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In this paper we formulate N = 1 supergravity as a constrained BF theory of OSp(4|1) gauge
superalgebra. We derive the modified supergravity Lagrangian that, apart from the standard super-
gravity with negative cosmological constant, contains terms proportional to the (inverse of) Immirzi
parameter. Although these terms do not change classical field equations, they might be relevant
in quantum theory. We briefly discuss the manifestly diffeomorphism and supersymmetry invariant
perturbative theory around supersymmetric topological vacuum.

I. INTRODUCTION

It is well known for quite some time that gravity can be
formulated as constrained topological field theory [1], [2],
[3], [4]. The Lagrangian for such a theory contains two
groups of terms. First we have the terms that describe a
topological field theory of BF type for the gauge group,
which for gravity is chosen to be de Sitter SO(4, 1) or
anti de Sitter SO(3, 2) group. These terms generate the
topological vacuum of the theory. The remaining terms
are responsible for the dynamics of gravity and are cho-
sen in such a way so as to break the topological theory
gauge symmetry down to the local SO(d− 1, 1) Lorentz
symmetry of gravity.

There are many advantages of such formulation of
gravity. First, as stressed in [4], it makes the kinetic
term of the Lagrangian quadratic in fields, which makes
the standard methods of quantum field theory applicable,
contrary to the case of the Palatini formalism, in which
the kinetic term is tri-linear. Second it opens an exciting
possibility of a manifestly diffeomorphism invariance per-
turbative approach to quantum gravity (with and with-
out matter sources) [4], [5], in which the gauge breaking
term is regarded as a perturbation around topological
vacuum described by BF theory. Third, this approach
introduces the Immirzi parameter γ to the theory in a
natural way.

The presence of this parameter in the gravity La-
grangian was for many years overlooked because the cor-
responding term

2

Gγ
εµνρσRµν

ijeρ ieσ j (1.1)

due to the second Bianchi identity, does not contribute
to field equations when torsion vanishes. In quantum
theory, however, γ might be relevant, because it controls
the rate of quantum fluctuations of torsion. Moreover, in
spite of the fact that Immirzi parameter is not visible in
field equations, its presence leads to modifications of the
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phase space structure of the theory, which in turn make it
re-appear in the spectra of Loop Quantum Gravity area
and volume operators (see e.g., [6], [7], [8]) and in the
calculation of black hole entropy [9]. Further physical
effects of Immirzi parameter are discussed in [10] and
[11].

In this paper we extend the construction of gravity as
a constrained BF theory to the case of N = 1 super-
gravity, generalizing the results reported in [12] to the
case of the presence of Immirzi parameter. It turns out
that in this case the term (1.1) is replaced by its super-
symmetrized counterpart, but it still does not influence
classical equations of motion. However it might become
relevant in quantum supergravity, and perhaps even in
superstrings theory, of which the former is an low energy
field-theoretical approximation.

The plan of this paper is as follows. In the next section
we recall the construction of gravity as a constrained BF
theory. Next, in Section III and IV, we present the corre-
sponding construction of N = 1 gravity, as a constrained
BF theory based on the OSp(4|1) gauge superalgebra.
Section V is devoted to the prove of supersymmetry in-
variance of the so obtained Lagrangian and to further
discussion. In the Appendix we collect some relevant
definitions and formulas.

II. GRAVITY AS A CONSTRAINED
TOPOLOGICAL FIELD THEORY

The construction of gravity as a constrained topolog-
ical theory has its roots in the well known procedure of
MacDowell and Mansouri [13] and has been developed re-
cently by Smolin, Freidel, and Starodubtsev [1], [2], [3],
[4].

Let us recall briefly how this construction works, in
the case of gravity with negative cosmological constant,
which will be relevant for us later. In this case the gauge
algebra is the SO(3, 2) anti de Sitter algebra, with gen-
erators MIJ (our conventions can be found in the Ap-
pendix.) This algebra splits into its Lorentz and trans-
lational parts, generated by Mij and Pi = Mi5, respec-
tively, and accordingly we can split the gauge field

Aµ =
1

2
Aµ

ijMij +Aµ
i5Mi5 =

1

2
ωµ

ijMij +
1

`
eµ
iPi (2.1)
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with ωij being the Lorentz connection and eiµ identified
with the tetrad. Notice that for dimensional reason, be-
cause the connection Aµ has the canonical dimension −1
while the tetrad is dimensionless we have to introduce the
parameter ` of dimension of length. As it will turn out
this parameter is related to the cosmological constant.

Knowing the gauge field Aµ we can built the curvature

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] (2.2)

which with the help of (A.1) can be again decomposed
into Lorentz part

Fµν
ij = Rµν

ij − 1

`2
(
eµ
i eν

j − eνi eµj
)
, (2.3)

where

Rµν
ij = ∂µων

ij−∂νωµij+ωµim ωνmj−ωνim ωµmj (2.4)

is the Riemann tensor of the Lorentz connection ωµ
ij ,

and the translational part

Fµν
i =

1

`

(
∂µeν

i + ωµ
i
m eν

m − ∂νeiµ + ων
i
m eµ

m
)

=
1

`

(
Dµeν

i −Dνeµ
i
)

=
1

`
Tµν

i , (2.5)

which is thus proportional to the torsion tensor.
To construct the action we define another two form

field Bµν , which gauge-transforms in exactly the same
way the curvature Fµν does. This field makes it possi-
ble to write down the topological SO(3, 2)-invariant La-
grangian

Ltop = εµνρσ
(
Bµν

IJ FρσIJ −
β

2
Bµν

IJ BρσIJ

)
(2.6)

with β being a dimensionless parameter, to be related
later to a combination of Newton’s and cosmological con-
stants, and Immirzi parameter. One checks (see [4]) that
the theory described by (2.6) is indeed topological i.e. it
does not contain any local degrees of freedom1. Its only
solution is the anti de Sitter space and spaces that can
be obtained from it by gauge transformations (for discus-
sion see also [5]). As explained in [4] in order to make
this theory dynamical we have to add a term that breaks
the symmetry down to the Lorentz subalgebra SO(3, 1)
of the original SO(3, 2). This can be done by adding to
the Lagrangian (2.6) a gauge breaking term of the form

Lgb = −α
4
εµνρσ εIJKL5Bµν

IJ Bρσ
KL . (2.7)

1 To see this one notices that the theory described by (2.6) is in-
variant not only with respect to the SO(3, 2) gauge transforma-
tions but also with respect to translations of the field Bµν , with
the number of parameters just sufficient to make this field zero.
Since it follows from the field equations that Fµν is proportional
to Bµν , the curvature vanishes, and the connection is flat. See
[4] for details.

with εIJKLM being the invariant epsilon symbol of
SO(3, 2). This term can be rewritten as

Lgb = −α
4
εµνρσ εijklBµν

ij Bρσ
kl , (2.8)

from which it is clear that the Lagrangian given by the
sum of (2.6) and (2.8) is indeed invariant under local
Lorentz transformations, under which Fµν

ij and Bµν
ij

transform as (anti-symmetric) tensors while Fµν
i5 ≡

Fµν
i and Bµν

i5 transform as vectors.
To see that the Lagrangian L = Ltop+Lgb is equivalent

to the Lagrangian of general relativity we solve it for Bµν
and substitute the result back to the Lagrangian. One
finds

Bµν
ij =

1

α2 + β2

(
βFµν

ij − α

2
εijkl Fµνkl

)
(2.9)

and

Bµν
i5 =

1

β
Fµν

i (2.10)

Substituting these equations into (2.6) and (2.7) we find
that the resulting Lagrangian contains a combination of
topological terms (corresponding to Euler, Pontryagin,
and Nieh–Yan class) and the dynamical ones (we will
derive this result while discussing the analogous super-
gravity construction below)

Lgrav =
1

G
εµνρσεijkl

(
Rµν

ij eρ
k eσ

l − Λ

3
eµ
i eν

j eρ
k eσ

l

)

+
2

γG
εµνρσ Rµν

ij eρi eσj , (2.11)

where the Newton’s constant G, cosmological constant Λ,
and the Immirzi parameter γ are related to the original
parameters `, α, and β as follows

G =
α2 + β2

α
`2 Λ =

3

`2
γ =

β

α
(2.12)

The first two terms in the Lagrangian form nothing but
the standard Einstein–Cartan Lagrangian. The last term
does not contribute to the equations of motion on shell,
when torsion vanishes due to the Bianchi identity, but it
should be stressed that it is not topological and it influ-
ences the canonical structure of the theory.

III. GAUGING THE SUPER-ALGEBRA

In this section we construct the building blocks of the
constrained topological field theory of N = 1 supergrav-
ity.

As before, we associate with each generator of the
OSp(4|1) algebra (whose defining relations can be found
in the Appendix) a gauge field and a gauge transforma-
tion parameter. Since the canonical dimension of the
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gauge field is −1 and because the dimension of gravitino
ψµ is −3/2, as in the bosonic case, we introduce the con-
stant κ of dimension 1/2 to make the dimensions right.
The gauge field is therefore

Aµ =
1

2
ωµ

ijMij +
1

`
eµ
iPi + κψ̄µQ , (3.1)

while the gauge transformation parameter reads

Θ =
1

2
ΛijMij + ξiPi + ε̄ Q . (3.2)

The infinitesimal gauge transformations of the gauge
field are defined in terms of the covariant derivative

δΘAµ ≡ DA
µΘ = ∂µΘ− i[Aµ,Θ] . (3.3)

Using this formula on can straightforwardly derive the
supersymmetry transformations, to wit

δeµ
i = iκ` ε̄γiψµ , δωµ

ij = −κ ε̄γijψµ , (3.4)

and

δψ̄µ =
1

κ
Dµε̄ =

1

κ
Dω
µ ε̄+

i

2κ`
eµ
i ε̄γi . (3.5)

where

Dω
µ ε̄ = ∂µε̄−

1

4
ωµ

ij ε̄γij (3.6)

is the covariant derivative of Lorentz connection ω.
We define the curvature Fµν of the connection Aµ as

above

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] . (3.7)

The curvature splits into bosonic and fermionic parts

Fµν =
1

2
F (s)
µν

IJMIJ + F̄µνQ . (3.8)

Explicitly, we have

F (s)
µν

ij = Fµν
ij + κ2 ψ̄µγ

ijψν , (3.9)

F (s)
µν

i = Fµν
i − iκ2 ψ̄µγ

iψν , (3.10)

where Fµν
ij and Fµν

i are bosonic curvatures given by
(2.3) and (2.5) respectively. The fermionic curvature has
the form

Fµν = κDµψν − κDνψµ

= κ

(
Dω
µψν −Dω

ν ψµ −
i

2`
eµ
i γiψν − eνi γiψµ

)
, (3.11)

where Dω
µ is the Lorentz covariant derivative, (3.6).

In what follows we will need the transformation rules
for curvatures, which can be easily obtained from the
following identities

δFµν = DµδAν −DνδAµ = [Dµ, Dν ]Θ = −i[Fµν ,Θ] .

For the supersymmetry transformation we have therefore

δεF
(s)
µν

i = iε̄γiFµν , δεF
(s)
µν

ij = −ε̄γijFµν (3.12)

δεF̄µν = −1

4
F (s)
µν

ij ε̄γij +
i

2
F (s)
µν

i ε̄γi (3.13)

With these technical tools at hands we could now ad-
dress the problem of constructing of the supersymmet-
ric extension of the Lagrangian (2.6) and (2.7). Let us
first consider the topological theory, whose bosonic part
is given by (2.6). We introduce the fermionic partner
of the field Bµν

IJ which we denote as Bµν so that the
Lagrangian reads

L(sugra−top) = L(sugra−top,b) − L(sugra−top,f)

= εµνρσ
(
Bµν

IJ F (s)
ρσ IJ −

β

2
Bµν

IJ BρσIJ

)

−4 εµνρσ
(
B̄µνFρσ −

β

2
B̄µνBρσ

)
(3.14)

This Lagrangian is invariant under local supersymmetry
if the components of the field B = (B,B) transform as
follows

δεBµν
i = iε̄γiBµν , δεBµν

ij = −ε̄γijBµν , (3.15)

δεB̄µν = −1

4
Bµν

ij ε̄γij +
i

2
Bµν

i ε̄γi (3.16)

The gauge breaking term (2.8) is invariant only under
the action of the SO(3, 1) Lorentz subalgebra of the origi-
nal gauge algebra SO(3, 2). Its supersymmetric extension
is expected to be

Lsugra−gb = −α
4
εµνρσ

(
εijklBµν

ij Bρσ
kl − 8i B̄µνγ5Bρσ

)
.

(3.17)
This term, as expected, is not invariant under the super-
symmetry transformations (3.15), (3.16) since under the
latter the second term in (3.17) gets the contribution of
the form

−2αεµνρσBµν
iε̄γiγ

5Bρσ (3.18)

that does not cancel with the supersymmetry transforma-
tion of the first term. As we discuss below this expected
breaking of supersymmetry, related to the breaking of
de Sitter group down to its Lorentz subgroup does not
prevent the final action from having the local supersym-
metry invariance.
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IV. THE SUPERGRAVITY LAGRANGIAN

Let us now check explicitly that our procedure indeed
provides the lagrangian of N = 1 supergravity. Our
starting point will be the sum of the terms (3.14) and
(3.18). The equations of bosonic Bµν

IJ result in expres-
sions analogous to (2.9) and (2.10)

Bρσ
ij =

β

α2 + β2

(
Fρσ

ij(A) + κ2ψ̄ρ γ
ij ψσ

)

− α

2(α2 + β2)

(
Fρσ

kl(A) + κ2ψ̄ρ γ
kl ψσ

)
εijkl , (4.1)

Bρσ
i =

1

β

(
Fρσ

i(A)− iκ2ψ̄ρ γ
i ψσ

)
, (4.2)

while for their fermionic counterpart we obtain

B =
1

α2 + β2
(βF − iα γ5 F) (4.3)

Substituting these expressions back to the Lagrangian
and disregarding terms that vanish due to the identities

εµνρσ ψ̄µ Γψν Γψρ = 0 ,

where Γ is an arbitrary combination of γ matrices

εµνρσ ψ̄µ ΓA ψν = 0, ΓA = (1, γ5, γ5γi) ,

and expressions (3.9), (3.10), (3.11) we find the La-
grangian that can be decomposed into two types of terms:

• Bosonic

L(B) =

(
1

β`2
Tµν iT

i
ρσ +

β

2(α2 + β2)
Fµν ijFρσ

ij

)
εµνρσ

− α

4(α2 + β2)
Fµν ijFρσ klε

ijklεµνρσ (4.4)

• Fermionic

L(F ) = − 8ακ2

(α2 + β2)`
ψ̄µ γ5 γi e

i
νD

ω
ρψσ ε

µνρσ

+
4iακ2

(α2 + β2)`2
ψ̄µ γ5 γij e

i
νe
j
ρ ψσ ε

µνρσ (4.5)

− 2iκ2α2

`β(α2 + β2)
ψ̄µ γi ψνT

i
ρσ ε

µνρσ .

Using the expansion of the curvature Fρσ
ij (2.3) one sees

that the first two terms in (4.4) provide a combination of
Pontryagin and Nieh-Yan [14] (see also e.g., [15])

N = εµνρσ
(
Tµν

i Tρσi − 2Rµν
ij eρi eσj

)
(4.6)

classes along with the term proportional to
εµνρσ Rµν

ij eρi eσj ; the remaining one reproduces
the Euler class and the Einstein–Cartan Lagrangian
(2.11) and the relations (2.12).

Let us now turn to the fermionic terms. We fix κ so
as to make the coefficient of the gravitino kinetic term
equal −1/2 and thus

κ2 =
1

16
G

√
Λ

3
=

G

16`
. (4.7)

Thus our Lagrangian is the sum of standard Lagrangian
Lsugra of supergravity with cosmological constant [16]2

given by

Lsugra =
1

G
εµνρσεijkl

(
Rµν

ij eρ
k eσ

l − Λ

3
eµ
i eν

j eρ
k eσ

l

)

−εµνρσ
(

1

2
ψ̄µ γ5 γi e

i
νD

ω
ρψσ −

i

4`
ψ̄µ γ5 γij e

i
νe
j
ρ ψσ

)
(4.8)

and the term Ladd, which is the supersymmetric coun-
terpart of the term in the second line of (2.11), to wit

Ladd = εµνρσ
(

2

γG
Rµν

ij eρi eσj −
i

4γ
ψ̄µ γi ψν D

ω
ρ eσ

i

)
.

(4.9)
This is the main result of our paper. In the next section

we will discuss some properties of this Lagrangian.

V. DISCUSSION

Our first task after deriving the form of the Lagrangian
will be to check if the action obtained from (4.8), (4.9)
is indeed invariant under supersymmetry. To do that we
will make use of the 1.5 formalism (see [17] and references
therein), which combines the virtues of the first (ω is
an independent field) and second (ω = ω(e, ψ)) order
formalisms. The idea is as follows. Our action I, being
the integral of the Lagrangian can be thought of as a
functional I(e, ψ;ω(e, ψ)) and its variation is

δI = δe
δI

δe

∣∣∣∣
ψ,ω(e,ψ)

+ δψ
δI

δψ

∣∣∣∣
e,ω(e,ψ)

+
δI

δω

∣∣∣∣
e,ψ

(
δe
δω(e, ψ)

δe
+ δψ

δω(e, ψ)

δψ

)
. (5.1)

But if ω satisfies its own field equations the last term
in (5.1) vanishes identically, because δI/δω = 0 for ω

2 The relation between our parameters and that of Townsend is
κTownsend =

√
G/4, λ = 4

√
Λ/3G. Also in [16] the super-

symmetry transformation parameter is not dimensionless, but
instead εTownsend =

√
`εour.
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satisfying its own field equation. In other words we need
to vary only the gravitino and tetrad fields, taking into
account, where necessary, the conditions coming from the
Lorentz connection field equations.

The first step therefore in checking the supersymmetry
is to find the form of the ω field equations. They read(

εijkl F (s)
νρ k eσ l +

1

γ
F (s)

νρ
[i eσ

j]

)
εµνρσ = 0 (5.2)

where the ‘supertorsion’ F (s) is defined by

F (s)
νρ
i = Fνρ

i − iκ2 ψ̄νγ
iψρ . (5.3)

It follows from (5.2) that the supertorsion vanishes3 un-
less γ2 = −1. Form this one can find the Lorentz con-
nection as usual (see [17]).

Since the Lorentz connection field equations are the
same as in the standard case of N = 1 supergravity, it is
just a matter of repeating verbatim the steps described
in [17], [16] to see that (4.8) is indeed supersymmetric
(up to the usual total derivative term). What remains
therefore is to check that Ladd (4.9) is supersymmetric
as well. But this is also quite straightforward.

In fact we will prove a much stronger result namely
that if supertorsion is zero, for arbitrary δe, δψ the vari-
ation of Ladd vanishes. This not only proves the super-
symmetry invariance but also shows that the Lagrangian
Ladd does not contribute to the field equations. Consider
the second term in (4.9) first. Varying gravitino we find

− i

2γ
εµνρσ δψ̄µ γi ψν D

ω
ρ eσ

i .

But since Dω
[ρeσ]

i ∼ ψ̄ργiψσ from vanishing of supertor-
sion (5.3), using the identity

εµνρσ γiψν ψ̄ργ
iψσ = 0

we see that this expression vanishes. Thus it remains to
check the variation of tetrad. We find

εµνρσ
(

4

γG
Rµν

ij eρi δeσj −
i

4γ
ψ̄µ γi ψν D

ω
ρ δeσ

i

)
.

(5.4)
To see that this expression is indeed zero we first make
use of the Bianchi identity

εµνρσ Rµν
ij eρi = −2εµνρσDω

µ D
ω
ν eρ

j .

Therefore (5.4) can be (up to the total derivative) rewrit-
ten as

εµνρσ
(

8

γG
Dω
ν eρ

j Dω
µδeσj −

i

4γ
ψ̄µ γi ψν D

ω
ρ δeσ

i

)
.

3 To see this one has to multiply (5.2) by εijmn and use the fact
that tetrad is invertible.

which, with the help of the supertorsion equation and
(4.7) can be easily seen to vanish. This completes not
only the prove of supersymmetry, but also shows that the
terms (4.9) do not contribute to field equations. However
it should be stressed that although invisible classically
the term Ladd might be relevant in quantum theory like
QCD theta term.

It is worth noticing that the proof of supersymmetry
of the final supergravity Lagrangian Lsugra+Ladd makes
it possible to resolve the puzzle that we encounter at the
end of Section III. Namely if we make use of the fact that
Bµν

i equals supertorsion and that the latter vanishes we
see that the expression (3.18) is zero. This is why the ap-
parent lack of supersymmetry of the constrained theory
does not prevent the final one from being supersymmet-
ric.

Finally let us turn to the brief discussion of pertur-
bation theory around (super-) topological vacuum. To
this end let us return the original constrained BF the-
ory, given by (3.14), (3.17) and consider the case α = 0.
The bosonic field equations are

Fµν
IJ =

1

β
Bµν

IJ , εµνρσDνBρσ
IJ = 0 , (5.5)

where due to the Bianchi identity the first equation im-
plies the second one. Notice now that the bosonic part
of (3.14) is invariant not only with respect to SO(3, 2)
gauge symmetry but also has the ‘translational’, topolog-
ical symmetry generated by SO(3, 2) Lie algebra valued
local gauge parameter ϕµ

IJ [4]

δBµν
IJ = D[µϕν]

IJ , δAµ
IJ = β ϕµ

IJ . (5.6)

It follows that the bosonic part of the Lagrangian (3.14)
is independent of Aµ

IJ , which is the sign of topologi-
cal invariance (see [18] for details). By supersymmetry,
the same holds for the full Lagrangian (3.14). Thus one
can device the perturbation theory around topological
vacuum exactly in the way described in [19] with the
only difference being that now the path integral is over
SP (4|1) (super-) connections, instead of the SO(3, 2) (or
SO(4, 1)) ones. Making this idea precise will be a subject
of our future research.

There are many interesting open problems which de-
serve investigation. It would be interesting to derive
N = 2 and possibly also higher supergravity theories
using the constrained BF theory of SP (4, N) superalge-
bra, and their coupling to (supersymmetric matter). It
would be also of interest to understand the role of aux-
iliary fields in the BF formalism. These problems are
currently under investigations.

Appendix: Useful formulas

In this Appendix we present our conventions, borrow-
ing them from [20], and we collect formulas that are used
in the main text.

Ari
Notatka
\begin{equation}  
\delta_\omega S_ {full}=\frac{1}{G}\int (\delta \omega_{\mu\,ij}) \Big(4(D_\nu^\omega e_{\rho\,k})\,e_{\sigma\,l}\,
\epsilon^{ijkl}+\frac{8}{\gamma}(D_\nu^\omega e_{\rho}^{\,i})\,e_{\sigma}^{\, j}-2i\ell \kappa^2\bar{\psi}_\nu\,\epsilon^{ijkl}\gamma_k\,\psi_\rho\, e_{\sigma\,l}-\frac{4i\ell \kappa^2}{\gamma}\bar{\psi}_\nu\,\gamma^{i}\,\psi_\rho\, e_{\sigma}^j\Big)\epsilon^{\mu\nu\rho\sigma}
\end{equation}

Ari
przejrzyściej byłoby z tym dodatkowym rowaniem... 

Ari
Pisanie tekstu
,

Ari
Owal

Ari
Pisanie tekstu
and/by

Ari
Prostokąt

Ari
Prostokąt

Ari
Pisanie tekstu
the

Ari
Przekreślenie

Ari
Wyróżnienie

Ari
Ołówek

Ari
Wskaźnik tekstowy
return to the

Ari
Owal

Ari
Wyróżnienie



6

We start with the supersymmetry algebra OSp(1|4).
Its bosonic part can be obtained from the SO(3, 2) alge-
bra

[MIJ ,MMN ] = i(ηINMJM + ηJMMIN

− ηIMMJN − ηJNMIM ) , (A.1)

where ηIJ is the metric tensor of signature
(+,−,−,−,+), and the capital indices I, J, . . . take
the values i, j, . . . = 0, . . . , 3 and 4. We also define the
Levi-Civita epsilon symbol εIJKLM by ε01234 = 1 so that
εijkl4 = εijkl. Decomposing the SO(3, 2) generators MIJ

into Lorentz generators Mij and momenta Pi = Mi4 we
find

[Mij ,Mmn] = i(ηinMjm+ηjmMin−ηimMjn−ηjnMim) ,
(A.2)

[Pi,Mmn] = i(ηimPn − ηinPm) , (A.3)

[Pi, Pj ] = −iη44Mij = −iMij . (A.4)

The γ matrices satisfy the standard Clifford algebra

{γi, γj} = 2ηij , ηij = diag(+,−,−,−) . (A.5)

Explicitly, we have

γ0 =

(
1 0
0 −1

)
γa =

(
0 σa

−σa 0

)
for a = 1, 2, 3

One checks that the following combination of γ matrices

mi4 = − i
2
γi, mij =

1

2
γij =

1

4
[γi, γj ] (A.6)

forms a representation of the SO(3, 2) (or, more precisely,
of the algebra of its covering group Sp(4)) (A.1).

The supersymmetry generator Q transforms as a (Ma-
jorana) spinor with respect to the SO(3, 2)

[MIJ , Qα] = −i(mIJ) β
α Qβ , (A.7)

i.e.

[Mij , Q] = − i
2
γij Q, [Pi, Q] = −1

2
γiQ (A.8)

Finally the anicommutator of two supersymmetry gener-
ators reads

{Qα, Q̄β} = imIJ
αβMIJ , (A.9)

which can be split to

{Qα, Q̄β} =
i

2
(γij)αβMij + γi Pi . (A.10)

The OSp(1|4) algebra given by (A.2)–(A.4) and (A.8),
(A.10) can be contracted to the super-Poincaré algebra as

follows. We rescale Pi → ` Pi and Q→
√
`Q and then let

`→∞. As a result we find that the commutators (A.2),
(A.3) do not change; the right hand side of (A.4) and the
second commutator in (A.8) vanish, while in (A.10) only
the second term on the right hand side survives.
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