geometry of manifold (\mathcal{M}, g)
depends on internal symmetries of a gauge group G

particle physics

Laws of physics at low energies:
$S_{\text {Einstein -Hilbert }}+S_{\text {Standard Model }}^{1}$
depends on geometry of manifold (\mathcal{M}, g)
GR is governed by diffeomorphism invariance (outer automorphism)
depends on internal symmetries of a gauge group G
gauge symmetries are based on local gauge invariance (inner automorphism)

particle physics

laws of physics at low energies:

$S_{\text {Einstein-Hilbert }}+S_{\text {Standard Model }}$

depends on geometry of manifold (M, g)
GR is governed by diffeomorphism invariance (outer automorphism)
depends on internal symmetries of a gauge group G
gauge symmetries are based on local gauge invariance
(inner automorphism)
the difference between these two kinds of symmetries is responsible for not finding a unified theory of all interactions including gravity
in addition:

- why the gauge group G is specificically $U(1) \times S U(2) \times S U(3)$?
- why the fermions occupy the particular representations they do?
- why there are three families and why there are 16 fundamental fermions per family?
- What is the theoretical origin of the Higgs mechanism and spontaneous breakdown of gange symmetries?
- What is the Higgs mass and how to explain all the fermionic masses?
to be answered by the ultimate unified theory of all interactions

noncommutative geometry

NcGapproach

much below Planck scale, gravity is a classical theory as energies approach Plancle scale, the quantum nature of ST reveals ítself, and $S_{\text {Einstein-Hilbert }}$ becomes an approximation in addition, all forces (including gravity) are unified, so that all interactions correspond to one underlying symmetry
much below Planck scale, gravity is a classical theory
as energies approach Planck scale, the quantum nature of ST reveals ítself, and $S_{\text {Einstein-Hilbert becomes an approximation }}$ in addition, all forces (including gravity) are unified, so that all interactions correspond to one underlying symmetry
the nature of ST (and of geometry) would change at Planckian energíes, in such a way that at lower energíes one recovers the picture of diffeomorphism and internal gauge symmetries
much below Planck scale, gravity is a classical theory as energies approach Planck scale, the quantum nature of ST reveals ítself, and $S_{\text {Einstein-Hilbert becomes an approximation }}$ in addítion, all forces (including gravity) are unified, so that all interactions correspond to one underlying symmetry
the nature of ST (and of geometry) would change at Planckian energies, in such a way that at lower energies one recovers the picture of diffeomorphism and internal gauge symmetries
indirect approach: search for hidden structure in the functional of gravity coupled to SM of particle physícs at present energíes

NcG approach ís based on 3 ansatz:

NeG approach is based on 3 ansatz:

1. at some energy level, ST is the product $\mathcal{M} \times \mathcal{F}$ of a continuous 4 dim manifold \mathcal{M} times a discrete noncommutative space \mathcal{F}

NeG approach is based on 3 ansatz:

1. at some energy level, ST is the product $\mathcal{M} \times \mathcal{F}$ of a continuous 4 dim manifold \mathcal{M} times a discrete noncommutative space \mathcal{F}
the noncommutative nature of \mathcal{F} is given by a spectral triple

$$
\mathcal{F}=(\mathcal{A}, \mathcal{H}, D)
$$

NeG approach is based on 3 ansatz:
l. at some energy level, ST is the product $\mathcal{M} \times \mathcal{F}$ of a continuous 4 dim manifold \mathcal{M} times a discrete noncommutative space \mathcal{F}
the noncommutative nature of \mathcal{F} is given by a spectral triple

$$
\mathcal{F}=(\mathcal{A}, \mathcal{H}, D)
$$

associative algebra with unit 1 andinvolution \star (algebra of coordinates)

NCGapproach is based on 3 ansatz:

1. at some energy level, ST is the product $\mathcal{M} \times \mathcal{F}$ of a continuous 4 dim manifold \mathcal{M} times a discrete noncommutative space \mathcal{F}
the noncommutative nature of \mathcal{F} is given by a spectral triple

$$
\mathcal{F}=(\mathcal{A}, \mathcal{H}, D)
$$

associative algebra with unit 1 andinvolution \star (algebra of coordinates)
complex Hilbert space carrying a faithful representation of the algebra

NeG approach is based on 3 ansatz:
l. at some energy level, ST is the product $\mathcal{M} \times \mathcal{F}$ of a continuous 4 dim manifold \mathcal{M} times a discrete noncommutative space \mathcal{F}
the noncommutative nature of \mathcal{F} is given by a spectral triple

$$
\mathcal{F}=(\mathcal{A}, \mathcal{H}, D)
$$

associative algebra with unit 1 and involution * (algebra of coordinates)
self-adjoint operator in \mathcal{H} so that all commutators $[D, a]$ are bounded for $a \in \mathcal{A}$ (inverse of line element)
complex Hilbert space carrying a faithful representation of the algebra
remark:
remark:
the hypothesis that ST is the product of a continuous manifold \mathcal{M} by a discrete space \mathcal{F} is the easiest generalisation of a commutative space
remark:
the hypothesis that ST is the product of a continuous manifold \mathcal{M} by a discrete space \mathcal{F} is the easiest generalisation of a commutative space
at Planckian energies the structure of ST must become noncommutative in a non trivial way, while its low energy limit should give the product $\mathcal{M} \times \mathcal{F}$
remark:
the hypothesis that ST is the product of a continuous manifold \mathcal{M} by a discrete space \mathcal{F} is the easiest generalisation of a commutative space
at Planckian energies the structure of ST must become noncommutative in a non trivial way, while its low energy limit should give the product $\mathcal{M} \times \mathcal{F}$
a geometry of such a nontrivial noncommutative ST has not yet been considered
11. the finite dimensional involutive algebra is (main input):

$$
k=2 a
$$

the finite dimensional involutive algebra is (main input):

quaternion: an element $(a, b, c, d) \in \mathbb{R}^{4}$
$(\mathbb{H},+)$ is a commutative group, but $(\mathbb{H},+, \times)$ is noncommutative
any quaternion can be written as a linear combination of elements of the basis $1, i, j, k$ as $a \cdot 1+b \cdot i+c \cdot j+d \cdot k$ with a, b, c, d reals

the finite dimensional involutive algebra is (main input):

$k=4 \quad$ is the first value that produces the correct number of fermions in each generation; $k^{2}=16$ in each of 3 generations
chamseddine, connes 2007
quaternion: an element $(a, b, c, d) \in \mathbb{R}^{4}$
$(\mathbb{H},+)$ is a commutative group, but $(\mathbb{H},+, \times)$ is noncommutative
any quaternion can be written as a linear combination of elements of the basis $1, i, j, k$ as $a \cdot 1+b \cdot i+c \cdot j+d \cdot k$ with a, b, c, d reals
III. the Dirac operator connects the two pieces of the product geometry nontrívially
111. the Dirac operator connects the two pieces of the product geometry nontrívially

spectral action principal

the action functional depends only on the spectrum of the Dirac operator and is of the form:

$$
\operatorname{Tr}(f(D / \Lambda))
$$

III. the Dirac operator connects the two pieces of the product geometry nontrivially
\therefore."sinüllar to Fourier transforirv.
\because..in commutative geometry....

spectral action principal

the action functional depends only on the spectrum of the Dirac operator and is of the form:

$$
\operatorname{Tr}(f(D / \Lambda))
$$

III. the Dirac operator connects the two pieces of the product geometry nontrivially
\because.in commutative geometry....

spectral action principal

the action functional depends only on the spectrum of the Dirac operator and is of the form:

$\operatorname{Tr}(f(D / \Lambda))$

test function
fixes the energy scale
f plays a role through its momenta f_{0}, f_{2}, f_{4} $f_{k}=\int_{0}^{\infty} f(v) v^{k-1} d v$ for $k>0$ and $f_{0}=f(0)$
III. the Dirac operator connects the two pieces of the product geometry nontrívially
\because.in commutative geometry....
spectral action principal
the action functional depends only on the spectrum of the Dirac operator and is of the form:
test function fixes the energy scale
these 3 additional real parameters are physically related to the coupling constants at unification, the gravitational constant, and the cosmological constant
III. the Dirac operator connects the two pieces of the product geometry nontrívially
\because.in commutative geometry....
spectral action principal
the action functional depends only on the spectrum of the Dirac operator and is of the form:
it only accounts $\operatorname{Tr}(f(D / \Lambda))$ for the bosonic part of the model
test function
fixes the energy scale
these 3 additional real parameters are physically related to the coupling constants at unification, the gravitational constant, and the cosmological constant
in addition, the empirical data taken as input are:

- there are 16 chiral fermions in each of 3 generations
- the photon is massless
- there are Majorana mass terms for the neutrinos
the full Lagrangian of the SM, minimally coupled to gravity, is obtained as the asymptotic expansion of the spectral action for the product ST:
chamseddine, connes, marcollí 2007
$\mathcal{L}_{S M}=-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d e} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-M^{2} W_{\mu}^{+} W_{\mu}^{-}-$ $\frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{w}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}-i g c_{w}\left(\partial_{\nu} Z_{\mu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right.$ $\left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-i g s_{w}\left(\partial_{\nu} A_{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right.$ $\left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+$ $g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left(A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-\right.\right.$ $\left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-2 M^{2} \alpha_{h} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-$
$\beta_{h}\left(\frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+\frac{2 M^{4}}{g^{2}} \alpha_{h}-g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)-$ $\frac{1}{8} g^{2} \alpha_{h}\left(H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right)-g M W_{\mu}^{+} W_{\mu}^{-} H-$ $\frac{1}{2} g \frac{M}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left(W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right)+$
$\frac{1}{2} g\left(W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)+W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right)+\frac{1}{2} g \frac{1}{c_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)+\right.$ $M\left(\frac{1}{c_{w}} Z_{\mu}^{0} \partial_{\mu} \phi^{0}+W_{\mu}^{+} \partial_{\mu} \phi^{-}+W_{\mu}^{-} \partial_{\mu} \phi^{+}\right)-i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-$ $i g \frac{1-2 c_{w}^{2}}{2 c_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left(H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)-$ $\frac{1}{8} g^{2} \frac{1}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right)-\frac{1}{2} g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-$ $\frac{1}{2} i g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-$ $g^{2} \frac{s_{w}}{c_{w}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{2} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}+\frac{1}{2} i g_{s} \lambda_{i j}^{a}\left(\bar{q}_{i}^{\sigma} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda}(\gamma \partial+$ $\left.m_{\nu}^{\lambda}\right) \nu^{\lambda}-\bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left(-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right)+$ $\frac{i g}{4 c_{w}} Z_{\mu}^{0}\left\{\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{d}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) d_{j}^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1-\frac{8}{3} s_{w}^{2}+\right.\right.\right.$ $\left.\left.\left.\gamma^{5}\right) u_{j}^{\lambda}\right)\right\}+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) U^{l e p}{ }_{\lambda \kappa} e^{\kappa}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right)+$ $\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{e}^{\kappa} U^{l e p_{\kappa \lambda}^{\dagger}} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\kappa \lambda}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+$ $\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{e}^{\kappa}\left(\bar{\nu}^{\lambda} U^{l e p}{ }_{\lambda \kappa}\left(1-\gamma^{5}\right) e^{\kappa}\right)+m_{\nu}^{\lambda}\left(\bar{\nu}^{\lambda} U^{l e p}{ }_{\lambda \kappa}\left(1+\gamma^{5}\right) e^{\kappa}\right)+\right.$ $\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{e}^{\lambda}\left(\bar{e}^{\lambda} U^{l e p_{\lambda \kappa}^{\dagger}}\left(1+\gamma^{5}\right) \nu^{\kappa}\right)-m_{\nu}^{\kappa}\left(\bar{e}^{\lambda} U^{l e p_{\lambda \kappa}^{\dagger}}\left(1-\gamma^{5}\right) \nu^{\kappa}\right)-\frac{g}{2} \frac{m_{\nu}^{\lambda}}{M} H\left(\bar{\nu}^{\lambda} \nu^{\lambda}\right)-\frac{g}{2} \frac{m_{e}^{\lambda}}{M} H\left(\bar{e}^{\lambda} e^{\lambda}\right)+\right.$ $\frac{i g}{2} \frac{m_{\nu}^{\lambda}}{M} \phi^{0}\left(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}\right)-\frac{i g}{2} \frac{m_{e}^{\lambda}}{M} \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)-\frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}-\frac{1}{4} \overline{\bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}}+$ $\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right)+\right.$ $\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{d}^{\lambda}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1+\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right)-\frac{g}{2} \frac{m_{u}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\frac{g}{2} \frac{m_{d}^{\lambda}}{M} H\left(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}\right)+\right.$ $\frac{i g}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)$

phenomenology

relations between gauge coupling constants:

$g_{2}^{2}=g_{3}^{2}=\frac{5}{3} g_{1}^{2}$
 coincide with those obtained in GUTs

chamseddine, connes, marcolli 2007
relations between gauge coupling constants:

chamseddine, connes, marcollí 2007
relations between gauge coupling constants:

$$
g_{2}^{2}=g_{3}^{2}=\frac{5}{3} g_{1}^{2}
$$

coincide with those obtained in GUTs

$\sin ^{2} \theta_{W}=\frac{3}{8}$

a value also obtained in Su(5) and SO(10)

$$
\alpha_{i}=\frac{g_{i}^{2}}{4 \pi}
$$

the graphs of the running of the three constants α_{i} do not meet exactly, so they do not specífy a unique unification energy
chamseddine, connes, marcollí 2007

Higgs mass: of the order of 170 ciev (recently ruled out experimentally)
higher order contributions to Hings potential may modify the prediction for the Higgs mass
chamseddine, connes, marcollí 2007

Hings mass: of the order of 170 GeV (recently ruled out experimentally)
higher order contributions to Higgs potential may modify the prediction for the Higgs mass
acceptable top quark mass of 179 GeV
chamseddine, sones, marcollí 2007

Higgs mass: of the order of 170 GeV (recently ruled out experimentally)
higher order contributions to Higgs potential may modify the prediction for the Higgs mass
acceptable top quark mass of 179 GeV
neutrino mixing and see saw mechanism to give very light left-handed neutrínos
chamseddine, connes, marcollí 2007

Higgs mass: of the order of 170 ciev (recently ruled out experimentally)
higher order contributions to Higgs potentíal may modify the prediction for the Higgs mass
acceptable top quark mass of 179 GeV
neutrino mixing and see saw mechanism to give very light left-handed neutrinos
correct representations of the fermions with respect to su(3) $\sin (2) \times u(1)$ are derived
chamseddine, connes, marcollí 2007
problems

problems

- the unification of gauge couplings with each other and with Newton constant do not meet at one point

problems

- the unification of gauge couplings with each other and with Newton constant do not meet at one point
- mass of Higgs field is around 170 Gev; it however depends on the value of gauge couplings at unification scale, which is very uncertain

problems

- the unification of gauge couplings with each other and with Newton constant do not meet at one point
- mass of Higgs field is around 170 ciev; it however depends on the value of gauge couplings at unification scale, which is very uncertain
- no new particles besides those of the SM; this will be problematic if new physics is found at LHC

problems

- the unification of gauge couplings with each other and with Newton constant do not meet at one point
- mass of Higgs field is around 170 ciev; it however depends on the value of gauge couplings at unification scale, which is very uncertain
no new particles besides those of the SM; this will be problematic if new physics is found at LHC
- no explanation of the number of generations

problems

- the unification of gauge couplings with each other and with Newton constant do not meet at one point
- mass of Higgs field is around 170 Gev; it however depends on the value of gauge couplings at unification scale, which is very uncertain
no new particles besides those of the SM; this will be problematic if new physics is found at LHC
- no explanation of the number of generations
- no constraints on values of the Yukawa couplings
speculations on the spectrum of the noncommuative space on QG
the small deviation from experimental results of the predictions of the SM derived from spectral action is an indication that the assumption that ST is a product of a continuous 4 dim manifold times a discrete space breaks down at energíes just below unification scale
at Planckian energies, the structure of ST becomes noncommutative in a nontrivial way, which will change in an intrinsic way the particle spectrum

next steps

- include higher order corrections to the spectral action, to show gauge couplings unification, and thus to get an accurate prediction for the Higgs mass
- include higher order corrections to the spectral action, to show gauge couplings unification, and thus to get an accurate prediction for the Higgs mass
- find the noncommutative space whose limit is the product $\mathcal{M}_{4} \times \mathcal{F}$

cosmologícal consequences

corrections to Einstein's equations
$\mathcal{L}_{S M}=-\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a}-g_{s} f^{a b c} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c}-\frac{1}{4} g_{s}^{2} f^{a b c} f^{a d e} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e}-\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-M^{2} W_{\mu}^{+} W_{\mu}^{-}-$ $\frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0}-\frac{1}{2 c_{w}^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu}-i g c_{w}\left(\partial_{\nu} Z_{\mu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-Z_{\nu}^{0}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right.$ $\left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+Z_{\mu}^{0}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-i g s_{w}\left(\partial_{\nu} A_{\mu}\left(W_{\mu}^{+} W_{\nu}^{-}-W_{\nu}^{+} W_{\mu}^{-}\right)-A_{\nu}\left(W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-}-\right.\right.$ $\left.\left.W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}\right)+A_{\mu}\left(W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-}-W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+}\right)\right)-\frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-}+\frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\mu}^{+} W_{\nu}^{-}+$ $g^{2} c_{w}^{2}\left(Z_{\mu}^{0} W_{\mu}^{+} Z_{\nu}^{0} W_{\nu}^{-}-Z_{\mu}^{0} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w}^{2}\left(A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-}-A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}\right)+g^{2} s_{w} c_{w}\left(A_{\mu} Z_{\nu}^{0}\left(W_{\mu}^{+} W_{\nu}^{-}-\right.\right.$ $\left.\left.W_{\nu}^{+} W_{\mu}^{-}\right)-2 A_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}\right)-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-2 M^{2} \alpha_{h} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-\frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0}-$
$\beta_{h}\left(\frac{2 M^{2}}{g^{2}}+\frac{2 M}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right)+\frac{2 M^{4}}{g^{2}} \alpha_{h}-g \alpha_{h} M\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}\right)-$ $\frac{1}{8} g^{2} \alpha_{h}\left(H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right)-g M W_{\mu}^{+} W_{\mu}^{-} H-$ $\frac{1}{2} g \frac{M}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left(W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} \phi^{0}\right)\right)+$
$\frac{1}{2} g\left(W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)+W_{\mu}^{-}\left(H \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\mu} H\right)\right)+\frac{1}{2} g \frac{1}{c_{w}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)+\right.$ $M\left(\frac{1}{c_{w}} Z_{\mu}^{0} \partial_{\mu} \phi^{0}+W_{\mu}^{+} \partial_{\mu} \phi^{-}+W_{\mu}^{-} \partial_{\mu} \phi^{+}\right)-i g \frac{s_{w}^{2}}{c_{w}} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+i g s_{w} M A_{\mu}\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-$ $i g \frac{1-2 c_{w}^{2}}{2 c_{w}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+i g s_{w} A_{\mu}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{+} W_{\mu}^{-}\left(H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)-$ $\frac{1}{8} g^{2} \frac{1}{c_{w}^{2}} Z_{\mu}^{0} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{w}^{2}-1\right)^{2} \phi^{+} \phi^{-}\right)-\frac{1}{2} g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)-$ $\frac{1}{2} i g^{2} \frac{s_{w}^{2}}{c_{w}} Z_{\mu}^{0} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{w} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+W_{\mu}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{w} A_{\mu} H\left(W_{\mu}^{+} \phi^{-}-W_{\mu}^{-} \phi^{+}\right)-$ $g^{2} \frac{s_{w}}{c_{w}}\left(2 c_{w}^{2}-1\right) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-}-g^{2} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-}+\frac{1}{2} i g_{s} \lambda_{i j}^{a}\left(\bar{q}_{i}^{\sigma} \gamma^{\mu} q_{j}^{\sigma}\right) g_{\mu}^{a}-\bar{e}^{\lambda}\left(\gamma \partial+m_{e}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda}(\gamma \partial+$ $\left.m_{\nu}^{\lambda}\right) \nu^{\lambda}-\bar{u}_{j}^{\lambda}\left(\gamma \partial+m_{u}^{\lambda}\right) u_{j}^{\lambda}-\bar{d}_{j}^{\lambda}\left(\gamma \partial+m_{d}^{\lambda}\right) d_{j}^{\lambda}+i g s_{w} A_{\mu}\left(-\left(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}\right)+\frac{2}{3}\left(\bar{u}_{j}^{\lambda} \gamma^{\mu} u_{j}^{\lambda}\right)-\frac{1}{3}\left(\bar{d}_{j}^{\lambda} \gamma^{\mu} d_{j}^{\lambda}\right)\right)+$ $\frac{i g}{4 c_{w}} Z_{\mu}^{0}\left\{\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{e}^{\lambda} \gamma^{\mu}\left(4 s_{w}^{2}-1-\gamma^{5}\right) e^{\lambda}\right)+\left(\bar{d}_{j}^{\lambda} \gamma^{\mu}\left(\frac{4}{3} s_{w}^{2}-1-\gamma^{5}\right) d_{j}^{\lambda}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1-\frac{8}{3} s_{w}^{2}+\right.\right.\right.$ $\left.\left.\left.\gamma^{5}\right) u_{j}^{\lambda}\right)\right\}+\frac{i g}{2 \sqrt{2}} W_{\mu}^{+}\left(\left(\bar{\nu}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) U^{l e p}{ }_{\lambda \kappa} e^{\kappa}\right)+\left(\bar{u}_{j}^{\lambda} \gamma^{\mu}\left(1+\gamma^{5}\right) C_{\lambda \kappa} d_{j}^{\kappa}\right)\right)+$ $\frac{i g}{2 \sqrt{2}} W_{\mu}^{-}\left(\left(\bar{e}^{\kappa} U^{l e p_{\kappa \lambda}^{\dagger}} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa} C_{\kappa \lambda}^{\dagger} \gamma^{\mu}\left(1+\gamma^{5}\right) u_{j}^{\lambda}\right)\right)+$ $\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{e}^{\kappa}\left(\bar{\nu}^{\lambda} U^{l e p}{ }_{\lambda \kappa}\left(1-\gamma^{5}\right) e^{\kappa}\right)+m_{\nu}^{\lambda}\left(\bar{\nu}^{\lambda} U^{l e p}{ }_{\lambda \kappa}\left(1+\gamma^{5}\right) e^{\kappa}\right)+\right.$ $\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{e}^{\lambda}\left(\bar{e}^{\lambda} U^{l e p_{\lambda \kappa}^{\dagger}}\left(1+\gamma^{5}\right) \nu^{\kappa}\right)-m_{\nu}^{\kappa}\left(\bar{e}^{\lambda} U^{l e p_{\lambda \kappa}^{\dagger}}\left(1-\gamma^{5}\right) \nu^{\kappa}\right)-\frac{g}{2} \frac{m_{\nu}^{\lambda}}{M} H\left(\bar{\nu}^{\lambda} \nu^{\lambda}\right)-\frac{g}{2} \frac{m_{e}^{\lambda}}{M} H\left(\bar{e}^{\lambda} e^{\lambda}\right)+\right.$ $\frac{i g}{2} \frac{m_{\nu}^{\lambda}}{M} \phi^{0}\left(\bar{\nu}^{\lambda} \gamma^{5} \nu^{\lambda}\right)-\frac{i g}{2} \frac{m_{e}^{\lambda}}{M} \phi^{0}\left(\bar{e}^{\lambda} \gamma^{5} e^{\lambda}\right)-\frac{1}{4} \bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}-\frac{1}{4} \overline{\bar{\nu}_{\lambda} M_{\lambda \kappa}^{R}\left(1-\gamma_{5}\right) \hat{\nu}_{\kappa}}+$ $\frac{i g}{2 M \sqrt{2}} \phi^{+}\left(-m_{d}^{\kappa}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1-\gamma^{5}\right) d_{j}^{\kappa}\right)+m_{u}^{\lambda}\left(\bar{u}_{j}^{\lambda} C_{\lambda \kappa}\left(1+\gamma^{5}\right) d_{j}^{\kappa}\right)+\right.$ $\frac{i g}{2 M \sqrt{2}} \phi^{-}\left(m_{d}^{\lambda}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1+\gamma^{5}\right) u_{j}^{\kappa}\right)-m_{u}^{\kappa}\left(\bar{d}_{j}^{\lambda} C_{\lambda \kappa}^{\dagger}\left(1-\gamma^{5}\right) u_{j}^{\kappa}\right)-\frac{g}{2} \frac{m_{u}^{\lambda}}{M} H\left(\bar{u}_{j}^{\lambda} u_{j}^{\lambda}\right)-\frac{g}{2} \frac{m_{d}^{\lambda}}{M} H\left(\bar{d}_{j}^{\lambda} d_{j}^{\lambda}\right)+\right.$ $\frac{i g}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}\left(\bar{u}_{j}^{\lambda} \gamma^{5} u_{j}^{\lambda}\right)-\frac{i g}{2} \frac{m_{d}^{\lambda}}{M} \phi^{0}\left(\bar{d}_{j}^{\lambda} \gamma^{5} d_{j}^{\lambda}\right)$

$g_{\mu \nu}$ the Riemannian metric

Ríemannian curvature term with a contribution from the weyl curvature
$g_{\mu \nu}$ the Riemannian metric
$\mathcal{S}_{\text {grav }}=\int\left(\frac{1}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma_{o}}+\tau_{0} R^{\star} R^{\star}-\xi_{0} R|\mathbf{H}|^{2}\right) \sqrt{g} \mathrm{~d}^{4} x$

Rhíemannian ounsîture term with a contribution from the weylicu nature

the action for conformal gravity; the presence of the
EH term (and of cosmological constant) explícítly breaks conformal invariance
$g_{\mu \nu}$ the Riemannian metric
$\mathcal{S}_{\text {grav }}=\int\left(\frac{1^{\circ}}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu}{ }^{\circ} \rho \sigma_{0}+{ }^{\circ} \tau_{0} R^{\star} R^{\star} \circ-\xi_{0} R|\mathbf{H}|^{2}\right) \sqrt{g} \mathrm{~d}^{4} x$

Rhiemannian cursíture term with a contribution from the weylicurvature
the action for conformal gravity: the presence of the
EH term land of cosmological constant) explicitly breaks conformal invariance
$g_{\mu \nu}$ the Riemannian metric

$$
\mathcal{S}_{\text {grav }}=\int\left(\frac{1^{\circ}}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu}{ }^{\circ} \rho \sigma_{\circ}+\tau_{0} \tau_{0} R^{\star} R^{\star \circ}-\left.{ }^{\circ} \xi_{0} R|\mathbf{H}|^{2}\right|^{\circ}\right) \sqrt{g} \mathrm{~d}^{4} x
$$

Rhiemannían ounièture

 term with a contribution from the weylicuraturethe action for conformal gravity; the presence of the EH term (and of cosmological constant) explícítly breaks conformal invariance
$g_{\mu \nu}$ the Riemannian metric

$$
\mathcal{S}_{\text {grav }}=\int\left(\frac{1}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}+\tau_{0} R^{\star} R^{\star}-\xi_{0} R|\mathbf{H}|^{2}\right) \sqrt{g} \mathrm{~d}^{4} x
$$

$$
\begin{aligned}
& \alpha_{0}=\frac{-3 f_{0}}{10 \pi^{2}} \quad \begin{array}{l}
\quad \tau_{0}=\frac{11 f_{0}}{60 \pi^{2}}
\end{array} \\
& \xi_{0}=\frac{1}{12}
\end{aligned}
$$

Λ is the renormalisation cut-off
c is expressed as $c=\operatorname{Tr}\left(Y_{R}^{\star} Y_{R}\right)$ which gives the Majorana mass matríx

Y's are used to classify the action of the Dirac operator and give the fermion and lepton masses, as well as lepton mixing
e.o.m.

$$
\begin{aligned}
& R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R-\alpha_{0} \kappa_{0}^{2} \delta(\Lambda)\left[2 C_{; \lambda ; \kappa}^{\mu \lambda \nu \kappa}-C^{\mu \lambda \nu \kappa} R_{\lambda \kappa}\right] \\
& =\kappa_{0}^{2} \delta(\Lambda) T_{\text {matter }}^{\mu \nu}
\end{aligned}
$$

where

$$
\delta(\Lambda) \equiv\left[1-2 \kappa_{0}^{2} \varepsilon_{0}|\mathbf{H}|^{2}\right]^{-1}
$$

neglecting the nonminimal coupling between the geometry and the Higgs field, i.e. setting $\phi=0$ leads to

$$
\begin{aligned}
R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R-\alpha_{0} \kappa_{0}^{2}\left[2 C_{; \lambda ; \kappa}^{\mu \lambda \nu \kappa}\right. & \left.-C^{\mu \lambda \nu \kappa} R_{\lambda \kappa}\right] \\
& =\kappa_{0}^{2} T_{\text {matter }}^{\mu \nu}
\end{aligned}
$$

for a general ST with zero spatial curvature and zero cosmological constant, the 4 dim metric in conformal time t and cartesían spatial coordinates (x, y, z)

$$
\begin{gathered}
g_{\mu \nu}=\operatorname{diag}\left(\{a(t)\}^{2}[-(1+\phi(x)),\right. \\
(1+\psi(x)),(1+\psi(x)),(1+\psi(x))]))
\end{gathered}
$$

for a general ST with zero spatial curvature and zero cosmological constant, the 4 dim metric in conformal time t and cartesían spatial coordinates (x, y, z)

$$
\begin{gathered}
g_{\mu \nu}=\operatorname{diag}\left(\{a(t)\}^{2}[-(1+\phi(x)),\right. \\
(1+\psi(x)),(1+\psi(x)),(1+\psi(x))]))
\end{gathered}
$$

modífied Friedmann eq.:

$$
\begin{array}{r}
-3\left(\frac{\dot{a}}{a}\right)^{2}+\left[\nabla^{2}-3\left(\frac{\dot{a}}{a}\right)\right] \psi(x) \\
+\frac{\alpha_{0} \kappa_{0}^{2}}{3 a^{2}} \nabla^{4}[\psi(x)-\phi(x)]+\mathcal{O}\left(\psi^{2}, \phi^{2}, \ldots\right)=\kappa_{0}^{2} T_{00}
\end{array}
$$

homogeneous and ísotropic case:

$$
\phi(x)=\psi(x)=0
$$

Friedmann eq. reduces to its standard form any effects of noncommutativity of ST coordinates must disappear in a homogeneous and isotropic ST, all points being equívalent
homogeneous and isotropíc case:

$$
\phi(x)=\psi(x)=0
$$

Friedmann eq. reduces to its standard form any effects of noncommutativity of ST coordinates must disappear in a homogeneous and isotropic ST, all points being equívalent
any corrections to the standard cosmological model, due to noncommutative effects, will not occur at the level of the background
nelson, sakellaríadou 2008

4 dim metric in synchronous gauge:
$g_{\mu \nu}=\operatorname{diag}\left(\{a(t)\}^{2}\left[-1,\left(\delta_{i j}+h_{i j}(x)\right)\right]\right)$

4dim metric in synchronous gauge:

$$
g_{\mu \nu}=\operatorname{diag}\left(\{a(t)\}^{2}\left[-1,\left(\delta_{i j}+h_{i j}(x)\right)\right]\right)
$$

modífied Friedmann eq.:

$$
\begin{aligned}
& -3\left(\frac{\dot{a}}{a}\right)^{2}+\frac{1}{2}\left[4\left(\frac{\dot{a}}{a}\right) \dot{h}+2 \ddot{h}-\nabla^{2} h+\nabla_{i} \nabla_{j} h^{i j}\right] \\
& -\frac{\alpha_{0} \kappa_{0}^{2}}{6 a^{2}}\left[\partial_{t}^{2}\left(\nabla^{2} h-3 \nabla_{i} \nabla_{j} h^{i j}\right)+\nabla^{2}\left(\nabla_{i} \nabla_{j} h^{i j}\right)-\nabla^{4} h\right] \\
& +\mathcal{O}\left(h^{2}\right)=\kappa_{0}^{2} T_{00}
\end{aligned}
$$

$$
h \equiv h_{i}^{i}
$$

for GW (transverse, traceless part of perturbed metric):

$$
-3\left(\frac{\dot{a}}{a}\right)^{2}+\frac{1}{2}\left[4\left(\frac{\dot{a}}{a}\right) \dot{h}+2 \ddot{h}\right]=\kappa_{0}^{2} T_{00}
$$

for GW (transverse, traceless part of perturbed metríc):

$$
-3\left(\frac{\dot{a}}{a}\right)^{2}+\frac{1}{2}\left[4\left(\frac{\dot{a}}{a}\right) \dot{h}+2 \ddot{h}\right]=\kappa_{0}^{2} T_{00}
$$

noncommutative corrections to Einstein's eqs. do not alter the propagation of gravitational waves

nelson, sakellaríadou 2008

the corrections to Elsutein's eqs. Will be apparent at leading order, only in the case of anisotropic models
the corrections to Elsutein's eas. will be apparent at leading order, only in the case of anisotropic models

Bíanchív

integer

$$
g_{\mu \nu}=\operatorname{diag}\left[-1,\left\{a_{1}(t)\right\}^{2} e^{-2 n z},\left\{a_{2}(t)\right\}^{2} e^{-2 n z},\left\{a_{3}(t)\right\}^{2}\right]
$$

arbítrary functions

$$
\begin{array}{r}
\kappa_{0}^{2} T_{00}= \\
-\dot{A}_{3}\left(\dot{A}_{1}+\dot{A}_{2}\right)-n^{2} e^{-2 A_{3}}\left(\dot{A}_{1} \dot{A}_{2}-3\right) \\
+\frac{8 \alpha_{0} \kappa_{0}^{2} n^{2}}{3} e^{-2 A_{3}}\left[5\left(\dot{A}_{1}\right)^{2}+5\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2}\right. \\
\left.-\dot{A}_{1} \dot{A}_{2}-\dot{A}_{2} \dot{A}_{3}-\dot{A}_{3} \dot{A}_{1}-\ddot{A}_{1}-\ddot{A}_{2}-\ddot{A}_{3}+3\right] \\
-\frac{4 \alpha_{0} \kappa_{0}^{2}}{3} \sum_{i}\left\{\dot{A}_{1} \dot{A}_{2} \dot{A}_{3} \dot{A}_{i}\right. \\
+\left(\ddot{A}_{i}+\left(\dot{A}_{i}\right)^{2}\right)\left[-\ddot{A}_{i}-\left(\dot{A}_{i}\right)^{2}+\frac{1}{2}\left(\ddot{A}_{i+1}+\ddot{A}_{i+2}\right)\right. \\
\left.+\frac{1}{2}\left(\left(\dot{A}_{i+1}\right)^{2}+\left(\dot{A}_{i+2}\right)^{2}\right)\right] \\
+\left[\dddot{A}_{i+1}+3 \dot{A}_{i} \ddot{A}_{i}-\left(\ddot{A}_{i+1}\right)^{2}-\dot{A}_{i} \dot{A}_{i+1}\right) \\
\left.\left.\times\left[\dot{A}_{i}\right)^{2}\right)\left(\dot{A}_{i}-\dot{A}_{i+1}-\dot{A}_{i+2}\right)\right] \\
\left.\times\left[2 \dot{A}_{i}-\dot{A}_{i+1}-\dot{A}_{i+2}\right]\right\}
\end{array}
$$

at the same order as standard EHterm, but $\propto n^{2}$
so ít vanishes for homogeneous types of Bianchiv
$A_{i}(t)=\ln a_{i}(t)$
for slowly varying functions: small correctíons

$$
-\dot{A}_{3}\left(\dot{A}_{1}+\dot{A}_{2}\right)-n^{2} e^{-2 A_{3}}\left(\dot{A}_{1} \dot{A}_{2}-3\right)
$$

$$
+\frac{8 \alpha_{0} \kappa_{0}^{2} n^{2}}{3} e^{-2 A_{3}}\left[5\left(\dot{A}_{1}\right)^{2}+5\left(\dot{A}_{2}\right)^{2}-\left(\dot{A}_{3}\right)^{2}\right.
$$

$$
\left.-\dot{A}_{1} \dot{A}_{2}-\dot{A}_{2} \dot{A}_{3}-\dot{A}_{3} \dot{A}_{1}-\ddot{A}_{1}-\ddot{A}_{2}-\ddot{A}_{3}+3\right]
$$

$$
-\frac{4 \alpha_{0} \kappa_{0}^{2}}{3} \sum_{i}\left\{\dot{A}_{1} \dot{A}_{2} \dot{A}_{3} \dot{A}_{i}\right.
$$

$$
+\dot{A}_{i} \dot{A}_{i+1}\left(\left(\dot{A}_{i}-\dot{A}_{i+1}\right)^{2}-\dot{A}_{i} \dot{A}_{i+1}\right)
$$

$$
+\left(\ddot{A}_{i}+\left(\dot{A}_{i}\right)^{2}\right)\left[-\ddot{A}_{i}-\left(\dot{A}_{i}\right)^{2}+\frac{1}{2}\left(\ddot{A}_{i+1}+\ddot{A}_{i+2}\right)\right.
$$

$$
\left.+\frac{1}{2}\left(\left(\dot{A}_{i+1}\right)^{2}+\left(\dot{A}_{i+2}\right)^{2}\right)\right]
$$

$$
\left[\dddot{A}_{i}+3 \dot{A}_{i} \ddot{A}_{i}-\left(\ddot{A}_{i}+\left(\dot{A}_{i}\right)^{2}\right)\left(\dot{A}_{i}-\dot{A}_{i+1}-\dot{A}_{i+2}\right)\right]
$$

$$
\left.\left[2 \dot{A}_{i}-\dot{A}_{i+1}-\dot{A}_{i+2}\right]\right\}
$$

neglecting the nonminimal coupling between geometry and Higgs field, the noncommutative corrections to Einstein's eqs. are present only in inhomogeneous and anisotropic space-times
at energies approaching Higgs scale, the nonminimal coupling of the Higgs field to the curvature cannot be neglected
$R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R-\alpha_{0} \kappa_{0}^{2} \delta(\Lambda)\left[2 C_{; \lambda ; \kappa}^{\mu \lambda \nu \kappa}-C^{\mu \lambda \nu \kappa} R_{\lambda \kappa}\right]$
$=\kappa_{0}^{2} \delta(\Lambda) T_{\text {matter }}^{\mu \nu}$
where

$$
\delta(\Lambda) \equiv\left[1-2 \kappa_{0}^{2} \xi_{0}|\mathbf{H}|^{2}\right]-1
$$

for $|\mathbf{H}| \rightarrow \sqrt{\mathbf{6}} / \kappa_{0}$ the correction term dominates
there are corrections even for background geometries
to understand the effects of these corrections, neglect the conformal term, setting $\alpha_{0}=0$
to understand the effects of these corrections, neglect the conformal term, setting $\alpha_{0}=0$
e.o.m.

$$
R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R=\kappa_{0}^{2}\left[\frac{1}{1-\kappa_{0}^{2}|\mathbf{H}|^{2} / 6}\right] T_{\text {matter }}^{\mu \nu}
$$

to understand the effects of these corrections, neglect the conformal term, setting $\alpha_{0}=0$
e.o.m.

$$
R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R=\kappa_{0}^{2}\left[\frac{1}{1-\kappa_{0}^{2}|\mathbf{H}|^{2} / 6}\right] T_{\text {matter }}^{\mu \nu}
$$

the effect of a nonzero Higgs field is to create an effective gravitational constant
inflation trough the nowminimal coupling between the geometry and the Figs field
proposal: the scalar field of the SM, the Higgs field, could play the role of the inflaton
but
in the context of the general relativistic cosmology, to get the correct amplitude of density perturbations, the Higgs mass would have to be some 11 orders of magnitude higher than the one required by particle physics
proposal: the scalar field of the SM, the Higgs field, could play the role of the inflaton
but
in the context of the general relativistic cosmology, to get the correct amplitude of density perturbations, the Higgs mass would have to be some 11 orders of magnítude higher than the one required by particle physics
> re-examine the validity of this statement within cosmological noncommutative geometry
study the nonminimal coupling of the geometry to the Higgs field, w.r.t. the possibility of having naturally an inflationary scenario driven by the Higgs field

$$
\begin{aligned}
& \mathcal{S}_{\text {grav }}=\int\left(\frac{1}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}+\tau_{0} R^{\star} R^{\star}\right. \\
& \left.+\gamma_{0}-\xi_{0} R|\mathbf{H}|^{2}+\frac{1}{2}\left|D_{\mu} \mathbf{H}\right|^{2}+V(|\mathbf{H}|)\right) \sqrt{g} \mathrm{~d}^{4} x
\end{aligned}
$$

Λ^{4}-terms

$$
\begin{array}{ll}
\gamma_{0}=\frac{1}{\pi^{2}}\left(48 f_{4} \Lambda^{4}-f_{2} \Lambda^{2} c+\frac{f_{0}}{4} d\right) & \lambda_{0}=\frac{\pi^{2}}{2 f_{0}} \frac{b}{a^{2}} \\
\mu_{0}^{2}=2 \frac{f_{2} \Lambda^{2}}{f_{0}}-\frac{c}{a} \\
\end{array}
$$

a, b, c, d, e couplings given through Y 's
study the nonminimal coupling of the geometry to the Higgs field, w.r.t. the possibility of having naturally an inflationary scenario driven by the Higgs field

$$
\mathcal{S}_{\text {grav }}=\int\left(\frac{1}{2 \kappa_{0}^{2}} R+\alpha_{0} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}+\tau_{0} R^{\star} R^{\star}\right.
$$

$$
\left.+\gamma_{0}-\xi_{0} R|\mathbf{H}|^{2}+\frac{1}{2}\left|D_{\mu} \mathbf{H}\right|^{2}+V(|\mathbf{H}|)\right) \sqrt{g} \mathrm{~d}^{4} x
$$

Λ^{4}-terms

$$
\gamma_{0}=\frac{1}{\pi^{2}}\left(48 f_{4} \Lambda^{4}-f_{2} \Lambda^{2} c+\frac{f_{0}}{4} u\right) \quad \lambda_{0}=\frac{\pi^{2}}{2 f_{0}} \frac{b}{a^{2}}, \mu_{0}^{2}=2 \frac{f \cdot \lambda^{2}}{f_{0}^{2}}-\frac{e}{a}
$$

$$
a, b, c, d, e \text { couplings given through } Y \text { 's }
$$

remark:

in the Literature such modifications to EH gravity have been considered by postulating the nonminimal coupling
it was shown that the scale that sets the amplitude of perturbations during Higgs inflation is $\lambda_{0} / \xi_{0}^{2}$
this reduction in the amplitude of induced perturbations allows the Higgs field to satisfy the requirements of SM and of inflation

bezrukov, shaposníkov 2007
bezrukov, magnin, shaposníkov 2008

conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

re-definition of the field:

$$
|\mathbf{H}| \rightarrow|\chi|
$$

conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

re-definition of the field:

Einstein frame action:

$$
\mathcal{S}_{\mathrm{E}}=\int\left(-\frac{1}{2 \kappa_{0}^{2}} \hat{R}+\frac{1}{2}\left|D_{\mu} \chi\right|\left|D^{\mu} \chi\right|-U(\chi)\right) \sqrt{g} \mathrm{~d}^{4} x
$$

conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

re-definition of the field:
$|\mathbf{H}| \rightarrow|\chi|$
Einstein frame action:

$$
\mathcal{S}_{\mathrm{E}}=\int\left(-\frac{1}{2 \kappa_{0}^{2}} \hat{R}+\frac{1}{2}\left|D_{\mu} \chi\right|\left|D^{\mu} \chi\right|-U(\chi)\right) \sqrt{g} \mathrm{~d}^{4} x
$$

in the limit:

$|\mathbf{H}| \gg\left(\kappa_{0} \sqrt{2 \xi_{0}}\right)^{-1}$
conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

re-definition of the field:
$|\mathbf{H}| \rightarrow|\chi|$
Einstein frame action:

$$
\mathcal{S}_{\mathrm{E}}=\int\left(-\frac{1}{2 \kappa_{0}^{2}} \hat{R}+\frac{1}{2}\left|D_{\mu} \chi\right|\left|D^{\mu} \chi\right|-U(\chi)\right) \sqrt{g} \mathrm{~d}^{4} x
$$

in the limit:

$|\mathbf{H}| \gg\left(\kappa_{0} \sqrt{2 \xi_{0}}\right)^{-1}$

the potential:

$$
U(\chi) \approx \frac{\lambda_{0}}{4 \kappa_{0}^{4} \xi_{0}^{2}}\left[1-\exp \left(-\frac{2 \chi_{0}}{\sqrt{6} \kappa_{0}}\right)\right]^{2}
$$

conformal transformation of the metric:

$$
\left(\frac{1}{2 \kappa_{0}^{2}}-\xi_{0}|\mathbf{H}|^{2}\right) R \rightarrow-\frac{1}{2 \kappa_{0}^{2}} \hat{R}
$$

re-definition of the field:
$|\mathbf{H}| \rightarrow|\chi|$
Einstein frame action:

$$
\mathcal{S}_{\mathrm{E}}=\int\left(-\frac{1}{2 \kappa_{0}^{2}} \hat{R}+\frac{1}{2}\left|D_{\mu} \chi\right|\left|D^{\mu} \chi\right|-U(\chi)\right) \sqrt{g} \mathrm{~d}^{4} x
$$

in the limit:

$|\mathbf{H}| \gg\left(\kappa_{0} \sqrt{2 \xi_{0}}\right)^{-1}$
normalising CMB perturbations to WMAP5 data:
requirement so that Higgs field can produce inflation
$\xi_{0} \approx 44700 \sqrt{\lambda_{0}}$

$$
n_{\mathrm{s}} \approx 0.97, \quad r \approx 0.003
$$

normalising CMB perturbations to WMAP5 data:
requirement so that Higgs field can produce inflation
$\xi_{0} \approx 44700 \sqrt{\lambda_{0}}$

$$
n_{\mathrm{s}} \approx 0.97, \quad r \approx 0.003
$$

this conclusion is maintained under tree level and one-loop running of the couplings, provided:

$136.7 \mathrm{GeV}<m_{\mathrm{H}}<184.5 \mathrm{GeV} \quad\left(\right.$ for $\left.m_{\mathrm{top}}=171.2 \mathrm{GeV}\right)$

de simone, hertzberg, wílczek 2008
normalising CMB perturbations to WMAP5 data:
requirement so that Higgs field can produce inflation

$$
\xi_{0} \approx 44700 \sqrt{\lambda_{0}}
$$

$$
n_{\mathrm{s}} \approx 0.97, \quad r \approx 0.003
$$

this conclusion is maintained under tree level and one-loop running of the couplings, provided:

$136.7 \mathrm{GeV}<m_{\mathrm{H}}<184.5 \mathrm{GeV}$ (for $m_{\mathrm{top}}=171.2 \mathrm{GeV}$)

two-loop calculations may lead to sígnificant effects on the running of the Higgs potential
de simone, hertzberg, wílczek 2008
normalising CMB perturbations to WMAP5 data:
requirement so that Higgs field can produce inflation

$\xi_{0} \approx 44700 \sqrt{\lambda_{0}}$

$$
n_{\mathrm{s}} \approx 0.97, \quad r \approx 0.003
$$

this conclusion is maintained under tree level and one-loop running of the couplings, provided:

$136.7 \mathrm{GeV}<m_{\mathrm{H}}<184.5 \mathrm{GeV}$ (for $m_{\mathrm{top}}=171.2 \mathrm{GeV}$)

two-loop calculations may lead to signíficant effects on the running of the Higgs potential
de simone, hertzberg, wílczek 2008

NCG (2)

NOG

$$
\xi_{0}=\frac{1}{12} \quad \lambda_{0}=\frac{\pi^{2}}{2 f_{0}} \frac{b}{a^{2}}
$$

inflation can be naturally viable without additional non-SM fields, provided

$$
\frac{b}{f_{0} a^{2}} \approx 7.04 \times 10^{-13}
$$

NCG

$$
\xi_{0}=\frac{1}{12} \quad \lambda_{0}=\frac{\pi^{2}}{2 f_{0}} \frac{b}{a^{2}}
$$

inflation can be naturally viable without additional non-SM fields, provided

since all couplings run with the energy scale, this constraint needs only be satisfied at scale of inflation

NCG

$$
\frac{b}{f_{0} a^{2}} \approx 7.04 \times 10^{-13}
$$

NCG

$$
\frac{b}{f_{0} a^{2}} \approx 7.04 \times 10^{-13}
$$

to be compared with the current Higgs mass

NCG

$$
\frac{b}{f_{0} a^{2}} \approx 7.04 \times 10^{-13}
$$

to be compared with the current Higgs mass

$$
\frac{b\left(z_{\text {now }}\right)}{f_{0}\left(z_{\text {now }}\right) a^{2}\left(z_{\text {now }}\right)} \sim 0.0488
$$

these two constraints should be simultaneously satisfied for some scale of inflation

NCG

$$
\frac{b}{f_{0} a^{2}} \approx 7.04 \times 10^{-13}
$$

the known restrictions of the running of the couplings have neglected the non-minimal coupling of the Higgs to the geometry, which is crucial for successful inflation

these two constraints should be simultaneously satisfied for some scale of inflation

remark

standard Higgs inflation has been recently críticised, arguing that quantum corrections to the semi-classical approximation may no longer be neglected for such exotic inflationary models

remark

standard Higgs inflation has been recently críticised, arguing that quantum corrections to the semi-classical approximation may no longer be neglected for such exotic inflationary models
this criticism is not applicable to the noncommuative approach
burgess, Lee, trott 2009 barbon, espínosa 2009
in conventional Higgs inflation there is a strong coupling, namely $\xi_{0} \sim 10^{4}$ between the Higgs field and the Ricci curvature scalar
in conventional Higgs inflation there is a strong coupling, namely $\xi_{0} \sim 10^{4}$ between the Higgs field and the Ricci curvature scalar
effective theory ceases to be valid beyoud a cut-off scale $m_{\mathrm{Pl}} / \xi_{0}$, whille one should know the Higgs potential profile for the field values relevant for inflation, i.e $m_{\mathrm{Pl}} / \sqrt{\xi}_{0}$, much bigger than cut-off
in conventional Higgs inflation there is a strong coupling, namely $\xi_{0} \sim 10^{4}$ between the Higgs field and the Ricci curvature scalar
effective theory ceases to be valid beyoud a cut-off scale $m_{\mathrm{Pl}} / \xi_{0}$, while one should know the Higgs potential profile for the field values relevant for inflation, i.e $m_{\mathrm{Pl}} / \sqrt{\xi}_{0}$, much bigger than cut-off
this argument does not apply in the noncommutative Higgs field driven inflations, since $\xi_{0}=1 / 12$

conclusíons

study cosmological consequences of NCG approach to SM
study cosmological consequences of NCG approach to SM neglecting the non-minimal coupling of the Higgs field to the curvature, NCG corrections to Einstein's eqs. are present only for inhomogeneous and anisotropic geometries
study cosmological consequences of NCG approach to SM neglecting the non-minimal coupling of the Higgs field to the curvature, NCG corrections to Einstein's eqs. are present only for inhomogeneous and anisotropic geometríes considering the non-minimal coupling, there are corrections even for background cosmologíes
study cosmological consequences of NCG approach to SM
neglecting the non-minimal coupling of the Higgs field to the curvature, NCG corrections to Einstein's eqs. are present only for inhomogeneous and anisotropic geometries considering the non-minimal coupling, there are corrections even for background cosmologíes
study natural inflation within the NCG approach to SM
study cosmological consequences of NCG approach to SM
neglecting the non-minimal coupling of the Higgs field to the curvature, NCG corrections to Einstein's eqs. are present only for inhomogeneous and anisotropic geometries considering the non-minimal coupling, there are corrections even for background cosmologíes
study natural inflation within the NCG approach to SM
natural inflation may occur as a consequence of a nonminimal coupling between geometry and the Higgs field

