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Abstract. Porous media are often modeled as systems of overlapping obstacles,
which leads to the problem of two percolation thresholds in such systems, one
for the porous matrix and the other for the void space. Here we investigate
these percolation thresholds in the model of overlapping squares or cubes of
linear size k > 1 randomly distributed on a regular lattice. We find that the
percolation threshold of obstacles is a nonmonotonic function of k, whereas the
percolation threshold of the void space is well approximated by a function linear
in 1/k. We propose a generalization of the excluded volume approximation to
discrete systems and use it to investigate the transition between continuous and
discrete percolation, finding a remarkable agreement between the theory and
numerical results. We argue that the continuous percolation threshold of aligned
squares on a plane is the same for the solid and void phases and estimate the
continuous percolation threshold of the void space around aligned cubes in a 3D
space as 0.036(1). We also discuss the connection of the model to the standard
site percolation with complex neighborhood.
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1. Introduction

One of the standard ways of constructing a nontrivial model of a heterogeneous porous
material is to fill the space randomly with a number of identical impermeable objects
that are free to overlap [1]. Models of this type can be used to derive exact bounds on
the values of various transport coefficients, including the effective diffusion coefficient,
electrical conductivity, dielectric constant and magnetic permeability of dispersions [2,3],
whereas at high obstacle concentrations they can be used to model consolidated porous
media, e.g. sandstone, sintered materials, rocks or complex catalysts [1, 4–6].

Systems of identical overlapping objects are often described with the reduced number
density η = vN/V , where v is the area (or volume) of each object, N is their number and
V is the system volume [7]. As η is gradually increased from 0, the system undergoes two
critical transformations. The first is related to the connectivity of the solid phase formed
by the obstacles: at low densities the obstacles form a disconnected phase, whereas above
a critical value ηs this phase becomes connected. The second is related to the connectivity
of the void space: above some ηv � ηs the void space becomes disconnected and the
transport is blocked. Clearly, ηs and ηv can be identified as the percolation thresholds for
the solid and the void phases, respectively.

Thus far, the vast majority of research has focused on the simplest case of
spherical obstacles. Spheres (in 3D) and disks (in 2D) are particularly convenient in the
mathematical treatment of problems where the transport is governed by the Laplace’s
equation, e.g. diffusion [2]. The task of determining ηs is then equivalent to the well-known
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problem of finding the percolation threshold for overlapping spheres [8,9] or disks [8–11].
Similarly, the value of ηv can be identified as the percolation threshold in the ‘Swiss-cheese’
model for spheres [12–14] or disks [14,15], in which percolation is sought in the void phase.

However, other shapes are also important [16], e.g. needles [10, 11, 17, 18], fibers [17],
ellipses [19] and ellipsoids [20]. In particular, many computer simulations discretize the
space into a regular lattice and model a porous medium using overlapping cubes [21, 22]
or squares [23–26]. Therefore we investigate the problem of the percolation thresholds in
the model of overlapping squares (2D) or cubes (3D) on a regular lattice, focusing on their
dependence on the size of the obstacles. While one might expect that the values of both
percolation thresholds for finite values of the obstacle size k could be approximated by
interpolating their values between the well-known cases of k = 1 (standard site percolation
on a lattice) and k → ∞ (off-lattice percolation of freely overlapping squares or cubes),
we found that this is not the case and the percolation threshold of the obstacles exhibits
a maximum at a finite value of k > 1. This result is particularly important for designing
numerical models of porous media close to percolation.

By investigating the limit of k → ∞, the model studied here can be used to explore
the transition between discrete and continuous percolation. Conversely, the dependency
of continuous percolation on the obstacle shape can be investigated with a simple theory,
the excluded volume approximation [16,27]. We combine the two facts and generalize the
excluded volume theory to discrete systems, finding a remarkably good agreement with
numerical results for all obstacle sizes k. By extrapolating the numerical results obtained
for discrete systems, we improve the accuracy of the determination of the continuous
percolation threshold of aligned, overlapping cubes in 3D as well as provide the values of
continuous percolation thresholds of the void space around aligned squares and cubes
in dimensions two and three. Moreover, we show that a direct relation between the
model of overlapping objects of arbitrary shape and the standard site percolation with
complex neighborhood can be used to improve the accuracy of the percolation threshold
determination in a class of percolation models.

2. The model

As illustrated in figure 1, we consider a square (2D) or cubic (3D) lattice of linear size
L lattice units, on which square or cubic ‘obstacles’ of linear size k lattice units are
deposited at random, where k, L are some integer parameters, 1 � k � L and the
periodic boundary conditions are imposed on the system during the obstacle deposition
to reduce the finite-size effects [28,29]. The obstacles are aligned to the underlying lattice,
their edges coinciding with lattice nodes and are free to overlap. The volume occupied by
the obstacles is thus a simple union of elementary lattice cells and the model is essentially
discrete. Henceforth, the volume occupied by obstacles shall be called phase A or solid
phase, whereas the remaining volume shall be called phase B or void phase.

We investigate two cases, which will be denoted as Model I and Model II. In Model I
we consider the percolation of obstacles, whereas in Model II we consider the percolation
of the void space. Two elementary cells are considered to be connected directly if and only
if they belong to the same phase and share the same side (2D) or face (3D). We define
a percolation cluster as a set of elementary cells spanning two opposite system sides
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Figure 1. Construction of the models. An empty regular lattice of size L × L
lattice units (l.u.) with periodic boundary conditions (a) is filled at random with
square obstacles of size k×k l.u. aligned to the lattice axes (b) and the elementary
cells occupied by the obstacles are identified (c); finally, the problem is reduced
to the site percolation through the occupied or unoccupied elementary cells in
Model I and Model II, respectively (d). The same method was also used in 3D.

through a sequence of directly connected elementary cells. Thus, Model I interpolates
between the standard model of site percolation on a regular lattice (k = 1) and the
model of continuous percolation of aligned squares [7,18] or cubes [7] (k → ∞). Similarly,
Model II interpolates between the site percolation of voids on a regular lattice (k = 1)
and the continuous percolation of voids around aligned squares or cubes (k → ∞).

We shall express the percolation threshold in terms of the porosity, ϕ, which is one
of the most fundamental concepts in porous media studies. In both Model I and II
the porosity is defined as the ratio of the volume occupied by phase B (void space)
to the system volume. For Model II this quantity is equivalent to the so-called remaining
area/volume fraction [19], whereas ϕ = 1 − pA for Model I, with pA being the area (2D)
or volume (3D) fraction of phase A.

Since locations of each obstacle are random and mutually independent and since the
porosity can be identified with the probability that an elementary cell is unoccupied by
any obstacle, the expected porosity, 〈ϕ〉, can be expressed as

〈ϕ〉 = (1 − v/V )N = (1 − η/N)N . (1)

This formula can be used to generate a system of a given porosity; it also implies that

ϕ = exp(−η) (2)

is at the thermodynamic limit [7].

3. Numerical and mathematical details

To find the percolation thresholds we used two independent computer programs. One of
them keeps track of whether each elementary cell belongs to phase A or B. In this approach
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the execution time of each simulation is ∝ Ld, where d is the space dimensionality, and
we were able to run it for L � 4096 (d = 2) and L � 1024 (d = 3). We used this program
to simulate Model II (percolation of voids).

The second program uses data structures typical of the algorithms designed for the
continuous percolation: each obstacle is identified by its coordinates, i.e. by only d integers
and the clusters are found using the union-find algorithm. In this case the computer
memory storage, as well as the simulation time of each percolation cluster, is ∝ (L/k)d

and we were able to run the program for L/k � 5000 (d = 2) and L/k � 400 (d = 3).
While the second program allows for much larger system sizes L, it cannot be efficiently
used for Model II. We used it to simulate Model I (percolation of obstacles).

In each case we assumed periodic boundary conditions in the direction(s) perpendicular
to the direction along which we sought the percolation. The number of independent
samples (N) varied from 107 for very small systems to 103 for larger L so as to ensure that
we can determine the percolation threshold for given values of L and k with the absolute
accuracy of at least 5 × 10−5. To this end we determined the probability PL,k(ϕ) that a
system of size L, obstacle size k and porosity ϕ contains a percolating (spanning) cluster.
In accordance with the finite-size scaling theory, PL,k is expected to scale with L and the
deviation ϕ − ϕc

k from the critical porosity ϕc
k as [28,30]

PL,k(ϕ) = fk

(
(ϕ − ϕc

k)L
1/ν

)
, L/k � 1, (3)

where ν is the correlation length exponent and fk is a scaling function, see figure 2. Then
we define an effective, L-dependent critical porosity ϕc

k(L) as the solution to PL,k(ϕ) = 0.5.
This value can be obtained, for example, by fitting the data to a curve with a similar,
sigmoidal shape, e.g.

PL,k(ϕ) ≈
erfc

{
[ϕc

k(L) − ϕ]/∆(L)
}

2
. (4)

Not only does this method provide an accurate estimation of ϕc
k(L), but it also yields the

width of the percolation transition, ∆(L), which can be used to estimate the value of the
critical exponent ν from

∆(L) ∝ L1/ν , L � 1. (5)

Once ϕc
k(L) have been determined for sufficiently large values of L, they can be used to

obtain the critical porosity ϕc
k from

ϕc
k(L) − ϕc

k ∝ L−1/ν , L � 1. (6)

4. Results

4.1. Asymptotic regime and exponent ν

The critical porosity can be determined from (6) by fitting ϕc
k(L) to a nonlinear function

ϕc
k + aL−1/ν with three fitting parameters, ϕc

k, a and ν. The fourth unknown parameter,
Lmin is the minimum value of L for which the asymptotic regime expressed by (6) holds
with sufficient accuracy. However, the value of the critical exponent ν is expected to be
universal, k-independent. We verified this hypothesis positively for Models I and II in
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Figure 2. The data collapse according to the universal scaling, equation (3) with
ϕc

k = 0.3505, ν = 4/3, obtained for Model II with the obstacle size k = 20 and
space dimension d = 2.

dimensions 2 and 3 for all tested values of k using both (5) and (6) (data not shown).
Therefore, in the fitting procedure we reduced the number of unknowns to two, assuming
the most accurate value of the thermal exponent yt = 1/ν available for the standard site
percolation, 1/ν = 3/4 and 1.141 for d = 2 and 3, respectively [31,32]. The value of Lmin

was determined by requiring that the reduced chi-squared statistic of the fit is ∼ O(1) and
neither this parameter nor the estimated value of the critical porosity varies significantly
for L > Lmin. For Model I we found Lmin = 100 k and 60 k for d = 2 and 3, respectively,
whereas for Model II we found Lmin = 50 k for d = 2, 3. The accuracy of our data was
insufficient for the application of fits with higher-order terms, a standard technique for
simpler models of percolation [31,32].

Selected results showing the convergence of the effective critical porosity to its
asymptotic value are depicted in figure 3. As can be seen, the convergence rate is similar
for different values of k.

4.2. Critical porosity

4.2.1. Model I. The critical porosity for Model I (percolation of obstacles) for several
values of k ranging from 1 to 10 000 is listed in table 1 and its dependency on 1/k in
2D and 3D is depicted in figure 4. A striking feature of these results is a nonmonotonic
dependency of ϕc

k on k. This effect is particularly strong in 3D—in this case the maximum
value of the critical porosity is located at k = 3 and exceeds its value for the standard
site percolation (k = 1) by ≈10%.

Our results are in agreement with those obtained for k = 1 (standard site percolation)
in references [31, 33]. Moreover, they allow for the estimation of the critical porosity in
the limit of k → ∞, which corresponds to the continuous percolation of aligned squares
or cubes. To this end we assumed that ϕc

k depends linearly on 1/k for sufficiently large k
and hence the value of ϕc

∞ = limk→∞ ϕc
k can be estimated through linear extrapolation.

The critical surface/volume Φc of the continuous percolation is then related to the critical
porosity through Φc = 1 − ϕc

∞. Our result for d = 2, Φc = 0.666 75(2), agrees with
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Figure 3. Convergence of the effective critical porosity ϕc
k(L) to its asymptotic

value ϕc
k for Model I in 3D and k = 1, 10, 100. The dashed line is a guide to the

eye with the slope −1/ν = −1.141 determined for the standard site percolation
(k = 1, d = 3) in [31,32].

Table 1. Critical porosity for selected values of k. The values for k → ∞ come
from extrapolation and for d = 2 are expected to be identical. The data for
Model II and k > 20 are not available.

Model I Model II

k d = 2 d = 3 d = 2 d = 3

1 0.407 26(1) 0.688 40(1) 0.5926(2) 0.3117(1)
2 0.416 35(2) 0.760 13(2) 0.4868(1) 0.1687(1)
3 0.404 14(2) 0.765 64(1) 0.4417(1) 0.1195(1)
4 0.393 52(1) 0.763 62(1) 0.4172(2) 0.0961(1)
5 0.385 33(2) 0.760 44(2) 0.4015(2) 0.0829(2)
7 0.374 03(1) 0.754 50(1) 0.3829(3) 0.0685(2)
10 0.363 91(2) 0.748 03(1) 0.3683(5) 0.0585(3)
20 0.349 94(2) 0.737 54(2) 0.351(1) 0.048(1)
100 0.336 82(2) 0.726 11(1) — —
1000 0.333 61(1) 0.723 06(2) — —
10 000 0.333 26(1) 0.722 77(2) — —
∞ 0.333 25(2) 0.722 73(2) 0.334(1) 0.036(1)

the value 0.666 743 49(3) obtained by Mertens and Moore [18]. For the case d = 3 we
obtained Φc = 0.277 27(2), which is an improvement over the value 0.2773(2) reported by
Baker et al [7].

4.2.2. Model II. The critical porosity obtained for Model II (percolation of voids) is
listed in table 1 and figure 5 shows that its dependency on 1/k is almost linear both
for d = 2 and d = 3. We verified that our results for k = 1 are in agreement with
those reported recently in [31, 33]. As for the limit of k → ∞, which corresponds to the
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Figure 4. Critical porosity ϕc
k for Model I in 3D as a function of the reciprocal

of the obstacle size, 1/k. The dashed line is a guide to the eye drawn with cubic
splines. Inset: the same for d = 2.

continuum percolation of voids, this problem is much more difficult than the continuous
percolation of obstacles and most of the research has been concentrated on overlapping
discs or spheres. Our results suggest that in this limit the critical porosities for Models I
and II are the same if d = 2. This can be justified as follows. Consider two obstacles
that are close to each other. As shown schematically in figure 6, if they overlap or share
a side (2D) or face (3D), they facilitate the percolation of obstacles (Model I). If they
are disjoint, they facilitate percolation of the void phase (Model II). However, if they
touch only at a corner (2D) or an edge (3D), they block the percolation of both phases.
The latter case is very common if k is small, but the probability of two squares sharing
only a corner or two cubes sharing only an edge quickly decreases as k → ∞. Thus, for
continuous percolation the situation depicted in figure 6(b) practically does not occur and
its impact is negligible. This implies that either phase A or B percolates regardless of
the porosty. As the percolation in one direction of a 2D system precludes the percolation
of the other phase in the perpendicular direction and since the system is isotropic, the
continuous percolation thresholds of aligned squares of the obstacles (Model I) and of the
void space around them (Model II) must be the same. Consequently, even though our
direct estimation of ϕc

∞ in Model II yields 0.334(1), one can safely use its more accurate
approximation for Model I, 0.333 256 51(3) [18].

For d = 3 the critical porosity in Model II is always smaller than in Model I, which
means that for any k, including the case k → ∞, there exists a range of porosities
for which the system resembles a sponge: both the solid and void phases percolate.
Moreover, the value of ϕc

k for k → ∞ turns out to be close to the critical porosity
0.0317 of the void space around overlapping spheres [13] (see also [14]). As expected,
for d = 2 we found the opposite behavior: it is impossible to have a two-dimensional,
infinite system with percolation of both phases. Instead, for any finite k there exists a
range of porosities for which neither phase percolates. The width of this range shrinks to
zero as k → ∞. Note that our result for k → ∞, ϕc

∞ ≈ 0.333 24, is much larger than
0.159 reported by van der Marck [14] for continuous percolation of the void phase around
disks. Such a large discrepancy cannot be explained by the difference in the shape of the
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Figure 5. Critical porosity ϕc
k for d = 2, 3 as a function of the reciprocal of the

obstacle size, 1/k, for Model II (percolation of voids). The values at 1/k = 0
come from extrapolation. The dashed lines are guides to the eye drawn with
cubic splines.

(a) (c)(b)

Figure 6. (a) Overlapping squares contribute to percolation of obstacles. (b) Two
squares touching only at the corners block percolation of both phases. (c) Two
disjoint squares facilitate percolation of the void phase.

obstacles. As van der Marck’s result is also smaller than the critical porosity of disks,
ϕc

∞ ≈ 1 − 0.676 348 31 ≈ 0.32 [18], his result is probably erroneous.

4.3. Discrete excluded volume approximation for Model I

According to the excluded volume theory [16, 27], the continuum percolation threshold
for overlapping obstacles can be approximated with

ncVex ≈ B, (7)

where nc = ηc/v is the critical number density of objects, Vex is their excluded area or
volume and B is the average number of overlaps per obstacle at criticality. In continuous
percolation Vex is defined as the area (volume) around an object into which the center
of another similar object is not allowed to enter if overlapping of the two objects is
to be avoided. Consequently, Vex can be interpreted as a measure of the rate at which
consecutive obstacles, which are free to overlap, form new connections as they are being
placed in the system. Therefore, for discrete models we define Vex as the number of obstacle
configurations which make a connection with a given obstacle. In other words, for discrete
models Vex should be regarded as a ‘connectedness factor’ rather than the excluded volume.
For Model I this leads to Vex(k) being the number of elementary lattice cells in a square
or cube of length 2k + 1 that are not at its corners (d = 2) or edges (d = 3). A general
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formula for Vex(k) in Model I reads

Vex(k) = (2k − 1)d−1(2k + 2d − 1). (8)

Combining equations (2) and (7) one arrives at a general relation for the critical porosity

ϕc ≈ exp
(

−B
v

Vex

)
. (9)

For Model I it reduces to

ϕc
k ≈ exp

[
−Bd

kd

(2k − 1)d−1(2k + 2d − 1)

]
, (10)

where Bd is the B factor for the space dimension d.
The ratio Vex/v is nonmonotonic in k, with the maximum at a non-integer

kmax = d − 1/2. (11)

This corresponds to the nonmonotonic dependency of the critical porosity on the obstacle
size seen in figure 4 for d = 2, 3.

Parameters Bd in (10) can be treated as fitting parameters to the simulation data or
can be obtained independently using other methods. In the former case we found that
B2 = 4.49, B3 = 2.67 and ϕc

k determined from equation (10) agree with the simulation
results to within 2 significant digits (the absolute error < 0.01) for all k. In the later
case one can use the values for the continuous percolation: B2 = 4.395 371 1(5) and
B3 = 2.5978(5). They can be obtained by inserting the most accurate values of the
critical porosity into

Bd = −2d ln ϕc
∞, (12)

which follows immediately from (9) if we assume this relation to be exact. These values
agree with B2 = 4.39(1) and B3 = 2.59(1) reported in [7].

The error introduced by (10) can be estimated using the simulation results as the
reference values. As shown in figure 7, even with the values of Bd taken from the continuous
percolation, the accuracy of (10) is remarkable. As expected, the quality of (10) improves
as k goes to infinity. It is rather surprising that the correction to (10) scales in the same
way, as k−3/2, for both d = 2 and 3. It is also worth noting that for d = 3 the simple theory
presented in this section allows for the prediction of the critical point of site percolation
(k = 1) with the accuracy of ≈0.2% using only the information available for the continuous
percolation.

Encouraged by the success of the theory for d = 2, 3, one might ask whether it can be
applied in higher dimensions. Since Vex = 2d for continuous percolation and Vex = 2d + 1
for site percolation, equation (9) suggests a general relation between the critical porosity
in the continuous (k → ∞) and site (k = 1) percolation on regular lattices of arbitrary
dimension d,

ϕc
1 ≈ (ϕc

∞)2d/2d+1. (13)

This equation correctly predicts that ϕc
1 < ϕc

∞ for space dimensions 3 and higher.
Moreover, using the available results for the high-dimensional site percolation [34] and
continuous percolation of oriented hypercubes [9], it is straightforward to verify that for
dimensions d � 5 the values of the site percolation threshold 1 − ϕc

1 predicted from (13)
deviate from the correct ones by less than 3.5%, whereas for 6 � d � 11 the accuracy
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Figure 7. The relative error of the critical porosity, ϕc
k, approximated with

equation (10), as a function of the object size k, for d = 2, 3 (Model I). The
simulation results (table 1) were assumed to be the true values and Bd was
taken from the continuous percolation. The dashed line is a guide to the eye
with the slope −3/2.

varies erratically between 8 and 15%. One possible explanation is as follows. One might
expect that the quality of our approach is very good for large k and worsens as k goes
down to 1, especially for k � kmax, i.e. after the maximum value of ϕc(k). Since kmax

diverges with d, the quality of (13), which involves the information for k = 1, can be
expected to decline for large d. It is also possible that the lesser accuracy of (13) for d � 6
is related to 6 being the critical dimension for standard percolation [35].

4.4. Relation to the site percolation with complex neighborhood

Percolation of obstacles of linear size k can be mapped on the standard site percolation
with complex neighborhood problem. Consider an example visualized in figure 8, which
shows the simplest nontrivial case d = 2, k = 2. The position of each obstacle on the lattice
can be identified by the coordinates of one of the elementary cells making up the obstacle,
e.g. the one occupying the top left corner. In figure 8 this characteristic elementary cell
for the 2× 2 obstacle drawn with a thick solid line is marked by a cross. Another obstacle
is connected to the reference one if and only if its characteristic elementary cell is located
in one of the elementary cells marked by the circles in figure 8 (which form the ‘excluded
volume’ Vex for the reference object). Thus, the connectedness of a group of squares of
linear size k = 2 is equivalent to that of elementary squares of linear size 1 with complex
neighborhood marked with circles. This observation can be generalized to arbitrary space
dimension d, arbitrary value of k and even arbitrary obstacle shape.

While the connectedness in the two models is equivalent, the porosities in each model
are different—in the site percolation with complex neighborhood each obstacle occupies
only one elementary cell. The porosity in the equivalent problem of site percolation,
denoted henceforth by π, can be calculated from (1) with v = 1. This immediately leads to

ϕc
k = (πc

k)
kd

, (14)
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Figure 8. The relation between percolation of squares of size k × k and the
standard site percolation with complex neighborhood. See the text for detailed
explanation.

where πc
k is the critical porosity in the equivalent site percolation with complex

neighborhood problem.
The site percolation with complex neighborhood corresponding to the case illustrated

in figure 8 (d = 2, k = 2) was investigated by Majewski and Malarz [36], who found
1 − πc

2 ≈ 0.196. This is consistent with our result 1 − πc
2 = 0.196 724(5) that follows from

(14) and the value of ϕc
2 = 0.416 35(2) listed in table 1.

5. Conclusions and outlook

The model of overlapping hypercubes, besides its applications in porous media modeling,
allows one to investigate the transition between discrete and continuous percolation.
We developed a simple phenomenological theory, an extension of the excluded volume
approximation to discrete systems, which describes this transition with remarkable
accuracy. We verified this theory numerically in dimensions 2 and 3 and presented
evidence that it is likely to remain valid in higher dimensions. We were also able to
improve the accuracy of the determination of the continuous percolation threshold of
aligned, overlapping cubes in 3D as well as to provide the values of continuous percolation
thresholds of the void space around aligned squares and cubes in dimensions two and three.
Moreover, we showed that a direct relation between the model of overlapping objects of
arbitrary shape and the standard site percolation with complex neighborhood can be
used to improve the accuracy of the percolation threshold determination in a class of
percolation models.

We found that the percolation threshold in a model of aligned, overlapping squares or
cubes randomly distributed on a regular lattice is a nonmonotonic function of their size.
This is an unexpected behavior, potentially affecting porous media modeling. Percolation
of the void space around squares or cubes behaves in a more regular way, as in this case
where the critical porosity can be approximated by a function linear in the reciprocal of
the obstacle linear size.
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Universality of the results presented here requires further studies, especially on
obstacles of needle-like shapes. This idea has proved illuminating for the development
of the excluded volume theory [11,16,17,27].
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