Remigiusz Durka

My PhD Report

Time elapsed: 626 days

Conferences this year: 2

- Cracow (QG^{2})
- Triest (ICTP)

Classes this year:

- Useful Programs

Web pages:

- www.ift.uni.wroc.pl/~rdurka/blog
- www.ift.uni.wroc.pl/~rdurka/useful constrained BF gravity - Sunersymmetric BF theory
- Hamiltonian analysis of

My PhD Report

Time elapsed: 626 days

Conferences this year: 2

- Cracow (QG^{2})
- Triest (ICTP)

Classes this year:

- Useful Programs

Web pages:

- www.ift.uni.wroc.pl/~rdurka/blog
- www.ift.uni.wroc.pl/~rdurka/useful

XXV Max Born Symposium

- Secretary of the "The Planck Scale" Conference

Papers in progress: 2

- Hamiltonian analysis of constrained BF gravity
- Supersymmetric BF theory

Co-authors:

- prof. Jerzy Kowalski-Glikman
- mgr Michal Szczachor

Alternative formulation of General Relativity in language of p-forms

New variables of GR:

- e_{μ}^{i} tetrad (not metric $g_{\mu \nu}$)
- $\omega_{\mu}^{i j} s o(3,1)$ connection

Together as so(4, 1)-connection:

- Action in MacDowell and Mansouri formulation (with gauge symmetry breaking from $S O(4,1)$ to $S O(3,1)$:

$$
S=\int_{\mathcal{M}}\left(B_{\mu \nu I J} F_{\rho \sigma}^{I J}-\frac{\beta}{2} B_{\mu \nu I J} B_{\rho \sigma}^{I J}-\frac{\alpha}{4} \epsilon_{I J K L} B_{\mu \nu}^{I J} B_{\rho \sigma}^{K L}\right) \epsilon^{\mu \nu \rho \sigma} d^{4} x
$$

(which is not more than constrained $B F$ theory) reduces to:

- Action of GR with cosmological constant Λ and Immirzi parameter γ :

Alternative formulation of General Relativity in language of p-forms

New variables of GR:

- e_{μ}^{i} tetrad (not metric $g_{\mu \nu}$)
- $\omega_{\mu}^{i j}$ so $(3,1)$ connection

$$
F^{I J}=d A^{I J}+A^{I K} \wedge A_{K}^{J}
$$

Together as so $(4,1)$-connection:

$$
A_{\mu}^{I J} \rightarrow\left\{\begin{array}{l}
A_{\mu}^{i j}=\omega_{\mu}^{i j} \\
A_{\mu}^{i 5}=\frac{1}{2 \ell} e_{\mu}^{i}
\end{array}\right.
$$

- Action in MacDowell and Mansouri formulation (with gauge symmetry breaking from $S O(4,1)$ to $S O(3,1)$

(which is not more than constrained $B F$ theory) reduces to:
- Action of GR with cosmological constant Λ and Immirzi parameter γ :

Alternative formulation of General Relativity in language of p-forms

New variables of GR:

- e_{μ}^{i} tetrad (not metric $g_{\mu \nu}$)
- $\omega_{\mu}^{i j} s o(3,1)$ connection

$$
F^{I J}=d A^{I J}+A^{I K} \wedge A_{K}{ }^{J}
$$

Together as so $(4,1)$-connection:

$$
A_{\mu}^{I J} \rightarrow\left\{\begin{array}{l}
A_{\mu}^{i j}=\omega_{\mu}^{i j} \\
A_{\mu}^{i 5}=\frac{1}{2 \ell} e_{\mu}^{i}
\end{array}\right.
$$

- Action in MacDowell and Mansouri formulation (with gauge symmetry breaking from $S O(4,1)$ to $S O(3,1)$:

$$
S=\int_{\mathcal{M}}\left(B_{\mu \nu I J} F_{\rho \sigma}^{I J}-\frac{\beta}{2} B_{\mu \nu I J} B_{\rho \sigma}^{I J}-\frac{\alpha}{4} \epsilon_{I J K L} B_{\mu \nu}^{I J} B_{\rho \sigma}^{K L}\right) \epsilon^{\mu \nu \rho \sigma} d^{4} x
$$

(which is not more than constrained $B F$ theory) reduces to:

- Action of GR with cosmological constant Λ and Immirzi parameter γ :

$$
S=-\frac{1}{2 G} \int\left(\left(R^{i j} \wedge e^{k} \wedge e^{l}+\frac{\Lambda}{6} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{l}\right) \epsilon_{i j k l}-\frac{2}{\gamma} R^{i j} \wedge e_{i} \wedge e_{j}\right)
$$

$$
\mathcal{L}(q, \dot{q}) \rightarrow \mathcal{H}(q, p)=\sum p_{i} \dot{q}^{i}-\mathcal{L}+\lambda \phi \quad p_{i} \equiv \frac{\delta \mathcal{L}}{\delta \dot{q}_{i}} \quad\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}
$$

Hamiltonian analysis of constrained $B F$ gravity

- Due to constraints in the theory there are always problems with that procedure.

"Why even bother?"

- linear dependencies in momentum in constraints and equations which is nice feature in quantization
- more wide framework dealing with:
- torsion
- coupling spinors to relativity.
- formulation is close to formulation of Yang-Mills theories.

Transition from Lagrange to the Hamiltonian formalism

$$
\mathcal{L}(q, \dot{q}) \rightarrow \mathcal{H}(q, p)=\sum p_{i} \dot{q}^{i}-\mathcal{L}+\lambda \phi \quad p_{i} \equiv \frac{\delta \mathcal{L}}{\delta \dot{q}_{i}} \quad\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}
$$

Hamiltonian analysis of constrained $B F$ gravity

- Due to constraints in the theory there are always problems with that procedure.

"Why even bother?"

- linear dependencies in momentum in constraints and equations which is nice feature in quantization
- more wide framework dealing with:
- torsion
- coupling spinors to relativity.
- formulation is close to formulation of Yang-Mills theories.

Transition from Lagrange to the Hamiltonian formalism

$$
\mathcal{L}(q, \dot{q}) \rightarrow \mathcal{H}(q, p)=\sum p_{i} \dot{q}^{i}-\mathcal{L}+\lambda \phi \quad p_{i} \equiv \frac{\delta \mathcal{L}}{\delta \dot{q}_{i}} \quad\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}
$$

Hamiltonian analysis of constrained $B F$ gravity

- Due to constraints in the theory there are always problems with that procedure.

"Why even bother?"

- linear dependencies in momentum in constraints and equations which is nice feature in quantization
- more wide framework dealing with:
- torsion
- coupling spinors to relativity.
- formulation is close to formulation of Yang-Mills theories.

